
Jointly Modeling Relevance and Sensitivity
for Search Among Sensitive Content

Mahmoud F. Sayed
Computer Science and UMIACS

University of Maryland, College Park
mfayoub@cs.umd.edu

Douglas W. Oard
iSchool and UMIACS

University of Maryland, College Park
oard@umd.edu

ABSTRACT
Current search engines are designed to find what we want. But un-
processed archival collections can’t be made available for search if
they contain sensitive content that needs to be protected. Tradition-
ally, content if first examined through a sensitivity review process,
which becomes more difficult and time-consuming as content vol-
umes increase. Tomitigate these costs and delays, search technology
should be capable of providing access to relevant content while
protecting sensitive content. This paper proposes an approach that
leverages learning to rank techniques. We use learning to rank to
optimize a loss function that balances the value of finding relevant
content with the imperative to protect sensitive content. In the ex-
periments, a LETOR benchmark dataset, OHSUMED, is used with
a subset of the MeSH labels representing the sensitive documents.
Results show the efficacy of the proposed approach in comparison
with some simpler baselines.

CCS CONCEPTS
• Information systems→ Learning to rank;

KEYWORDS
Learning to rank; sensitivity review; evaluation
ACM Reference Format:
Mahmoud F. Sayed and Douglas W. Oard. 2019. Jointly Modeling Relevance
and Sensitivity for Search Among Sensitive Content. In 42nd Int’l ACM SIGIR
Conference on Research & Development in Information Retrieval (SIGIR’19),
July 21–25, 2019, Paris, France. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3331184.3331256

1 INTRODUCTION
In late 2014, presidential candidate Hillary Clinton sent 30,490 work-
related email messages to the State Department and asked that they
be reviewed and released as quickly as possible. Nearly a year
later, with 25 people assigned to the office coordinating the review
process, the review process was completed. In late 2014, presidential
candidate Jeb Bush chose a different approach, releasing all of the
approximately 280,000 email messages from his time as Governor
of Florida. That email was posted to the Internet and then removed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331256

two days later, after independent sources identified the presence of
sensitive content. Neither approach is able to provide responsive
access at reasonable cost while protecting sensitive information.

The fundamental issue is that today’s search engines are designed
with a single fundamental goal: to help us find that which we
want to see. Paradoxically, the very fact that they do this well
means that there are many collections that we are not allowed
to search. Citizens are not allowed to search some government
records because there may be intermixed information that needs
to be protected. Scholars are not yet allowed to see much of the
growing backlog of unprocessed archival collections for similar
reasons. These limitations, and many more, are direct consequences
of the fact that today’s search engines are not designed to protect
sensitive information.

If sensitive content were marked as sensitive at the time of cre-
ation, protecting it would be easy. In an earlier era when informa-
tion was scarce relative to human attention, segregating sensitive
information from that which could be made public was the norm.
For example, we could presume that newspaper articles were in-
tended to be public, and that telephone calls were intended to be
private. Today, however, it is human attention that is scarce rela-
tive to the quantity of information that we all generate, and digital
media increasingly collapse what used to be segregated informa-
tion contexts. As a result, our digital records are an intermixed
cacophony of the sensitive, the important, and the banal.

In this paper, we begin to address that challenge by exploring
a new class of ranking approaches designed to effectively search
among secrets. Our goal is to balance the user’s interest in finding
relevant content with the provider’s interest in protecting sensitive
content. We propose an approach that leverages evaluation-driven
Learning to Rank (LtR) techniques. In LtR, each document is repre-
sented by a feature vector of possible indicators of relevance, and
(for training) a target relevance label. Then learning techniques
are employed to develop a ranker that optimizes some defined loss
function. LtR approaches can be broadly divided into 3 groups [17]:
1) Pointwise, 2) Pairwise, and 3) Listwise approaches. Our work
focuses on listwise approaches, as they seek to directly optimize an
objective function that can be matched to the evaluation measure.
The key, therefore, is to design an evaluation measure that reflects
the goal of finding relevant documents while protecting sensitive
documents.

Of course, experimenting on sensitive content ultimately re-
quires access to sensitive content. Initially, however, it would be
useful to have some reasonable surrogate for the problem that can
be widely shared. We therefore experiment in this paper on a collec-
tion of medical documents, demonstrating that listwise LtR rankers

https://doi.org/10.1145/3331184.3331256
https://doi.org/10.1145/3331184.3331256
https://doi.org/10.1145/3331184.3331256

trained to optimize an appropriate loss function can achieve bet-
ter results than the more straightforward approaches of simply
filtering out sensitive documents (either before or after retrieval).

To the best of our knowledge, this is the first attempt to balance
between relevance and sensitivity in a single ranking framework.
The contributions of this paper are as follows.

(1) We introduce Cost Sensitive Discounted Cumulative Gain
(CS-DCG), a variant to DCG that balances between relevance
and sensitivity. Unlike DCG, CS-DCG can become negative,
and hence we need to compute its lower and upper bounds to
use the normalized form (nCS-DCG) tomeaningfully average
across multiple queries.

(2) We propose some baselines that are based on filtering out
sensitive content (either before or after retrieval) or down-
grading relevance labels for sensitive documents.

(3) We propose a novel usage of listwise learning to rank algo-
rithms to optimize for the new evaluation metric by modify-
ing their loss functions.

(4) We propose a simple cluster-based replacement strategy that
can further improve nCS-DCG, and show that such a strategy
can sometimes reduce the number of queries with negative
CS-DCG results.

