The Ray Phaneuf Research Group
Among the most important and exciting
directions in materials research today is toward understanding and controlling
materials at the nanometer scale. Much
of the driving force for this comes from the continued decrease in individual
device size, and increase in device densities called for in the semiconductor
road map for technology, but there are numerous other applications for
materials whose properties are dominated by the confinement of electrons,
phonons and other particles to dimensions comparable to their wavelength, i.e.
quantum effects. My research is centered
on techniques for fabricating and characterizing nanometer scale structures, in
directing their rapid self-assembly and in using nanometer scale structures to
enhance the efficiency of devices which involve their interaction with light (click
here for a list of publications).
One approach to making and
characterizing such structures involves using the scanning tunneling microscope
to manipulate or deposit small numbers of atoms. We’ve used the technique of evaporating a
thin film of gold or aluminum onto our STM tip, and then applying a voltage
pulse between sample and tip to produce nanometer-scale dots of metal on a
silicon surface. We then used the same
tip both to image the resulting dots, and to measure
the local density of electronic states (click here for a short
display of our results).
Although the size- and
position-control afforded by this approach are superb, this sort of
“direct-write” approach is intrinsically slow, and unlikely to meet the demand of
macroscopic arrays of nanometer scale structures called for in practical
applications. On the other hand
lithographic approaches suffer from insufficient resolution to produce the
nanometer scale structures we are interested in. Technology is thus turning to “self-assembly
to combine small size and large numbers of structures.
Self-organization
in nature often leads to pattern formation at characteristic length scales, a
phenomenon which has long fascinated scientists. It also presents a clue as to how bottom-up
fabrication of densely packed arrays of nanometer scale devices might be
achieved practically. The general idea is to use a template to direct the
assembly that occurs during subsequent deposition or growth. Fabrication of the
template typically involves either spontaneous pattern formation arising from a
balance between thermodynamic driving forces and kinetic processes, or
lithography followed by etching to produce artificially patterned substrates.
The first approach is relatively simple and clean to carry out, however the
characteristic length scales of the patterns which form are determined mainly
by material properties, resulting in a limited range of variation. The second approach is labor intensive,
particularly if the detailed structure of individual cells within the pattern
is to be controlled.
Research in
Directed Self Assembly – “Teaching Nature How to Build”
Alternatively,
a third, hybrid approach can be used, with an initial lithographically
determined pattern setting conditions for the physical driving forces which
control evolution during a subsequent sample processing step, i.e. directed self-organization, in which a template
is fabricated to guide nature in deciding how to assemble very large numbers of
structures quickly. To make this
practical, it is crucial to understand the interactions between the underlying
physical mechanisms involved, and in particular how these interactions vary
with lateral length scale. Some of the
recent directions of the research carried out by my group has been toward
gaining such an understanding, by probing the effect of the characteristic
template length scale in directed self-organization during growth and annealing
of semiconductor surfaces.
We start with a template, which we
define in a number of different ways-lithography followed by etching, and “nanoscraping” are the two approaches we are using at
present. The first relies on depositing
a “resist”, usually a polymeric film onto a surface, and then selectively
changing the properties of the regions to be removed or left in place. This can
be done by irradiating it through a mask with UV light, or irradiating selected
regions top a scanned electron beam-both change the resistance of the polymer
to being washed away by a chemical “developer”.
Nanoscraping uses an atomic force microscope
to selectively scrape away resist; and allows for extremely small patterns to
be made. In both approaches the surface,
parts of which are covered with resist, others bare, is exposed to a plasma which etches away the top layers. Finally the
resist is removed chemically, leaving a clean but topographically patterned
surface, a template. Our templates
typically made up of arrays of cells, with the pattern lateral size and spacing
varied systematically from cell to cell.
In this way we are able to measure the lateral size dependence quickly,
and under otherwise uniform conditions during such processes as epitaxial
growth, annealing and reactive ion etching.
Fig. 1. Patterned GaAs(001)
surface containing arrays of cylindrical pits, 50 nm deep, with varying
diameter and spacing.
The
beauty of this approach is that many patterns can be explored simultaneously,
allowing the effect of the pattern length scale to be explored. An example is shown in Figure 1, where we
have defined pits of varying diameters and spacings onto a gallium arsenide
surface. We now grow more GaAs onto this template, and observe the effect of the
length scale on how new structures self-assemble during growth. We find that large period structures amplify
during growth: the pits effectively grow deeper, while those whose period is
below a certain characteristic size relax during growth. This characteristic size moves to larger values
as we grow thicker films, and so eventually even large period structures relax,
but the surface shows a transient instability.
