Document Routing

- Dynamic document collection
- Stable user interests
- Based on content
- Varied terminology
 - Information Filtering
 - Selective Dissemination of Information

Retrieve

Route

Document Arrivals

Interest Change
Outline

- Vector Space Model
- User Modeling
- Gaussian User Model
- Discriminant Analysis
- Implications for Future Research
Model for Text Selection

- Document Representation
 - Vector Space
- User Interest Representation
 - Gaussian User Model
- Comparison Function
 - Cosine Similarity Measure
- User Interface
 - Rank order by decreasing similarity
Vector Space Model

- Choose "terms"
 - Remove stopwords
 - Apply stemming or other morphology
 - Add phrases
- Assign term weights
 - Emphasize within-document frequency
 - Deemphasize across-document frequency
- Document representation is the sparse vector of term weights
Cosine Similarity Measure

- Cosine of angle between two vectors
 - Deemphasizes document length
 - Fast computation on sparse vectors
 - Normalized inner product
- Monotone with:
 - Arc distance on a hypersphere
 - Euclidean distance on tangent plane
Relevance Judgements

- Match documents with topics
- For tractability, assume relevance is
 - Binary
 - Stable
 - Known
- Poor intra-rater & inter-rater reliability
Effectiveness Measures

• **Fixed size sets**
 - Recall: Fraction of the relevant documents that are in a set
 - Precision: Fraction of the documents in a set that are relevant

• **Ranked output**
 - Average Precision
 - Extend cutoff to increase recall
 - Area under precision-recall curve
User Modeling Approaches

- **Information Retrieval**
 - Explicit specification
 - Relevance feedback
- **Statistical Decision Theory**
 - Discriminant analysis
- **Machine Learning**
 - Neural networks
 - Genetic algorithms
Latent Semantic Indexing

- **Sparse term-document matrix**
 - Columns represent documents
 - Rows represent terms
- **Orthogonal decomposition**
 - Singular Value Decomposition (SVD)
 - ULV decomposition
- **Rank reduction**
 - Smaller singular values result from noise
 - Noise equates to term usage variation
- **Retains "conceptual" dimensions**
LSI Representation

LSI Represents Terms and Documents in k-space

After Berry, Dumais and Letsche, 1995
Bellcore LSI Routing

- Segregate training examples by topic
- Map positive examples into LSI space
- Form mean vector to represent topic
 - Insight is that relevant documents cluster
- Use cosine similarity measure in LSI space
TREC Results

- LSI Routing outperforms explicit topic specification
- Gain from LSI is hard to characterize
 - Cornell team did well with simple relevance feedback
Gaussian User Model

- **Goal:** exploit mean and covariance
 - Distribution is unimodal but not symmetric
- **Use LSI to reduce the feature space**
 - Find sample mean with Bellcore technique
 - Estimate the covariance matrix
 - Bias similarity using covariance matrix
Covariance Estimation

- Sample covariance matrix may not have full rank
- Spectral decomposition reveals excessive eigenvalue skew
- Regularization compensates for both problems
 - Linear combination of each eigenvalue with the mean eigenvalue
 - Parameter chosen using cross-validation
Comparison Function

- Asymmetric angular distance measure
 - Emphasize directions with low variance
- Mahalanobis distance in a hyperplane
 - Normal to the mean vector
 - Tangent to the unit hypersphere
Experimental Results

- Evaluated on Cranfield collection
 - 1398 documents and 225 queries
 - Used cross-validation to find average rank
- Optimum parameter choice is 1.0 times mean eigenvalue
 - Equivalent to Bellcore routing technique!
- Using covariance information hurts routing performance
 - Suggests that training data is biased
Experimental Results

![Graph showing the relationship between Average Precision and Fraction of Mean Eigenvalue. The graph includes a line labeled "Raw_Term_Frequency."]
Alternative Approaches

- Characterize non-relevant training documents
 - Least intrusive approach
- Explore the document space
 - Random training data
 - System-directed exploration
Discriminant Analysis

- Assume both sets are Gaussian
- Find boundary which minimizes classification error
- Rank order by Mahalanobis distance from the boundary
- Evaluated on TREC at Xerox PARC
 - Quadratic and linear boundaries
 - With and without regularization
- No better than Bellcore technique
Observations on Learning

- Users can associate positive examples with topics
 - Supervised learning works
- How to classify negative examples?
 - Disjunctive induction
 - Greedy covering
 - Exception-based learning
 - Two-pass approach
- Training data is expensive
 - Online learning
Take-Away Message

- User modeling for document routing is a machine learning task with biased noisy binary training data in which we seek to learn a rank ordering of the documents.
- In the vector space model the relevant documents have a unimodal distribution but the non-relevant document distribution is multimodal.
Conclusions

- Two-pass technique is a good choice
 - Significant computational complexity
- Unsupervised learning algorithms offer promise
 - Clustering techniques
 - Neural networks
For Further Reading

- http://www.ee.umd.edu/medlab/filter/
 - These slides
 - Bellcore papers
 - Xerox PARC papers
 - Other research groups