(5) We evaluate the effectiveness of our proposed LtR approach
along with several baselines using the LETOR OHSUMED
test collection, with a subset of the MeSH labels in that
collection serving as a surrogate to represent sensitivity.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the modeling of rele-
vance and sensitivity and different approaches to tackle the issue
of search among sensitive content. The experimental setup and
results are presented in Sections 4 and 5 respectively, followed by
discussion in Section 6. Section 7 concludes the paper and suggests
directions for future research.

2 RELATEDWORK
Learning to rank has become a popular approach for creation of
tailored retrieval models because of its flexibility and ability to learn
from large amounts of training data. LtR approaches can be broadly
divided into 3 groups [17]: 1) Pointwise, 2) Pairwise, and 3) Listwise
approaches. In the pointwise approach, the ranking problem is
transformed into classification, or regression, and existing methods
for classification or regression can be applied. In this approach, each
document is treated independently. In our work, we used linear
regression [7] with a squared loss function as an example from that
category.

In the pairwise approaches, ranking is transformed into a binary
classification task in which the goals is to tell which document
in a given pair is more relevant. During training, document pairs
with different ground truth relevance values are used. The pair-
wise approach includes Ranking SVM [14, 18], RankBoost [11],
RankNet [2], GBRank [31], IR SVM [5], Lambda Rank [4], and
LambdaMART [3, 26]. In our work, we use LambdaMART [3, 26]
with a cross entropy loss function multiplied by the change in the
IR measure (e.g. NDCG) as an example of a pairwise approach.

The listwise approach addresses the ranking problem in a more
straightforward way by taking ranked lists as instances for both

learning and prediction. The group structure of ranking is main-
tained and ranking evaluation measures can be more directly incor-
porated into the loss functions in learning. The listwise approach
includes ListNet [6], ListMLE [27], AdaRank [29], SVM MAP [30],
Coordinate Ascent [19], Soft Rank [25], and others [13, 15, 20]. In
our work, we use AdaRank and Coordinate Ascent as two examples
of listwise approaches.We selectedmore than one approach because
we want to explore the degree to which training a listwise approach
by nCS-DCG works well with different ranking algorithms.

Multi-objective learning to rank is becoming more prevalent be-
cause search results are in practice not evaluated just on relevance,
but also on other desirable characteristics (e.g. freshness, novelty,
and user effort for examining documents in session search [24]).
Dai et al. [8] develop a multi-objective learning to rank algorithm
for freshness and relevance by extending a state-of-the-art divide
and conquer ranking approach [1]. Lioma et al. [16] present two
types of evaluation measures that are designed to measure effec-
tiveness based on both relevance and credibility in ranked lists of
retrieval results. Our proposed evaluation metric is similar to their
Normalized Weighted Cumulative Score (NWCS), except that we
don’t discount the cost of sensitive documents.

Svore et al. [23] take a different approach, using two complemen-
tary measures. The use NDCG as their "top-tier" measure, and a
relevance measure derived from click data as a second-tier measure;
the use of this second-tier measure is shown to significantly im-
prove while leaving the top-tier measure largely unchanged. In our
work, by contrast, we are interested in balancing between relevance
and sensitivity which are competing, since optimizing for relevance
only may disclose sensitive content.

Dong et al. [9, 10] propose to adjust the relevance labels based
on the freshness of the Web page. For stale pages, they demote the
relevance label by one grade. We use this same approach as one of
our proposed baselines, demoting the relevance labels for sensitive
documents.

3 SEARCH AMONG SENSITIVE CONTENT
When searching among content that is not sensitive, it suffices to
learn an effective ranking function. For search among sensitive
content, we must also learn to identify which of the documents in
that ranking contain sensitive content.

In this section, we describe different approaches to study how
we can modify a search engine results so that it takes the predicted
sensitivity of each document into account. Basically, our setup is
comprised of the following components.

(1) A learning to rank (LtR) model that takes a query and a
set of documents as input, and outputs a ranked list of the
documents based on their relevance to the query.

(2) A sensitivity classifier that takes a document as an input,
and outputs the document’s probability of sensitivity.

(3) A sensitivity filter that excludes documents if they are pre-
dicted to be sensitive.

3.1 Cost Sensitive Performance Metric
Comparing approaches using an evaluation measure that pays at-
tention only to relevance would not make sense in out setting, as

we would naturally expect the focus of our systems on protect-
ing sensitivity to result in lower scores by such a measure. When
searching among sensitive content, we must therefore consider
both the gain that results from showing a relevant document and
the costs that accrue for showing a sensitive document. To illustrate
how this might be done, we introduce a new evaluation measure
that is an extension of Discounted Cumulative Gain (DCG), where
each document in the ranked list has its gain based on the degree
of relevance (e.g., highly relevant or somewhat relevant) and that
gain value is then discounted based on the document’s rank.

Our Cost-Sensitive Discounted Cumulative Gain (CS-DCG) mea-
sure additionally incorporates a cost based on the document’s sen-
sitivity. In the simplest model, the cost for showing a sensitive
document would be applied additively in a way that is independent
of where the document is in the ranked list. So CS-DCG cut off at
rank position k can be defined as:

CS-DCGk =

k∑
i=1

(дi
di

− ci) (1)

where дi is the (relevance) gain of showing the document that is
at rank position i, di is the discount factor for showing that docu-
ment at rank position i, and ci is the (sensitivity) cost of showing
the document that is at rank position i. Sensitivity costs for showing
non-sensitive documents are set to 0, and in practical applications
we will be interested in cases in which sensitivity costs for showing
relevant documents are fairly large in comparison with the max-
imum possible discounted gain (which accrues when showing a
highly relevant document at the top of the ranked list).

