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ABSTRACT
Question Answering for the Spoken Web (QASW) is an
information retrieval evaluation in which the goal was to
match spoken Gujarati questions to spoken Gujarati an-
swers. This paper describes the design of the task, the
development of the test collection, the system used by the
participating teams, the runs that were submitted, and the
corresponding results. This paper thus combines the track
overview and the participant results.

1. INTRODUCTION
Question Answering for the Spoken Web (QASW) is an

information retrieval evaluation in which the goal was to
match questions spoken in Gujarati to answers spoken in
Gujarati. The design of the task was motivated by a speech
retrieval interaction paradigm first proposed by Oard in which
a searcher, using speech for both queries and responses,
speaks extensively about what they seek to find until in-
terrupted by the system with a single potential answer [5].
For the 2013 FIRE QASW task, results are reported only
for full-length questions, however, so interruption is not yet
modeled. QASW was originally conceived as a joint task
between the 2013 MediaEval evaluation, which focused on
speech retrieval, and the 2013 Forum for Information Re-
trieval Evaluation (FIRE), which focused on Indian language
text retrieval. As explained below, it ultimately evolved into
a pilot task only at FIRE, with a focus only on speech re-
trieval.

2. QUESTIONS AND RESPONSES
The source of the questions and the collection of possible

answers (which we call “responses”) was the IBM Spoken
Web Gujarati collection [7]. This collection was based on a
spoken bulletin board system for Gujarati farmers. A farmer
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could call the system and record their question by going
through a set of prompts. Other farmers would call the sys-
tem to record answers to those questions. There were also a
small group of system administrators who would periodically
call in to leave announcements that they expected would be
of interest to the broader farming community. The system
was completely automated—no human intervention or call
center was involved. This collection of recorded speech, con-
sisting of questions and responses (answers and announce-
ments) was provided the basis for the test collection. A
total of 3,557 answers were provided for specific questions.
In some cases, these answers may have applied to more than
one question, as the same topics might be asked about more
than once. There were a total of 854 announcements.

The reuse of information retrieval test collections that
are built using relevance judgments only on top-ranked re-
sponses returned by participating systems (i.e., “pooling”)
requires that future systems return response sets that were
not too unlike the response sets produced by participating
systems. Retrieval directly from speech requires speech pro-
cessing components that we would expect to evolve over
time, thus posing a threat to test collection reusability. Tran-
scription can avoid this problem by allowing text-only runs
to contribute to the judgment pools, so we arranged to have
the questions and responses transcribed from spoken Gu-
jarati to written Gujarati by a commercial transcription
agency. The transcription agency was unable to deliver tran-
scripts in time for use in MediaEval, which necessitated can-
cellation of the MediaEval 2013 QASW task.

Transcripts were later received from the transcription agency,
but it turned out that only the questions had been tran-
scribed correctly. By the time this was discovered, there was
not sufficient time to arrange for correct transcription of the
responses. We therefore redesigned the FIRE 2013 QASW
task as a pilot study focusing only on speech retrieval, with-
out the intent to create a reusable test collection.

The 151 longest questions were divided into a training
set of 50 questions and an evaluation set of 101 questions.
Training questions were those for which the largest num-
ber of answers were known beforehand (mappings between
questions and known answers was available to the organiz-
ers from data collected by the operational system). Once
the transcripts became available, two evaluation questions
were removed for which the resulting transcripts were far
shorter than would be expected based on the file length.



This resulted in a total of 50 training questions and 99 eval-
uation questions. Of these, only the 50 training questions
were subsequently used in the 2013 QASW pilot task; the
99 evaluations questions are available for use in future ex-
periments.

We removed very short response files—those four seconds
or less. We also learned from listening to some of the re-
sponses that some responses were silent and others contained
only music. We therefore removed response files for which
the transcript was far shorter than would be expected based
on the duration of speech activity (for which we performed
automatic speech activity detection). The final test collec-
tion contains 2,999 responses. We only later learned that the
length matching had been based on incorrect transcripts, so
it should be possible to expand the response set somewhat
if new relevance judgments are made for this collection in
the future.

3. SPEECH PROCESSING
In traditional speech retrieval applications, document-level

features are derived from the outputs of supervised phonetic
or word recognizers. Recent term discovery systems [6, 2]
automatically identify repeating words and phrases in large
collections of audio, providing an alternative means of ex-
tracting lexical features for retrieval tasks. Critically, this
discovery is performed without the assistance of any super-
vised speech tools by instead resorting to a search for re-
peated trajectories in a suitable acoustic feature space (e.g.
MFCCs, PLP) followed by a graph clustering procedure.
Due to their sometimes ambiguous content, the discovered
units are referred to as pseudoterms, and we can represent
each question and response as a set of pseudoterm offsets and
durations. We used an unsupervised term discovery system
that consists of three steps [1]: i) search for repeated tra-
jectories in an acoustic feature space using image processing
techniques applied to sparse distance matrices, ii) cluster
repetitions into pseudoterm categories; and iii) construct a
bag-of-pseudoterms representation for each question and re-
sponse in the collection. We summarize each step in the
subsections below. Complete specifications can be found in
the literature [1, 3].