We’ve explored the temperature dependence, and find that the nature of
the instability changes beneath ~540 C; rings of material form around pits
during growth beneath this. We explain
this change based on competing kinetic effects: one is associated with a
barrier that atoms feel on difusing across a step
from above, which is important at low temperatures. The second is a faster collection of atoms by
larger terraces, important at high temperatures. In upcoming work, we’ll extend our patterns
downward to nanometer dimensions.
Fig. 2. (Left)
Atomic Force Microscopy Height profiles across patterned GaAs(001) for 1 um pits
spaced at 2 um, vs. thickness of grown film, (Right) with varying diameter and spacing. (right) Measured peak-valley height of
patterns vs. initial diameter for different grown thicknesses. Pattern lengths larger than the peak value
amplify, those beneath it decay.
In related experiments, we have patterned stepped silicon
surfaces, and measured how the length scale of our pattern affects the self
assembly of bunches of steps during heating in vacuum. Beneath a characteristic length scale bunches
of straight steps form, while above this the bunches
form near sinusoidal shapes, with the waviness of the bunches decaying at the
same rate as the height. This length
scale is set both by the stiffness of the steps and their interactions. Using a simple model in which steps move
across the surface in response to these effects and sublimation we’re able to
reproduce the pattern size dependence of the self-organization of bunches of
steps during annealing. (Click here for a
(347 MB !) movie showing the relaxation for the
smallest period structure)
Fig.3. Self assembly of
straight step bunches during annealing of short period patterned stepped
Si(111), but wavy step bunches for long period patterns. The decay times for step bunch waviness (IP)
and height (OOP) are different for small periods, but converge for large
pattern structures.
I
presented some of our results on patterning for directed self-organization at
the recent “Nanosteps: Self-organized nanostructures on crystal
surfaces” Workshop (http://www.im2np.fr/nanosteps/NanoSteps.html
) in Cargese,
Research in
Light – Plasmon Interactions: “Using Nanoparticles to Enhance Optical Phenomena”
Another
of the directions of the research that my group and I are carrying out is using
arrays of noble metal nanoparticles to enhance optical processes due to
interactions with particle plasmons.
It’s interesting to note that Nanotechnology has been around in some
sense for hundreds of years. Some of the
brilliant colors of stained glass windows in cathedrals across
A
much more contemporary application of the interaction of light and
nanoparticles is in fabrication of biosensor arrays or biochips, which are
often based upon fluorescence. The
appeal of this is the ease with which biochemists can add a fluorescent tag to
molecules which in turn bind to certain biomolecules of interest. This in fact is the basis of the so-called
sandwich array. There has been a good
deal of work done investigating a related technique, called surface enhanced
Raman scattering, or SERS, which allows a different type of molecular
fingerprinting. There huge enhancements,
up to 10^14 have been reported. Much less work has gone into optimizing and
understanding the enhancement which comes from the interaction of light from
fluorescent molecules and metallic nanoparticles. Fluorescence of course involves both
absorption and radiative decay, at two different wavelengths, due to the
Franck-Condon Effect. Our results show
evidence that the observed nanoparticles enhancement of fluorescence involves
both processes.
We use electron beam lithography to create
arrays of silver nanoparticles on a substrate.
This allows us control over the shape, size and spacing of the
particles-all of which effect the plasmon resonance frequency. To avoid quenching of the fluorescence we
need a finite spacing between the fluorescent molecule and the
nanoparticles. We use a combination of
proteins to space a variety of fluorescent tags several nm from the surface of the
surface of the Ag particles. We measure
the fluorescence using a scanning laser microscope and a filter which cuts out
the incident ligh, but allows a band of wavelengths
through to the detector. It allows us to
quickly determine the optimum combination of size an spacing as seen in the figure
to the right.. The upward shift in the
optimum size in going from green light to red points to an enhanced absorption
of the incident light, since the plasmon resonance is known to shift to lower
frequency for larger particles. On the
other hand, we find that the maximum in intensity coincides with a minimum in
the fluorescence life time showing that the emission is also enhanced. Our present work is aimed toward a quantitative, and predictive understanding of
nanoparticle-enhanced fluorescence, and related phenomena.