Because the maximum value of DCG depends on the number
of relevant documents and their degree of relevance, DCG values
are usually normalized to the interval [0, 1] (forming nDCG) when
averaging across topics [24], as is common in information retrieval
evaluation. CS-DCG must similarly be normalized (forming nCS-
DCG)when averaging across topics. Unlike DCG, however, CS-DCG
can be negative or positive, so we need to know both its upper and
lower bounds. Similarly to DCG, these bounds can be computed by
the greedy rule-based algorithm shown in Algorithm 1 for the case
in which max(ci) > max(дi).

Upper bounds are computed similarly. Once we get the upper
(best) and lower (worst) bounds for CS-DCG for a certain query q,
we can normalize it as follows.

nCS-DCG =
CS-DCG −CS-DCGworst

CS-DCGbest −CS-DCGworst
(2)

So nCS-DCGwould be equal to 1 when the documents are ranked
indistinguishably from the best possible ranking, and equal to 0
when documents are ranked indistinguishably from the worst pos-
sible ranking. Naturally, the best practical nCS-DCG is achieved
when the documents that are most relevant appear as high as can
be achieved in the ranked list and when sensitive documents never
appear anywhere above the cutoff in the ranked list. Note that we
must cut the ranked list off at some point (hence our specification
of k) if we are to have any chance of avoiding showing sensitive
documents, since in a full ranked list every document would appear
somewhere in the list.

Algorithm 1
Computing a query-specific lower bound on CS-DCGk

Start with an empty ranked list of size k and fill from top to
bottom with non-relevant and sensitive documents that are
selected in any order.
if ranked list still has less than k documents then
fill in the empty slots from bottom to top with relevant and
sensitive documents that are selected in any order

end if
if ranked list still has less than k documents then

fill in the empty slots from top to bottom with non-relevant
and non-sensitive documents that are selected in any order

end if
if ranked list still has less than k documents then

fill from bottom to top with relevant and non-sensitive doc-
uments that are selected in any order

end if

3.2 Proposed Baselines
In order to tackle the issue of balancing between relevance and
sensitivity, we suggest different baselines for how to make our three
components interact with each other.

Baseline 1: Relevance Only. In this approach, an LtR model is
trained using all documents without considering their sensitivity
levels, as shown in Figure 1a. At testing time, documents are fed
to the resulting model along with a test query/topic, and then the
model outputs the top k documents.

Baseline 2: Pre-filtering then Relevance Only. In this approach, at
training time, documents are fed to a filter along with their sensi-
tivity probabilities, as shown in Figure 1b. Then the filter omits any
document that is predicted as sensitive. After that, the filtered doc-
uments are used to train an LtR model. At testing time, documents
are fed to the resulting model along with a test query/topic, and
then the model outputs the top k documents.

Baseline 3: Relevance Only then Post-filtering. Similarly to the first
approach, an LtR model is trained using all documents. At testing
time, documents are fed to the resulting model along with a test
query/topic, and then the model outputs a ranked list. But before
showing the results, documents that are predicted to be sensitive
are filtered out and the remaining top k documents are returned,
as shown in Figure 1c.

Baseline 4: Demoting relevance scores for sensitive documents. In-
spired by Dong et al. [10] and [9], we demote the relevance scores of
a query-document pair by one relevance grade when the document
is predicted as sensitive. Then the modified query-document pairs
are used to train an LtR model. At testing time, documents are fed
to the resulting model along with a test query, and then the model
then outputs a ranked list.

3.3 Proposed Approach
List-wise LtR algorithms allow us to produce models that optimize
customizable loss functions. Awell known example is AdaRank [29],
which is based on boosting. In each iteration of AdaRank, it learns
a weak ranker that minimizes a loss function. A common approach
is to base the loss function on the evaluation measure (e.g., seeking

Learning to rank

model

All documents
Ranked

documents

Query

(a) Baseline 1: Relevance only, LtR model trained
using all documents.

Pre-trained
sensitivity
classifier

Learning to rank

model
Filter

All documents
Ranked

documents

Filtered
documents

Query

(b) Baseline 2: Pre-filtered.

Pre-trained
sensitivity
classifier

Learning to rank

model
Filter

All documents
Ranked

documents
Filtered

documents

Query

(c) Baseline 3: Post-filtered.

Learning to rank

model

All documents
with demoted
relevance labels

Ranked
documents

Query

(d) Baseline 4: Demoting sensitive documents.

Pre-trained
sensitivity
classifier

Learning to rank

model

All documents
Ranked

documents

QuerySensitivity
probabilities

(e) Opt. nCS-DCG: Jointlymodeling relevance and
sensitivity.

Figure 1: Alternative approaches for search among sensitive
content.

to minimize 1-nDCG). Since we aim at balancing between rele-
vance and sensitivity, we propose 1 - nCS-DCG as the loss function
to be minimized. We name this approach Opt. nCS-DCG. In addi-
tion to modifying the loss function, we inject the probability of
document being sensitive (or its complement) as part of its vector
representation while building an LtR model as shown in Figure 1e.

4 EXPERIMENTAL SETUP
In this section, we describe the experiments we performed to com-
pare between the four baselines and our proposed approach that
are described in Section 3.

4.1 Test Collection
To the best of our knowledge, there is no public test collection that
is annotated for both relevance and sensitivity. For our experiments
we therefore chose a collection that has been labeled for multi-level
"graded" relevance and for topical categories. By selecting one or
more topical categories as surrogates for sensitivity, we can then
simulate the task that we ultimately wish to perform.