3.1 Acoustic Repetition Search
The QASW collection consists of nearly 100 hours of speech

audio. Term discovery is inherently an O(n2) search prob-
lem, and application to a corpus of this size is unprece-
dented in the literature. We applied the scalable system
described by Jansen and Van Durme [3], which employs a
coarse-to-fine strategy to achieve a very substantial (orders-
of-magnitude) speedup over its predecessor state-of-the-art
system [6]. The system functions by constructing a sparse
(thresholded) distance matrix across the frames of the entire
corpus and then searching for approximately diagonal line
structures in that matrix, as such structures are indicative
that a word or phrase has been repeated.

Two randomized algorithms are used to efficiently con-
struct the sparse cosine distance matrix. The first is Local-
ity Sensitive Hashing (LSH), which involves mapping each
feature vector to a bit string such that the ability to approxi-
mate some distance metric in the original space is preserved.
We use an LSH variant that preserves cosine distance, which
is accomplished by applying a collection of random projec-
tions that each encodes membership in a randomly oriented

halfspace. It follows that Hamming distances between bit
strings can be used to approximate cosine distance, with
the approximation approaching equality as the signature
length approaches infinity. In our experiments, we used 64-
bit signature representations of 39-dimensional short-time
frequency domain linear prediction features (see Jansen and
Van Durme [3] for details). The second randomized algo-
rithm is Point Location in Equal Balls (PLEB), which is
used in conjunction with LSH to find nearest neighbor sets
for each frame in logarithmic time. Here, the bit signatures
are lexicographically sorted such that nearby frames have
some prefix of bits in common. This common prefix implies
a bound on the Hamming distance and, in turn, the cosine
distance, which means frames nearby in the list are strong
candidates for neighbor status.

Once we have constructed the sparse distance matrix, it
remains to search for runs of nearby frames. Here, we employ
the two pass strategy of Jansen et al. [2] that i) thresholds
the distance matrix into a binary image with only nearby
frame pairs active, ii) searches for diagonal line segments us-
ing sparse image processing techniques, and iii) uses the cen-
ter point of any recovered line segments to begin a local seg-
mental Dynamic Time Warping (DTW) search. Each repe-
tition is scored by the DTW distance between the matching
segments. We also apply a minimum duration threshold of
0.6 seconds, which generally limits the pseudoterms to words
or phrases of at least two syllables.

3.2 Clustering Repetitions into Pseudoterms
To cluster the individual acoustic repetitions into pseu-

doterm categories we apply a simple graph-based procedure.
First, we construct an unweighted acoustic similarity graph,
where each segment of speech involved in a discovered rep-
etition becomes a vertex, and each match provides an edge.
This produces a graph consisting of a set of disconnected
dumbbells. Next, we augment the original edge list with
the set of overlap edges that indicate whether two nodes
correspond to the identical segment of speech in a given
question or response. For two segments to be considered
the same, we require a minimal fractional overlap of 0.97,
which is set less than unity to allow some noise in the unit
end points. These additional edges act to effectively merge
vertices across the dumbbells and enable transitive matches
between acoustic segments that did not match directly. The
pseudoterms are defined to be the resulting connected com-
ponents of the graph, each consisting of a set of acoustic
segments occurring throughout the collection.

Since we construct an unweighted graph and employ a
simple connected-components clustering, it is essential we
apply some DTW distance threshold δ before a repetition is
passed along to the clustering procedure. In the experiments
described in this paper, we considered three pseudoterm fea-
ture variants arising from three settings of the DTW score
threshold. Lower thresholds imply higher fidelity matches
that yield purer pseudoterm clusters with (on average) lower
collection frequencies. We refer to these as Weak clustering
(δ = 0.06, yielding 406,366 unique pseudoterms), Medium
clustering (δ = 0.07, yielding 1,213,223 unique pseudoterms)
and Strong clustering (δ = 0.075, yielding 1,503,169 unique
pseudoterms). Weak clustering is precision-biased; strong
clustering is recall-biased.

3.3 Nested Pseudoterms
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Figure 1: Different pseudo-term nesting structures for various settings of the speech-to-term extraction
model. The y-axis represents the number of terms extracted at a given period in time. This figure represents
a two-second interval of Question 42.