Other Research Activities
Since many of the applications for
nanometer scale structures are for devices, we have also been investigating
other electron microscopies to determine what their
capabilities are in measuring local potential, dopant
concentration and charge density (click here for a
short description of some recent STM results). Among the most powerful of these techniques
is low energy electron microscopy (LEEM) (click here to see
a an example LEEM result from our group or here to see an
overview article on LEEM published in Physics Today). My group (click here to see group
members at work) and I have designed and built a LEEM, adding it to the
“arsenal” of techniques we are using in working toward directed self assembly
of nanoscale structures. Another capability we have is molecular beam epitaxy, which gives us extreme control over the
composition of structures built up by growth of ultrathin films of semiconductors.Photoemission electron microscopy (PEEM),
particularly spectroscopically resolved is
particularly powerful in probing these quantities. Using a scanning x-ray
photoemission microscope at the Elettra Synchrotron
Light Source in
Presently we are carrying out a
NSF-NIRT funded collaboration with Professor Gottlieb Oehrlein at the UM,
Professor David Graves at UC-Berkeley, Professor Grant Willson
at UT-Austin and Dr. Azar Alizehda
at General Electric, concerning the stability of the surface of model polymer
resists during plasma etching. Line-edge
roughening in this system is of crucial concern, as it threatens to limit the
minimum feature size obtainable in ULSI and beyond. My group is again adopting a patterning
approach to perturb polymer films over a range of spatial frequencies, and
investigating the response during subsequent etching.
Research Group
Our group, past and present consists of
research scientists, postdocs, graduate students and
undergraduate students with a varied technical and cultural background. It includes physicists, materials scientists
and electrical engineers from the US, Taiwan, Iran and Korea, working on research
which varies from lithographic patterning, to molecular beam epitaxy, to nanoparticle enhanced fluorescence, to
numerical simulations based on finite difference methods, and direct
integration of differential equations.
(Top left: APS March Meeting 2006: Sherman Guo, Tabassom Tadayyon-Eslami,
Dominic Britti is a graduate student in the Department of
Materials Science and Engineering, and a graduate of the Department of
Physics. Dominic is using Scanning
Tunneling Luminescence (STL) as a means of probing the electronic energy levels
of structures with nm-scale resolution.
Dominic has participated in collaborative research with the Group of
Professor Ross Rinaldi, at the National Nanotechnology Laboratory in Lecce,
Italy, probing transport through nanometer scale structures, and the variation
in fluorescence intensity with the separation between a fluorescent molecule
and a nearby nanometer-sized silver sphere; this work also involved
collaboration with De-Hao Tsai, a graduate student in the research group of
Professor Michael Zachariah of the Department of Mechanical Engineering at the
UM.
Shu-Ju (Phoebe) Tsai is a graduate student in the Department of
Materials Science and Engineering.
Phoebe’s research involves the use of size selected noble metal
nanoparticles to enhance the interaction of molecules and light. She has been working with Sherman Guo and
De-Hao Tsai on experiments on nanoparticle-enhanced fluorescence, in this case
employing size selected particles fabricated by spray pyrolysis and
differential mobility analysis, and deposited onto a silicon substrate. Phoebe has also developed numerical
simulations based upon the dynamic dipole approximation which show that the
substrate plays an active role in the enhancement, reshaping the distribution
of intense electric field during illumination with light. Phoebe gave a talk at the 2007 APS March
Meeting in
Tsung-Chen
(T. C.) Lin is a graduate
student in the Department of Materials Science and Engineering, who recently
joined our group. T. C.’s research involves studying the stability of prototype
resists against roughening during reactive ion etching, as part of the National
Science Foundation Nanoscience Interdisciplinary Reseach Team (NIRT) project which we are carrying out in
collaboration with Professor Gottlieb Oehrlein’s
group at the UM, Professor David Graves’ group at UC-Berkeley, Professor Grant Willsons’ group at UT-Austin, and Azar
Alizehda at General Electric. T. C. is adopting a Nanopatterning
approach toward probing the stability of the plasma-resist interface.