We chose to use one of the LETOR benchmark datasets that
has these characteristics, OHSUMED [22] which has been used

Highly relevant Somewhat relevant Not relevant
Sum 2,252 2,585 11,303
Avg. 21.25 24.39 106.63
Stdev. 23.20 20.38 46.76
Median 13 17.5 106

Table 1: Statistics about OHSUMED documents judged for
relevance.

in many research studies [5, 28, 29]. OHSUMED is a collection of
articles from 270 medical journals in the period 1987-1991. The
collection consists of 348,566 records, each having a title, abstract,
Medical Subject Heading (MeSH) indexing terms,1 author, source,
and publication type. There are 106 topics, each consisting of patient
information and a brief statement of the information need. In each
case, we use only the information need statement as the query. For
each topic, a subset of the documents were judged for relevance. In
total, there are 16,140 judged query-document pairs, each of which
has a relevance judgment that indicates whether the document is
definitely, possibly, or not relevant to the query. It was the goal of
the developers of the collection to span as many of the relevant
documents as possible within the judged set, although of course
there may be additional unjudged documents that are relevant. In
keeping with common practice when using this collection, we treat
documents that were not judged with respect to a topic as not
relevant. Because some documents were judged for relevance to
more than one topic, there are a total of 14,430 unique documents
for which relevance to one or more topics has been judged. Table 1
shows the statistics for judged documents, both in aggregate and
per topic.

4.2 Sensitivity Classification
As a surrogate for sensitivity, we selected from among the MeSH
labels used in our test collection. In OHSUMED, one document can
have more than one MeSH label. We selected a set of labels, S, to be
considered as the sensitive. If any document has at least one of the
labels belonging to S, then the document is considered sensitive;
otherwise it is considered non-sensitive. For our experiments, we
selected 2 MeSH labels for S: C12 (Male Urogenital Diseases) and
C13 (Female Urogenital Diseases and Pregnancy Complications).
We initially chose these labels simply because we felt they were
topics that some people might actually consider to be sensitive, but
before settling on themwe also checked their prevalence among the
full set of OHSUMED documents (8.4%) and among the documents
that have been judged for relevance (12.2%). These seem to us to
reflect a sensitivity prevalence representative that we might see
in some real application for search among sensitive content. As
Figure 2 shows, some queries have many relevant documents that
are sensitive, whereas others do not. This means means that the
challenges posed by sensitivity are topic-dependent, which also
reflects what we would expect to see in real applications.

To approximate the degree of accuracy that might be seen in an
actual application for search among sensitive content, we trained
a scikit-learn [21] logistic regression text classifier. We used the

1A full list of MeSH terms can be found at ftp://nlmpubs.nlm.nih.gov/online/mesh/

 0

 50

 100

 150

 200

N
u

m
b

e
r

o
f

D
o

c
u

m
e

n
ts

Search topic

Relevant + Not Sensitive
Relevant + Sensitive

Figure 2: Number of relevant documents (to any degree) per
topic in the test set, with documents that are both relevant
and sensitive shown in red at the top of each bar.

14,430 documents that were judged for relevance as our test set,
and the remaining 334,136 documents in the OHSUMED collection
for training. Each document is represented by a tf-idf vector for
the words found in the title and abstract. We tuned the hyper-
parameters using a grid-search with 5-fold cross-validation on the
training set. Also, by varying the probability threshold, we found
out that having a threshold of 0.84 maximizes F1. The resulting
binary classifier has precision = 0.81, recall = 0.70, F1 = 0.75, and
accuracy = 94.3%. From the fact that our classes are unbalanced
and that a false negative (mistakenly predicting sensitive document
as non-sensitive) is more important to avoid that a false positive,
we may tune the hyper-parameters to optimize for F4, which gives
considerably more weight to recall than precision.2

4.3 Selection of Learning to Rank Algorithms
For testing our baselines and our approach, we used different algo-
rithms to build an LtRmodel. We selected at least one representative
algorithm from each of three LtR approaches [17]: 1) Pointwise, 2)
Pairwise, and 3) Listwise. We also built a BM25 baseline, which is a
simple and often quite effective retrieval model that is not based
on learning to rank.

Linear regression [7] is a pointwise approach that learns a linear
ranking function which maps a feature vector to a relevance score.
Then documents are ranked based on their predicted relevance
scores. In this approach each document is treated independently.

L(F (x),y) =
m∑
i
(f (xi) − yi))2 (3)

where f is the ranking model, xi is the feature vector of docu-
ment i , and yi is the true relevance label.

LambdaMART [26] is a pairwise approach which is based on
Multiple Additive Regression Trees (MART) [12] where the output
2Building an actual sensitivity classifier was not our objective in this paper, so we
claim only that a classifier with the characteristics we report can be built given these
categories and this (rather large) amount of training data.

of the model is a linear combination of the outputs of a set of
regression trees. The loss function is defined on the basis of pairs
of documents with different relevance scores.

l(f ;xi ,x j ,yi j) = −P i j log Pi j (f) − (1 − P i j) log (1 − Pi j (f)) (4)

where and yi j is the true label of whether document i has a
higher rank than document j or not. P i j is the target probability,
which is equal to 1 when yi j is 1, and 0 otherwise, and Pi j (f) is the
model output probability. Then the loss function is multiplied by
the change in the IR measure, e.g. ∆ NDCG, as in LambdaRank [4].
In our experiments, we use the validation set to determine the
ensemble of trees with the best score on the evaluation measure.