Each pseudoterm cluster consists of a list of occurrences
(start and end offsets, in units of 10 ms, from the begin-
ning of the file). It is thus a simple matter of bookkeeping
to construct a bag-of-pseudoterms representation for each
question and response. Moreover, because we have start
and end offsets for each pseudoterm, we can also construct
more sophisticated representations that are based on filter-
ing or grouping the pseudoterms based on the ways in which
they overlap temporally.

One interesting effect of pseudoterm creation is that the
pseudoterms are often nested, and moreover they are often
nested to a depth that has never before been seen in informa-
tion retrieval experiments. Nesting has previously been ex-
plored for phrase indexing, where a longer term (e.g., White
House spokesman) contains a shorter term (e.g., White House)
that might also be used independently (i.e., without spokes-
man) elsewhere in the collection. Because pseudoterm de-
tection can find any pair of matching regions, we can (by
analogy) get not only pseudoterms for White House Spokes-
man and White House, but also for parts of those words
(e.g., Whit and Whi). Indeed, it is not at all unusual to see
nesting to depth 50, as Figure 1 shows. This is a fairly typ-
ical pseudoterm timeline, in which Weak clustering yields
deeper nesting than Medium clustering, and much deeper
nesting than Strong clustering.

4. EVALUATION DESIGN
The principal task of a participating research team in the

FIRE 2013 QASW task was to rank all responses to each full
question such that, to the extent possible, all correct answers
were ranked ahead of all incorrect answers. Each participat-
ing system was asked to rank all responses for all train-
ing questions. Systems were evaluated on their ability to
satisfy that goal using Normalized Discounted Cumulative
Gain (NDCG), based on graded relevance judgments. Other

measures (Mean Reciprocal Rank (MRR) of the first rele-
vant response, mean Precision at 5 responses (P@5), mean
precision at 10 responses (P@10), and Mean uninterpolated
Average Precision (MAP) were also reported. All measures
(except P@5) are reported only for response sets truncated
at rank 10 because the top 10 responses were judged for all
participating systems, and we did not have confidence that
responses below rank 10 would be sufficiently densely judged
to be useful as a basis for relative comparisons between sys-
tem results.

5. RESEARCH TEAMS
Interest in participating had been expressed by Gujarat

University (India) in participating in the QASW evaluation,
and indeed they had obtained the collection before problem
with the transcripts was discovered. The compressed time-
line for the speech-only pilot task that resulted prevented
the Gujarat University team from participating in that pi-
lot task.

All speech processing was performed at Johns Hopkins
University (USA), and runs using those speech processing
results were submitted by the University of Maryland, Col-
lege Park (USA) and by the IBM India Research Lab (In-
dia). Both of the research teams submitting results included
QASW task organizers, so the results reported below should
be considered “unofficial,” useful as an indication of what
can be achieved, but not the result of a formal arms-length
evaluation process.

6. FIRST EXPERIMENTS
Our first set of experiments had three goals: (1) to serve

as a dry run for system development, since we had no prior
experience with indexing or ranked retrieval based on pseu-
doterms, (2) to gain experience with performing relevance
judgments using only the audio responses, and (3) to begin



Measure Criterion |Q| Clust. Σ|RD| BW

P@5 |RD| ≥ 1 14 Weak 56 0.22
14 Med 56 0.12
14 Strong 56 0.08

P@10 |RD| ≥ 1 14 Weak 56 0.16
14 Med 56 0.10
14 Strong 56 0.11

Table 1: First experiment results. |RD|: number
of relevant responses per question, |Q|: number of
questions meeting criterion.

to get a sense for whether pseudoterm-based speech retrieval
was feasible.

6.1 Retrieval Methods
For these initial experiments, we simply treated every

pseudoterm as a “word” in a Bag of Words (BW) repre-
sentation using the Indri ranked retrieval system [10].

6.2 Relevance Assessment
Three native speakers of Gujarati at the University of

Maryland performed relevance assessment; none of the three
had any role in system development. The 10 highest ranked
responses for each question from each participating system
were pooled for relevance assessment. Relevance assessment
was performed by manually selecting audio files from a list
of response files that were to be assessed for each question,
listening to the audio, and recording the relevance judgment.
All responses in the assessment pool for each question were
judged by all three assessor. Assessors could assign one of
the following judgments for each response: 1) unable to as-
sess, 2) not relevant, 3) relevant, and 4) highly relevant.

All relevance judgments were subsequently binarized by
collapsing unassessable and not relevant responses into a
single not relevant category and by collapsing highly rele-
vant and relevant responses to a single relevant category.
Majority voting was then used to select a consensus binary
judgment for each question. Table 2 shows the inter-assessor
agreement for each pair of assessors.