Krista
Cosert is a first Year
graduate student in the Department of Materials Science and Engineering. Krista’s research involves MBE growth on GaAs(001)
surfaces which have been nanopatterned using electron
beam lithography. She was co-author of
a poster at the 2008 Nanoday at the
Chuan-Fu
Lin is a first Year
graduate student in the Department of Materials Science and Engineering. Chuan-Fu uses AFM to analyze transient
instabilities during MBE growth on nanopatterned GaAs(001)
surfaces Chuan-Fu presented a poster at
the 2008 Nanoday at the
Sauleh
Siddiqui is a first Year
graduate student in the Department of Mathematics. Sauleh is working in collaboration with Dr.
Ajmi BH Hammouda, carrying out kinetic
Dr.
Tim Corrigan is a
Postdoctoral Research Scientist with our group.
His research concerns the interaction of light with nanometer-scale
noble metal nanoparticles, including enhanced fluorescence, and nano-optronics/metamaterials.
Tim is an expert in electron beam lithography, and device processing
techniques. He has collaborated with the
group of Professor Ross Rinaldi at the National Nanotechnology Laboratory in
Dr.
Julia Heetderks is a Postdoctoral
Research Scientist who recently joined our group. Julia’s research is in enhancing fluorescence
using proximity to arrays of noble metal nanostructures. She gave a recent poster presentation at the
IC Postdoc fellow research colloquium, and is co-author
on a paper submitted to Optics Express.
Julia will be presenting results at both
the ISSSR and ACS meetings.
Dr.
Electric
field distribution for a silver nano-particle with diameter of 200nm in the
presence of a light wave propagating in the +x direction, with the E field
initially polarized in the +y direction. The wave length for the incident light
is 200 nm for (a)-(c), and 400nm for (e)-(f). According to the simulation the
maximum extinction (resonance) occurs at 400nm wavelength. Panel (a) and (d)
show the X component of the E-field, (b) and (e) the Y component, and (c) and
(f) the E2. Color levels for (a),(b),(d)
and (e): red for positive, blue for negative, and black indicated zero level.
For (c) and
(f), black indicates 0 (V/cm) 2, and bright yellow for 10 (V/cm)
2.
Dr. Tabassom Tadayyon-Eslami recently received her PhD in our group,
carrying out investigations of the length-scale dependence of unstable growth
on patterned GaAs(001). In this work,
she employed photolithography and reactive ion etching to create arrays of
cylindrical pits on the surface, whose size and spacing are varied in a
combinatorial manner. She found that
there is a transient instability during molecular beam epitaxial (MBE) growth
at standard conditions, and that the nature of this instability changes
qualitatively upon lowering the temperature through a value which approximately
coincides with that of thermodynamic preroughening. She established that this was coincidental,
however, and identified atom-scale mechanisms which explain the instability and
its temperature dependence. She
published papers in Physical Review Letters, Physical Review B and Applied
Physics Letters based upon this work, and gave talks on it at the APS March
Meeting and the Physical Electronics Conference. Tabassom is presently working at the
Dr.
Dr.
Jeong-Young Park is a
former Postdoctoral researcher with my group.
His work with us involved the use of the scanning tunneling microscope
in probing the time response of working device structures and in creating and
modifying nanostructures at surfaces.
Jeong-Young has published papers in Science, Applied Physics Letters,
Journal of Vacuum Science and Technology and Surface Science. He is now a Research Scientist at Lawrence
Berkeley Laboratories carrying out studies on Hot electron generation from catalytic
reaction in catalytic nanodiode, Atomic
or molecular scale properties of surface and interface, Nanotribological properties of quasicrystal surface and their relation with the surface
atomic structure, and Charge transport properties and mechanical properties in
organic molecules or bio-materials with conductive atomic force microscopy
Dr.
Shy-Hauh (
Teaching
One of the courses
I teach at the
A second course I’ve been teaching is
Diffusion, Kinetics and Phase Transformations.
Topics include diffusion in substitutional
solid solutions, interstitial diffusion, nucleation and growth theories,
solidification, diffusional transformations and
growth of crystalline solids. I
supplement traditional lectures with results from the literature, stressing the
application of course material to problems of interest in current research
being carried out with a battery of techniques, new and old, including LEEM,
FIM, STM, TEM and Scattering.
I’ve also taught
the Senior Capstone Design Course, Introduction to the Materials, an
Introductory Course in Nanotechnology for Freshman, and Introduction to
Engineering Design. In all case I stress
active learning, and awareness of how the course material relates to problems
of interest in research today.