AdaRank [29] is a listwise approach which is based on boosting.
In each iteration, it learns a weak ranker that minimizes a loss
function. A common approach is to base the loss function on the
evaluation measure (in our case, 1 minus nCS-DCG). Then the
final model is a linear combination of the weak learners. In our
experiments, we use the validation set to determine the number
of weak rankers that collectively achieve the best score on the
evaluation measure.

L(F (x),y) =
m∑
i
exp{−E(π (qi ,di , f)),yi } (5)

where E(π (qi ,di , f)) is any evaluation measure whose values
are in the range [-1, 1]

Coordinate Ascent [19] is another listwise approach which is
iteratively optimizing a multivariate objective function by solving a
series of one-dimensional searches while holding other parameters
fixed. In our experiments, we use the validation set to determine
the set of weights with the best score on the evaluation measure
over 5 restarts.

4.4 Implementation
Our implementation is based on the Ranklib library which is part
of the Lemur project.3 It contains implementations of several learn-
ing to rank algorithms written in Java. We added classes for our
new evaluation measures (CS-DCG and nCS-DCG) and made some
minor changes to the interface code to handle more command-line
parameters. The code is available at https://github.com/mfayoub/
SASC.

5 RESULTS
We start our experiments by verifying the expected results of our
baseline techniques and our proposed approach when with a per-
fect (oracle) sensitivity classifier built using the actual MeSH class
labels in the collection (accuracy = 100%). Then we investigate the
performance of our baselines and our proposed approach using
both CS-DCG and nCS-DCG. We prefer approaches for which CS-
DCG is almost always non-negative (thus indicating that searching
is better than not searching), and among such approaches we prefer
approaches that maximize nCS-DCG. Note that these two measures
provide complementary views: CS-DCG tells us what is happening
with individual queries, but it can not be meaningfully averaged;
nCS-DCG tells us when an approach is doing well on average, but
3https://www.lemurproject.org/

https://github.com/mfayoub/SASC
https://github.com/mfayoub/SASC

Highly relevant Moderately Not relevant
relevant

Retrieved Gh Gm 0
Not retrieved 0 0 0

Table 2: Gain matrix for documents depending on the rele-
vance level

Sensitive Not sensitive
Retrieved Cs 0

Not retrieved 0 0
Table 3: Cost matrix for documents depending on the sensi-
tivity level

it can not tell us whether that approach would be better than do-
ing nothing. For all our experiments we report results from 5-fold
cross-validation in which three folds are used for training, one fold
is used for validation, and one fold is used for testing.

We numerically interpret the relevance levels and compute the
discount using the default approach of Ranklib as shown in equa-
tion (1).

дi = 2r el − 1,di = log(i + 2) (6)
where i is the rank and rel is relevance score. In OHSUMED, rel

is equal to 2, 1, or 0 if the document is highly relevant, moderately
relevant, or not relevant, respectively, with respect to the query. So
we set Gh = 3 and Gm = 1 in Table 2.

We are interested in cases where showing a sensitive document
incurs substantial penalty, but we are not interested in cases in
which that penalty is so large as to be effectively infinite (because
returning any documents would not be rational in such cases). For
a cutoff k , we therefore chose to study cases in which the cost
of showing a sensitive document is a bit less than the maximum
discounted cumulative gain we could get if all documents in the
first k positions were relevant. In other words, we are interested
in cases in which the system has the potential to recover from one
mistakenly shown sensitive document by showing many relevant
documents that are not sensitive documents. As Table 1 shows, on
average a query has 21.25 documents that are highly relevant. For
a cutoff = 10, the maximum DCG for the first 10 positions is thus
equal to 13.63. We therefore set the cost Cs = 12 in Table 3.4

5.1 Oracle Upper Bounds
Under the ideal conditions when we have a perfect sensitivity clas-
sifier (accuracy = 100%), we expect that no sensitive documents
would appear in any ranked result list. Indeed, that’s what we see.

We evaluate our baselines and our proposed system using nDCG
and nCS-DCG in order to illustrate the difference between the two
measures. Considering nDCG, we should find that ranking based
only on relevance would achieve the best results, and as Figure 3a
shows, that’s what we see.
4In this example, we illustrate graded relevance using three levels and graded sensitivity
using two levels, but the formalism is easily extended (or collapsed) to any number of
gradations along each dimension.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

BM25 Linear reg. LambdaMART Adarank Coor Ascent

Rel only
Pre filtering

Post filtering
Demoting

Opt. nCS-DCG

(a) nDCG@10

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

BM25 Linear reg. LambdaMART Adarank Coor Ascent

Rel only
Pre filtering

Post filtering
Demoting

Opt. nCS-DCG

(b) nCS-DCG@10

Figure 3: Ranking performance of different approacheswith
a perfect sensitivity classifier. Error bars are the standard
deviations of performance across five cross-validation folds

Moreover, as we would expect, Figure 3b shows that pre-filtering
or post-filtering outperform other approaches. This is because with
a perfect classifier there are simply no sensitive documents remain-
ing that might be shown. In some ranking algorithms, post-filtering
performs better than pre-filtering, as we might expect from the
larger LtR training folds that are available with post-filtering (in
pre-filtering, the sensitive documents are removed before training;
in post-filtering they are removed after testing, which of course is
also after training).

5.2 Using an Imperfect Sensitivity Classifier
In this part of our experiments, we investigate how different ap-
proaches perform if the sensitivity classifier results has some mis-
classification, as would be expected in practice. Obviously, as shown
in Figure 4a, we expect lower nDCG scores for those approaches
which rely on filtering or penalizing to discourage showing sensi-
tive documents, since some sensitive documents could be relevant.