After completing their relevance judgments, the assessors
met to discuss the assessment process. To facilitate this dis-
cussion, specific cases of disagreement were randomly sam-
pled for each assessor pair and those cases of disagreement
were used to seed the discussion. Two questions, numbered
5 and 13, were removed permanently from the collection
because all three assessors reported that they did not ad-
dress with any identifiable topic and thus relevance assess-
ment could not be performed. Results for 18 questions were
therefore available for analysis. Of those, 14 had one or more
known relevant responses.

6.3 Results
Table 1 reports results over the 14 of the 18 questions in

the first experiment for which one or more relevant responses
were found by some system (comparisons on the four topics
for which no system found a relevant response would not be
informative). We can see that when used with BW, Weak
clustering seems to be doing noticeably better than Medium
or Strong clustering, although these apparent differences in
averages over just 14 questions did not prove to be statis-

Experiment 1 Experiment 2

A B C A B C

A - 0.407 0.387 - 0.279 0.317
B - 0.617 - 0.867
C - -

Table 2: Inter-assessor agreement (kappa).

tically significant. Nonetheless, the apparent preference for
Weak clustering in these results was surprising because in
previous work in other experimental settings stronger clus-
tering has proven to be advantageous.

7. SECOND EXPERIMENTS
It is well known from earlier work on phrase indexing that

indexing nested terms using bag of words models requires
careful attention to the relative weights of shorter and longer
terms [4]. The design of our initial experiments did not ac-
count for effects from pseudoterm nesting, and we therefore
suspected that the tendency of Weak clustering to produce
markedly shallower nesting levels might help to explain the
observed results. We therefore adopted BW as a baseline for
our second set of experiments and we focused our design of
retrieval models on techniques that account for this effect.
For this second set of experiments we increased the number
of questions to 48 (numbered 1–50, excluding questions 5
and 13). Because we had previously examined results for
questions 1–20, we report results separately for that ques-
tion set and for questions 21–50 in the Appendix. In this
section, however, we report results over the full question set.

7.1 Retrieval Methods
In order to address the nested pseudoterm issue we find

the nested groups of terms in the questions and in the spo-
ken answers (in the pseudoterm space) using the associated
start and finish time tags for each pseudoterm that have
been passed by the pseudoterm discovery algorithm of the
previous section. We then treat each of these groups as an
atomic unit.

7.1.1 Structured Query Models
Our first family of methods treats terms in each overlap-

ping group as synonymous, an approach that has come to
be called “structured queries.” There are two methods we
explore in dealing with such cases. The first is to treat all
overlapping pseudoterms as synonyms of a single term. This
is accomplished in Indri by placing each pseudoterm within
an overlapping region within the syn operator. We refer to
this as our Synonym Operator (SO) retrieval model.

One risk with our SO model is that including shorter terms
may add more noise than signal. An alternative method of
dealing with overlapping pseudoterms is to only use only
one term term from the set. For our experiments with this
technique, we chose to keep only the longest pseudoterm
from each set of overlapping; all nested pseudoterms are
simply deleted from the Indri query. We refer to this as our
Longest Structured (LS) retrieval model.

7.1.2 Weighted Structured Query Models
Our SO and LS models represent opposite extremes on a



Measure Criterion Clust. |Q| Σ|RD| BW TW TWD SWD LWD SO LS Sig-Test

NDCG |RD| > 0 Weak 38 178 0.099 0.114 0.109 0.147 0.147 0.138 0.151 LS 6> BW
Med 38 178 0.054 0.053 0.050 0.063 0.060 0.102 0.109
Strong 38 178 0.064 0.069 0.067 0.076 0.075 0.114 0.132

MRR |RD| > 0 Weak 38 178 0.176 0.236 0.188 0.258 0.282 0.211 0.274 LWD > BW
Med 38 178 0.088 0.100 0.083 0.116 0.133 0.235 0.167
Strong 38 178 0.096 0.112 0.117 0.122 0.125 0.191 0.206

MAP |RD| ≥ 3 Weak 26 159 0.077 0.091 0.088 0.099 0.112 0.064 0.086 LWD 6> BW
Med 26 159 0.024 0.027 0.024 0.033 0.040 0.079 0.042
Strong 26 159 0.021 0.024 0.035 0.027 0.033 0.071 0.093

P@5 |RD| ≥ 5 Weak 18 133 0.133 0.156 0.156 0.167 0.189 0.078 0.156 LWD 6> BW
Med 18 133 0.056 0.067 0.056 0.078 0.111 0.167 0.089
Strong 18 133 0.044 0.056 0.078 0.067 0.067 0.122 0.122

P@10 |RD| ≥ 5 Weak 18 133 0.117 0.106 0.128 0.133 0.167 0.117 0.128 LWD > BW
Med 18 133 0.078 0.078 0.083 0.078 0.072 0.128 0.089
Strong 18 133 0.061 0.056 0.072 0.067 0.072 0.078 0.128

Table 3: Second set of experiment results. |RD|: number of relevant responses per question. Sig-Test: two-
sided paired t-test results at 95% confidence level; A > B (or A 6> B) means that A is significantly better than
(or comparable to) B.

continuum between treating nested pseudoterms equally or
ignoring them completely. Indri’s wsyn operator offers some
scope for a middle ground, however. Our second family of
methods employs a term weight discounting model. Two
intuitions motivate the design of this model. First, in prior
work, it has been found that applying a somewhat longer
minimum threshold on pseudoterm length can be helpful.
As a soft way of doing this, we can treat the length of a
pseudoterm as an evidence of importance. Second, it in
prior work it has been shown that when both multiword
phrases and the constituent terms are indexed, their weights
should be adjusted in some way to reflect for overlap. We
can implement this insight by adjusting the contribution of
each pseudoterm based on the extent of its overlap with
other pseudoterms. We could do this in a way that would
give the greatest weight to either the shortest or the longest
nested pseudoterm. Let T = {t1, t2 . . . tn} be the nested
term class in ascending order of term length. The weight of
the term ti is calculated as follows:

W (ti, l) =
a× l

1 + (a× l) (1)

WD(ti, l) = W (ti, l)×
i−1∏
j=0

(1−W (tj , l)) (2)

where a is the free parameter and l is the length of the term
(in seconds). For our experiments we simply set a to 0.5.
The factor (1−W (ti, l)) is used to discount the weight of ti
due to the contribution made by the previous terms. We call
this model, which gives the greatest weight to the shortest
pseudoterm, Shortest Weight Discounted (SWD). Likewise,
by reversing the order of T (i.e., in descending order) we get
the Longest Weight Discounted (LWD) model.

7.1.3 Unstructured Query Models
Structured query models have proven to be effective in

several applications (e.g., cross-language retrieval and doc-
ument image retrieval), but at some additional cost in im-

plementation complexity. In the simpler unstructured query
models, every term is treated independently. To see if the
added complexity results in improved results, we also applied
our discounting model in an unstructured query model by
simply using the weight operator in place of the synonym
operator, with the weights again computed using equation 2.
For the one variant of this idea that we implemented we give
the longest pseudoterms the greatest weight by computing
this in same order as LWD. We call this model Total Weight
Discounted (TWD).

An even simpler alternative would be to simply use equa-
tion 2 to adjust the weight of each term without reference to
nesting. We refer to this retrieval model as Time Weighted
(TW) and implement it using Indri’s weight operator.

Finally, our baseline BW model, used in both sets of ex-
periments, omits all adjustments, simply counting the oc-
currences of each pseudoterm without taking account of its
length or nesting.

7.2 Relevance Assessment
The 10 highest ranked responses for each question from

each participating system were pooled for relevance assess-
ment. Three participating systems (BW, SO and LS; see be-
low) additionally submitted intermediate results after each 5
seconds of question duration (e.g., at 5 seconds, 10 seconds,
...) and the top-ranked response from each of those inter-
mediate results was included in the judgment pools. For
questions 43-50, 10 randomly selected responses were also
added to the assessment pools.

Assessor A judged the pools for questions 1–15, Assessor B
judged the pools for questions 16–30, Assessor C judged the
pools for questions 21–45, and all assessors independently
judged the pools for questions 46–50. As Table 2 shows,
assessors B and C exhibited remarkably strong inter-assessor
agreement on the five multiply-judged questions. The mean
kappa value for the second experiment of 0.488 is well in line
with commonly reported values of inter-assessor agreement
that result in little adverse effect on relative comparisons in



ranked retrieval experiments [9].
Final relevance assessments were computed by taking the

single assessor’s judgment for questions 1–45, and by voting
as described above for questions 46–50. There were no cases
where the three assessors gave three different assessments,
so voting always produced a majority, even with graded rel-
evance judgments.

7.3 Results
In this section we summarize the results of our second set

of experiments. We used the same Medium and Strong clus-
tering conditions as in the first set of experiments, but we
generated new Weak clustering results because time offsets
had not been recorded for the original set of Weak clustering
results. This resulted in an increase from 406,366 to 407,514
unique pseudoterms for Weak clustering.