We also note that training a ranking model on nCS-DCG should
decrease the resulting nDCG for the same reason, and also because
the training measure is used to calculate scores on the validation
set, which affect when to stop for some ranking algorithms. As
expected, we see a lower nDCG in every case.

Turning now to evaluation using our new evaluation measure
(nCS-DCG), we see a quite different picture. As shown in Figure 4b,
we get lower scores for baseline 1 as expected, since it doesn’t take
document sensitivity into account in any way. Additionally, pre-
filtering and postfiltering no longer have the best scores (as they
did when evaluated using nDCG in Figure 3b) because they rely on
an imperfect classifier (recall = 0.7, and precision = 0.81). Our pro-
posed approach which takes advantage of sensitivity probabilities
fed to the ranking model does well, by contrast, even when those
probabilities come from an imperfect classifier.

As the comparison between Figures 3b and 4b shows, nCS-DCG
results drop for all approaches as misclassification rates increase.
Because the cost of showing a sensitive document is relatively high,
false negatives are more important than false positives. Unsurpris-
ingly, it is therefore the false negatives that are responsible for this
drop in absolute scores.

As shown in Figure 4b, listwise approaches trained with nCS-
DCG have a higher nCS-DCG scores than other baselines. For
AdaRank, our approach is marginally better than the baselines,
although none of the differences are statistically significant. On
the other hand for Coordinate Ascent, our results are statistically
significantly better by a one-tailed paired t-test (p < 0.05)

However, for any given level of misclassification error, the key
question is which approach is best under those conditions. Here,
we see that which approach is best changes as the misclassification
rate of the sensitivity classifier changes.

5.3 Cluster-Based Replacement
One simple trick that we can use to limit the risk of false negatives
is to replace any potentially sensitive document with a similar
document that is less sensitive. This idea is inspired by the usual
approach to diversity ranking, inwhich the documents in a result set
are clustered and then the most relevant document(s) from a cluster
are selected for display. If instead we choose the least sensitive
document(s) from the cluster, we would get a sensitivity-averse
analogue to diversity ranking.

We can apply this idea to any ranked list. Given the result set
of a query, we first cluster all of the documents that were judged
for relevance in order to group together sets of documents for
which it might suffice to replace one document in a cluster with
another, in the hope that if the first document was relevant, the
second one we select will also be relevant. The process starts by
stepping through the ranked list, replacing each document with
the as-yet unchosen document in the same cluster that has the
lowest sensitivity probability (if such a document exists in the
cluster). A selected replacement document is then removed from
the cluster to avoid selecting it more than once and the process
repeats for the next document in the ranked list (which may be
from the same cluster, or a different one). The process stops after
processing the first k documents in the ranked list. Note that this
process has no diversity objective – its sole goal is to minimize

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

BM25 Linear reg. LambdaMART Adarank Coor Ascent

Rel only
Pre filtering

Post filtering
Demoting

Opt. nCS-DCG

(a) nDCG@10

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

BM25 Linear reg. LambdaMART Adarank Coor Ascent

Rel only
Pre filtering

Post filtering
Demoting

Opt. nCS-DCG

(b) nCS-DCG@10

Figure 4: Ranking performance of different approacheswith
a sensitivity classifier achieving recall = 0.7 and precision =
0.81. Error bars are the standard deviations of performance
across five cross-validation folds

the aggregate probability of showing a sensitive document without
ever selecting a document that wasn’t at least in the same cluster
as some document in the ranked list.

We used CLUTO software for clustering documents,5 where each
document is represented by a word count vector. The clustering
program treats each document as a vector in a high-dimensional
space, and performs repeated bisectioning until the desired number
of clusters is reached. We set the number of clusters to be 20, which
was chosen to be higher than our rank cutoff (@10).

As Figure 5 shows, this cluster-based replacement strategy helps
to limit the risk of getting a negative CS-DCG score, and it achieves
that result for every one of our five approaches. In each case, the
(generally) lower line that dips sharply at the right shows the CS-
DCG scores achieved by each query, sorted from best to worst.
The superiority of tuning AdaRank with a nCS-DCG loss function

5http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

is clearly indicated in this figure since fewer queries yield poor
CS-DCG results. As the (generally) upper blue line shows, it is
the hardest queries, those with the lowest CS-DCG, that see the
greatest improvement from cluster-based replacement. As Table 4
shows, improvements in nCS-DCG are evident as well for some
approaches.

6 DISCUSSION
We showed that when the classifier accuracy is high, filtering has
the best performance among other approaches. This is because the
classifier has an impact on which documents tare used for training
and which of them should be filtered out. In these cases, we also
showed that training listwise models based on nCS-DCG is not as
good as perfect filtering. On the other hand, when the classifier
accuracy is more realistic, our proposed approach yields better
results than all of the baselines.

To get a better ideaof what’s happening with cluster-based re-
placement, we tracked the swaps that include at least one sensitive
document (either added, removed, or replaced one with another).
Such swaps have the largest impact on nCS-DCG. We found that
the number of sensitive documents added is less than the number
of sensitive documents being removed. That’s why there is an im-
provement when this replacement policy is used in the Relevance
Only and Demoting approaches, as shown in Table 4. In approaches
where filtering is used, and in our proposed approach, there are
also fewer sensitive documents used for replacement, but nCS-
DCG doesn’t improve. Two factors contribute to these aggregate
results. First, on the positive side, cluster-based replacement causes
fewer relevant documents to appear in the result list. As depicted
in Figures 5b, 5c, and 5e, the cluster-based replacement successfully
reduces the number of sensitive documents for hard queries (those
at the far right), and hence yields better CS-DCG scores. But there
are relatively few hard queries. For the relatively many easy queries
(these with CS-DCG scores above zero), clustered CS-DCG scores
are lower than the unclustered CS-DCG scores. Both are near the
x-axis, but normalization can amplify these differences. We also
note that some approaches (notably our proposed approach in Fig-
ure 5e result in fewer hard queries to begin with, and therefore less
opportunity for improvement in the arithmetic mean. From this
we might conclude that an evaluation measure in which the hard
queries receive more emphasis (e.g., a geometric mean) might yield
different results.

In our proposed approach, we showed that a listwise learning
to rank model can be trained to optimize an objective function
derived from the evaluation measure (nCS-DCG). It might be ar-
gued that our simple definition of CS-DCG, and its normalized form
nCS-DCG, doesn’t capture the full complexity of search among sen-
sitive content and that other proposals may be better. For example,
sensitivity might be discounted (e.g., in screen-sized units, if the
ranked list is so long as to require scrolling), sensitivity might be
graded into multiple degrees of sensitivity, or costs and benefits
might be combined in some nonlinear way. Our proposed approach
is sufficiently flexible to be used with other evaluation measures,
at least as long as they satisfy some reasonable constraints. For
example, AdaRank requires that the values of the loss function be
in the range [-1, 1].

7 CONCLUSION AND FUTUREWORK
We started out by asking how to construct a ranked retrieval system
that knows what not to find. As is often the case, that question led to
another more fundamental question: how would we know if we had
done so? Answering that led us to propose CS-DCG and nCS-DCG
as evaluation measures. Unlike the more familiar nDCG, we need
to consider both unnormalized and normalized measures because,
unlike DCG, CS-DCG can become negative (and in such cases it
would have been better not to search at all!). We then went on to
show that at some levels of classifier accuracy that might be seen
in practice (e.g., with recall at or below 70%), training a learning to
rank model could be better than the more straightforward approach
of simply filtering out sensitive documents (either before or after
retrieval). We also have been able to show that a simple cluster-
based replacement strategy can further improve nCS-DCG, and that
such a strategy can reduce the number of queries with negative
CS-DCG results.

Of course, much remains to be done. One question that remains
open is how best to model the actual cost structure of real tasks.
Our present formulation of CS-DCG might be extended in many
ways. For example, we might discount sensitivity at deeper ranks
(on the grounds that few users would scroll that far), we might
model multiple degrees of sensitivity, or we might investigate non-
linear cost functions in which a few mistakes might be forgiven
but many mistakes might be highly penalized (which, for example,
might more faithfully model the situation in e-discovery review).
We might also explore smaller rank cutoffs (e.g., @5) as a way of
further reducing the risk of showing sensitive documents. Another
idea we might explore is modifying our cluster-based replacement
strategy to also include some element of diversity ranking. Also, we
have seen that the cluster-based replacement works well for hard
queries. So we might explore the potential for applying different
ranking approaches depending on a query’s predicted difficulty.
Improvements to our evaluation design are possible as well. For
example, we have trained a classifier for the categories we use as
surrogates for sensitivity by using very large amounts of training
examples; we should of course also experiment with classifiers that
are built using more limited training data, as would likely be the
case in some practical applications of this technology.

Ultimately we will want to try any and all of these ideas with
real content, and content that has real sensitivities, with real users.
We see this paper as a first step in that direction, helping to sharpen
our questions, and to give us a way of reasoning about what it
would mean to do well at such a task.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was funded by National Science Foundation grant IIS-
1618695.

-120

-100

-80

-60

-40

-20

 0

 20

 20 40 60 80 100

C
S

-D
C

G
@

1
0

Search Topic

Unclustered
Clustered

(a) Relevance only

-120

-100

-80

-60

-40

-20

 0

 20

 20 40 60 80 100

C
S

-D
C

G
@

1
0

Search Topic

Unclustered
Clustered

(b) Prefiltering

-120

-100

-80

-60

-40

-20

 0

 20

 20 40 60 80 100

C
S

-D
C

G
@

1
0

Search Topic

Unclustered
Clustered

(c) Postfiltering

-120

-100

-80

-60

-40

-20

 0

 20

 20 40 60 80 100

C
S

-D
C

G
@

1
0

Search Topic

Unclustered
Clustered

(d) Demoting

-120

-100

-80

-60

-40

-20

 0

 20

 20 40 60 80 100

C
S

-D
C

G
@

1
0

Search Topic

Unclustered
Clustered

(e) Opt. nCS-DCG

Figure 5: CS-DCG@10 for Adarank with a sensitivity classifier recall of 0.7 with (upper blue line) and without (lower red line)
cluster-based replacement.

Relevance only Prefiltering Postfiltering Demoting Opt. nCS-DCG
unclustered clustered unclustered clustered unclustered clustered unclustered clustered unclustered clustered

BM25 0.727 0.779* 0.800 0.797 0.800 0.797 0.727 0.779* 0.727 0.779*
Linear regression 0.761 0.764 0.811* 0.785 0.817* 0.785 0.760 0.763 0.727 0.790*
LambdaMART 0.765 0.771 0.812* 0.788 0.823* 0.792 0.762 0.770 0.753 0.786*

Adarank 0.756 0.779 0.822* 0.792 0.817* 0.791 0.753 0.780 0.823* 0.799
Coordinate Ascent 0.762 0.781 0.816* 0.791 0.818* 0.790 0.761 0.779 0.842* 0.805
Table 4: nCS-DCG@10 comparison between different ranking algorithms under different approaches. For each pair, nCS-
DCG@10 is averaged across five cross-validation folds when cluster-based replacement isn’t (left) or is (right) used. Symbol
(*) denotes statistically significant difference according to a two-tailed paired t-test (p < 0.05) over the corresponding clus-
tered/unclustered performance score in the same approach.