Table 3 summarizes the performance of our different re-
trieval models with different clustering methods, as charac-
terized by different evaluation measures. MRR is an easily
interpreted measure (the reciprocal of MRR is the harmonic
mean of the rank of the first relevant response), but MRR
is known to exhibit significant quantization noise (e.g., be-
cause the difference between the first relevant response at
rank 1 and rank 2 for a single question changes that ques-
tions contribution to the average score by 0.5) [8]. NDCG
provides a more nuanced view of the differences, both be-
cause that measure uses graded relevance judgments (our
other measures are based on relevance judgments that are
binarized as described above) and because the discounting
rate is lower for NDCG than for MRR.1 Both NDCG and
MRR are averaged over all questions for which at least one
relevant response is known to exist. MAP, by contrast, suf-
fers from the same sharp discounting rate of MRR, so to
minimize quantization noise effects in that case we report
MAP results averaged across questions for which at least
3 relevant responses are known to exist. P@5 and P@10
are easily interpretable measures, but when fewer relevant
responses than the cutoff are known to exist they do not dis-
tinguish well between systems. We therefore average those
measures across only questions for which at least five rele-
vant responses are known to exist (there are too few ques-
tions with 10 or more relevant responses to make averaging
over that few questions an insightful option).

Several outcomes are evident from Table 3. We see that
weak clustering consistently yields better numerical results
than the other two clustering options that we tried, irrespec-
tive of the retrieval model or the evaluation measure. With
weak clustering the LWD model gives the best numerical
results by most measures (and very close to the best by all
measures). With Medium clustering, SO numerically out-
performs LWD (and all other retrieval models) by all mea-
sures. With Strong clustering, the LS model is consistently
preferred (or, in one case, the equal of SO).

Statistical significance testing using a two-sided paired t-
test at a 95% confidence level is generally inconclusive, with
tests on only two measures detecting an improvement of
LWD over BW and no statistical significant test detecting
an improvement from Weak clustering over Strong clustering

1Our NDCG computation was subtly different from our
computation of other measures. For NDCG, unassessable
responses were removed from all ranked lists before scoring.
For all other measures, unassessable responses were treated
as not relevant, as described above.

(when the numerically best approach is used for each).
From these observations we can draw the following conclu-

sions. First, we do not yet seem to have relevance judgments
for enough questions to reliably see statistically significant
differences. This is consistent with prior results that show
that 40 or more queries are typically needed to see statisti-
cally significant results with moderate effect sizes. Second,
the consistent dominance of Weak clustering (which yields
far less pseudoterm nesting) and the relatively strong (nu-
merical) performance of LWD, LS and SO (all of which at-
tempt to compensate for the effects of pseudoterm nesting),
suggests that pseudoterm nesting is indeed an important fac-
tor. Third, the relatively strong (numerical) performance of
LWD and LS, both of which exhibit a strong bias in favor
of longer pseudoterms, tends to confirm earlier results that
indicate that very short pseudoterms may introduce more
noise than signal. We note, however, that the relatively
good results from SO with Medium clustering is not consis-
tent with that interpretation, which suggests that caution is
called for when interpreting differences that have not been
shown to be statistically significant. Finally, we note that 10
of the 48 questions had no relevant responses found. Since
every question in the collection has at least one known re-
sponse (according to the operational systems from which the
questions and responses were extracted), this suggests that
the values of the measures that we report for comparison
purposes are somewhat optimistic estimates of what can be
accomplished on average over the full set or questions that
might be asked. Moreover, our best run by MRR (LWD
with Weak clustering) only placed a relevant response in
first rank 7 of the 48 full-length questions, which suggests
that substantial improvement will be needed before opera-
tional systems will be able to use pseudoterms as a basis for
responding effectively to incomplete questions with a single
answer, as envisioned in the “query by babbling” interaction
design.

8. RANDOM BASELINE COMPARISON
Pooled relevance assessment can’t tell us how many rele-

vant responses actually exist for each question, but we can
use random sampling to determine that. More specifically,
we can compute a low baseline for any evaluation measure
by randomly sampling the test collection. We did this for
questions 43–50. As Table 4 shows, our BW baseline (and in-
deed every retrieval model that we tried) very substantially
outperforms the resulting random baseline. These results
are averaged over 6 questions (because two questions in this
set have no known relevant responses) and are shown only
for Weak clustering (which yielded the best overall results).
From this we can conclude that speech retrieval based on
automatically detected pseudoterms actually works.