REFERENCES
[1] Jiang Bian, Xin Li, Fan Li, Zhaohui Zheng, and Hongyuan Zha. 2010. Ranking

Specialization forWeb Search: A Divide-and-Conquer Approach by Using Topical
RankSVM. In Proceedings of the 19th international conference on World wide web.
ACM, 131–140.

[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. 2005. Learning to Rank using Gradient Descent. In
Proceedings of the 22nd international conference on Machine learning. ACM, 89–96.

[3] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Learning 11, 23-581 (2010), 81.

[4] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to Rank with
Nonsmooth Cost Functions. In Advances in neural information processing systems.
193–200.

[5] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon.
2006. Adapting Ranking SVM to Document Retrieval. In Proceedings of the
29th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 186–193.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th

international conference on Machine learning. ACM, 129–136.
[7] David Cossock and Tong Zhang. 2006. Subset Ranking Using Regression. In

International Conference on Computational Learning Theory. Springer, 605–619.
[8] Na Dai, Milad Shokouhi, and Brian D Davison. 2011. Learning to Rank for

Freshness and Relevance. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. ACM, 95–104.

[9] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang,
Karolina Buchner, Ciya Liao, and Fernando Diaz. 2010. Towards Recency Ranking
in Web Search. In Proceedings of the Third ACM International Conference on Web
Search and Data Mining. ACM, 11–20.

[10] Anlei Dong, Ruiqiang Zhang, Pranam Kolari, Jing Bai, Fernando Diaz, Yi Chang,
Zhaohui Zheng, and Hongyuan Zha. 2010. Time is of the Essence: Improving
Recency Ranking Using Twitter Data. In Proceedings of the 19th International
Conference on the World Wide Web. ACM, 331–340.

[11] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An Efficient
Boosting Algorithm for Combining Preferences. Journal of machine learning
research 4, Nov (2003), 933–969.

[12] Jerome H Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of statistics (2001), 1189–1232.

[13] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retrieving
highly relevant documents. In Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in information retrieval. ACM,
41–48.

[14] Thorsten Joachims. 2002. Optimizing Search Engines using Clickthrough Data.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 133–142.

[15] Thorsten Joachims. 2005. A Support Vector Method for Multivariate Performance
Measures. In Proceedings of the 22nd international conference on Machine learning.
ACM, 377–384.

[16] Christina Lioma, Jakob Grue Simonsen, and Birger Larsen. 2017. Evaluation
Measures for Relevance and Credibility in Ranked Lists. In Proceedings of the
ACM SIGIR International Conference on Theory of Information Retrieval. ACM,
91–98.

[17] Tie-Yan Liu et al. 2009. Learning to Rank for Information Retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[18] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong.
2006. High Accuracy Retrieval with Multiple Nested Ranker. In Proceedings of
the 29th annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 437–444.

[19] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[20] Donald A Metzler, W Bruce Croft, and Andrew McCallum. 2005. Direct Max-
imization of Rank-Based Metrics for Information Retrieval. Technical Report.
Citeseer.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval

13, 4 (2010), 346–374.
[23] Krysta M Svore, Maksims N Volkovs, and Christopher JC Burges. 2011. Learning

to Rank with Multiple Objective Functions. In Proceedings of the 20th international
conference on World wide web. ACM, 367–376.

[24] Zhiwen Tang and Grace Hui Yang. 2017. Investigating per Topic Upper Bound
for Session Search Evaluation. In Proceedings of the ACM SIGIR International
Conference on Theory of Information Retrieval. ACM, 185–192.

[25] Michael Taylor, John Guiver, Stephen Robertson, and TomMinka. 2008. SoftRank:
Optimizing Non-Smooth Rank Metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM, 77–86.

[26] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254–270.

[27] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
Approach to Learning to Rank - Theory and Algorithm. In Proceedings of the 25th
international conference on Machine learning. ACM, 1192–1199.

[28] Jun Xu, Yunbo Cao, Hang Li, and Yalou Huang. 2006. Cost-Sensitive Learning of
SVM for Ranking. In European conference on machine learning. Springer, 833–840.

[29] Jun Xu and Hang Li. 2007. AdaRank: A Boosting Algorithm for Information
Retrieval. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 391–398.

[30] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. 2007. A
Support Vector Method for Optimizing Average Precision. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 271–278.

[31] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, and
Gordon Sun. 2008. A General Boosting Method and its Application to Learning
Ranking Functions for Web Search. In Advances in neural information processing
systems. 1697–1704.

	Abstract
	1 Introduction
	2 Related Work
	3 Search Among Sensitive Content
	3.1 Cost Sensitive Performance Metric
	3.2 Proposed Baselines
	3.3 Proposed Approach

	4 Experimental Setup
	4.1 Test Collection
	4.2 Sensitivity Classification
	4.3 Selection of Learning to Rank Algorithms
	4.4 Implementation

	5 Results
	5.1 Oracle Upper Bounds
	5.2 Using an Imperfect Sensitivity Classifier
	5.3 Cluster-Based Replacement

	6 Discussion
	7 Conclusion and Future Work
	Acknowledgments
	References