9. CONCLUSION AND FUTURE WORK
Despite the challenges that we encountered with devel-

opment of the test collection, we have made substantial
progress on a number of important problems. Most notably,
we have demonstrated that pseudoterms can be generated in
a language-independent manner for a hundred-hour speech
collection, and that the resulting pseudoterms can be used as
a basis for effective ranked retrieval. Additionally, our exper-
iment results suggest that nested pseudoterms pose consid-
erable challenges, but that some combination of constrained



Measure |Q| RAND BW TW TWD SWD LWD SO LS

NDCG 5 0.038 0.354 0.396 0.423 0.441 0.456 0.236 0.336
MRR 5 0.090 0.527 0.708 0.687 0.700 0.740 0.403 0.767
MAP 5 0.011 0.192 0.232 0.262 0.286 0.309 0.149 0.202
P@5 5 0.080 0.240 0.280 0.320 0.320 0.360 0.160 0.240
P@10 5 0.040 0.240 0.200 0.260 0.260 0.280 0.140 0.180

Table 4: Comparison with random baseline, Weak clustering. RAND: random baseline.

generation of pseudoterm clusters and filtering or weighting
the resulting pseudoterms based at least in part on length
offers some promise for improving retrieval effectiveness. A
third clear result is a test collection with 48 questions, 2,999
responses, and several thousand relevance judgments that
is available to interested parties on a license that makes it
freely usable for research purposes.

Of course, much remains to be done. Our most urgent
task will be to actually characterize the extent to which
the test collection is reusable. For this purpose, we plan to
leverage the known responses to each question as a probe
to see what fraction of those responses have been discovered
through pooling and relevance assessment. We also plan to
plot the decay in the fraction of assessed responses for the
runs in our second experiment below rank 10, and for a few
new runs with different filtering or weighting designs at all
ranks. If, as we expect, reusability turns out to be limited,
then transcription of the responses will become our high-
est priority. We also plan to compute a P@1 measure for
the runs that were submitted at 5-second intervals on par-
tial questions in order to compare those results with earlier
traces we have seen for the temporal evolution of that mea-
sure in a simulation study. Of course, much remains to be
done on the question of how best to leverage evidence from
nested pseudoterms and on the question of how evidence
from multiple ways of doing that might best be combined,
but until we have a reusable test collection we will not be in
a position to efficiently try very many alternative designs.
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Table 5: Results on Weak pseudoterms, cutoff at rank 10 (except P@5).
# rel doc > 0 # rel doc > 2

Quest. BW TW TWD SWD LWD SO LS BW TW TWD SWD LWD SO LS
1-20 0.059 0.056 0.056 0.070 0.066 0.048 0.052 0.077 0.066 0.073 0.072 0.086 0.050 0.069

MAP 21-50 0.059 0.088 0.079 0.097 0.109 0.069 0.109 0.077 0.116 0.104 0.126 0.138 0.079 0.104
All 0.053 0.065 0.061 0.083 0.080 0.063 0.076 0.077 0.091 0.088 0.099 0.112 0.064 0.086

1-20 0.106 0.118 0.118 0.129 0.106 0.059 0.129 0.138 0.138 0.154 0.154 0.138 0.062 0.169
P@5 21-50 0.071 0.106 0.094 0.118 0.141 0.071 0.129 0.092 0.138 0.123 0.154 0.185 0.092 0.138

All 0.079 0.100 0.095 0.116 0.111 0.068 0.121 0.115 0.138 0.138 0.154 0.162 0.077 0.154

1-20 0.076 0.071 0.082 0.088 0.100 0.088 0.088 0.100 0.085 0.108 0.108 0.131 0.108 0.115
P@10 21-50 0.082 0.071 0.088 0.088 0.112 0.076 0.106 0.108 0.092 0.115 0.115 0.138 0.092 0.115

All 0.071 0.063 0.076 0.084 0.097 0.079 0.089 0.104 0.088 0.112 0.112 0.135 0.100 0.115

1-20 0.215 0.190 0.193 0.241 0.291 0.182 0.243 0.278 0.231 0.249 0.275 0.376 0.211 0.317
MRR 21-50 0.178 0.335 0.226 0.299 0.329 0.241 0.348 0.224 0.430 0.288 0.379 0.415 0.295 0.414

All 0.176 0.236 0.188 0.258 0.282 0.211 0.274 0.251 0.330 0.268 0.327 0.396 0.253 0.366

1-20 0.107 0.103 0.108 0.129 0.137 0.125 0.130 0.140 0.117 0.141 0.140 0.179 0.134 0.170
NDCG 21-50 0.115 0.152 0.136 0.158 0.180 0.072 0.196 0.150 0.198 0.177 0.206 0.227 0.069 0.193

All 0.099 0.114 0.109 0.147 0.147 0.108 0.151 0.145 0.158 0.159 0.173 0.203 0.101 0.182

Table 6: Results on Medium pseudoterms, cutoff at rank 10 (except P@5).
# rel doc > 0 # rel doc > 2

Quest. BW TW TWD SWD LWD SO LS BW TW TWD SWD LWD SO LS
1-20 0.032 0.026 0.030 0.035 0.048 0.041 0.037 0.029 0.024 0.032 0.029 0.050 0.054 0.034

MAP 21-50 0.014 0.023 0.012 0.028 0.023 0.080 0.047 0.019 0.031 0.016 0.037 0.030 0.104 0.049
All 0.021 0.022 0.019 0.029 0.032 0.054 0.053 0.024 0.027 0.024 0.033 0.040 0.079 0.042

1-20 0.047 0.059 0.035 0.071 0.106 0.082 0.082 0.046 0.062 0.031 0.062 0.123 0.108 0.092
P@5 21-50 0.024 0.024 0.035 0.035 0.035 0.094 0.059 0.031 0.031 0.046 0.046 0.046 0.123 0.077

All 0.032 0.037 0.032 0.047 0.063 0.079 0.068 0.038 0.046 0.038 0.054 0.085 0.115 0.085

1-20 0.071 0.059 0.076 0.065 0.071 0.071 0.076 0.085 0.069 0.092 0.069 0.085 0.092 0.085
P@10 21-50 0.035 0.041 0.029 0.041 0.024 0.076 0.071 0.046 0.054 0.038 0.054 0.031 0.100 0.085

All 0.047 0.045 0.047 0.047 0.042 0.066 0.071 0.065 0.062 0.065 0.062 0.058 0.096 0.085

1-20 0.109 0.102 0.096 0.129 0.184 0.189 0.140 0.109 0.106 0.100 0.130 0.205 0.238 0.152
MRR 21-50 0.087 0.121 0.088 0.129 0.114 0.334 0.166 0.109 0.155 0.112 0.165 0.144 0.432 0.201

All 0.088 0.100 0.083 0.116 0.133 0.235 0.167 0.109 0.131 0.106 0.148 0.175 0.335 0.177

1-20 0.073 0.061 0.076 0.082 0.098 0.083 0.100 0.080 0.067 0.087 0.076 0.113 0.109 0.095
NDCG 21-50 0.047 0.057 0.037 0.060 0.036 0.145 0.108 0.061 0.074 0.048 0.078 0.047 0.190 0.113

All 0.054 0.053 0.050 0.063 0.060 0.102 0.109 0.071 0.071 0.068 0.077 0.080 0.149 0.104

Table 7: Results on Strong pseudoterms, cutoff at rank 10 (except P@5).
# rel doc > 0 # rel doc > 2

Quest. BW TW TWD SWD LWD SO LS BW TW TWD SWD LWD SO LS
1-20 0.023 0.022 0.051 0.026 0.028 0.005 0.050 0.020 0.019 0.048 0.021 0.026 0.006 0.066

MAP 21-50 0.016 0.023 0.018 0.025 0.031 0.104 0.093 0.021 0.029 0.023 0.033 0.040 0.136 0.121
All 0.026 0.033 0.031 0.036 0.031 0.077 0.069 0.021 0.024 0.035 0.027 0.033 0.071 0.093

1-20 0.035 0.035 0.082 0.059 0.047 0.024 0.071 0.046 0.046 0.092 0.062 0.062 0.031 0.092
P@5 21-50 0.012 0.035 0.024 0.035 0.035 0.129 0.106 0.015 0.046 0.031 0.046 0.046 0.169 0.138

All 0.026 0.037 0.047 0.047 0.042 0.074 0.084 0.031 0.046 0.062 0.054 0.054 0.100 0.115

1-20 0.065 0.053 0.076 0.065 0.076 0.018 0.094 0.069 0.054 0.085 0.069 0.085 0.023 0.123
P@10 21-50 0.018 0.024 0.018 0.024 0.024 0.076 0.088 0.023 0.031 0.023 0.031 0.031 0.100 0.115

All 0.039 0.037 0.042 0.042 0.047 0.047 0.087 0.046 0.042 0.054 0.050 0.058 0.062 0.119

1-20 0.102 0.097 0.175 0.109 0.108 0.075 0.172 0.114 0.106 0.195 0.114 0.118 0.090 0.225
MRR 21-50 0.094 0.122 0.086 0.133 0.159 0.284 0.264 0.122 0.159 0.112 0.173 0.208 0.371 0.346

All 0.096 0.112 0.117 0.122 0.125 0.191 0.206 0.118 0.133 0.154 0.144 0.163 0.230 0.285

1-20 0.073 0.065 0.113 0.076 0.084 0.020 0.122 0.071 0.061 0.110 0.071 0.086 0.026 0.160
NDCG 21-50 0.042 0.053 0.037 0.056 0.061 0.164 0.152 0.055 0.069 0.049 0.073 0.080 0.214 0.199

All 0.064 0.069 0.067 0.076 0.075 0.114 0.132 0.063 0.065 0.080 0.072 0.083 0.120 0.179
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