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Separation of Variables. Application of eigenvalue-eigenvector to solution of PDE. Start-up flow in

a pipe.
Instructor: Nam Sun Wang

Problem Statement. A fluid of viscosity n and density p fills the inside of a very long vertical
cylindrical pipe of radius a. We suddenly remove the plug initially placed at the bottom of the pipe at
time t'=0. Find the velocity profile. The only driving force is gravity.

The radial and angular components of the velocity field are 0, and
only velocity component is in z-direction. v,'is a function of both

time t' and radius r'.

V=V =0 V=V ()
Step 0. Develop a mathematical model. The following partial
differential equation (PDE) describes the development of velocity in
the z-direction. Note that the differential equation describes the laws
of nature|physics -- the same laws of physics apply to all problems
and never change; they remain the same beyond the day we die.
Whereas, the boundary conditions are problem-specific (man-made)

and depends on the particular physical set up or initial condition. Y
b8y = pgh. '/r._d | z'\ B.C. at t=0 v,=0 Z
dt rdrl odr ©) at r=a v,=0

Step 1. Non-dimensionalization. We usually scale everything to O(1).

r t Vz Plug
r=— = v,
a a’p p:g-ha
u 4-p
dy =g td r_gvz\ B.C. at t=0 v ,(r) =0
dt rdrl dr “ at =1 v,=0

Step 2. Find steady-state solution. (See side note at the end) Vv ¢(r) =1

. _ . \
Step 3. Work in deviation variable w W=V, — Vo=V, + <17 rz/

This is mathematically equivalent to eliminating the constant term "-4" by shifting the dependent
variable v,. Rather than starting at initial condition of v,=0, we start at w#0, and see how w

approaches|decays to O.

2 ‘,
d B.C. at t=0 w=1-r Wio(r) =V 50(r) = V ¢o(1)
at r=1 w=0

Step 4. Find solution. Almost all PDE problems have no "neat" analytical solution, and we have to
settle for an approximation or a numeric one. Failing to obtain a "neat" analytical expression, we
express w as a linear combination of linearly independent basis vectors. Although the basis vectors
can be random (as long as they are linearly independent -- even the old-fashioned power series {1, r,
r2,...} will do, but it is way too complicated), we almost always prefer orthogonal eigenvectors w;,
where each eigenvector w; satisfies the usual eigenvalue-eigenvector relationship. Note that we have
two different linear operators £, & L, for a PDE of two independent variables t and r; whereas, we

have one linear operator for an ODE of one independent variable.
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General eigenvalue-eigenvector equation £ pW=£ pW=LA"W

d 1d(d )

where £ =~—. Lap==——|r—.
T4t R dr ar

First, find eigenvalues-eigenvectors; there are infinitely many in this PDE problem.

... two linear operators

LgWi=LgWi=r W,
Then, express w as a linear combination of eigenvectors.

o0
w= Z Ai-wi =A0-WO+ Al-w1+
i=0
We solve the eigenvalue-eigenvector problem for each of the two different operators.

eigenvector for the £, operator: £ rrT=3—T=7L'-T
t

1.d<r.d_\ ReR
rdrl dr)

Note that the above two are not equal. £ T#L RR ATZAR

eigenvector for the £, operator: = RR=

Thus, neither T nor R is the solution. Remember, the general eigenvalue-eigenvector satisfies the
following.

LyW=L Rw=7u-w

The output from these two operators are made equal by multiplying each with the eigenvector from
the other operator.

<£ t'T>'R=(7“'T)'R <z; t-T)-R=x'-T-R=<L r-R)-T —— £ (TR)=£ (T-R)=A"(T-R)
<1: rvR>-T=(7U-R)-T

It follows that if we let w=T-R, then w=T-R above is an eigenvector common to both operators £; & L.
L pW=L Rw=7u-w where w=T:-R
We repeat the same for each eigenvalue 2'; and obtain for each eigenvalue a corresponding
eigenvector.
for &', wi=Ti-Ri

The above derives (not assumes) that w is a product of T & R, and is exactly equivalent to the
common method of PDE solution via separation of variables, where we assume w(t,r) is a product
of two separate functions T(t) and R(r), where T(t) is a function of only t, and R(r) is a function of only

r.
w(t,r)=T(t)-R(r)
Substituting the above product into the PDE yields,

(dT>.R=T. 1.d<r.dR\ SN - § 1.d<r.dR\
dt rdrl dr | Tdt R|rdr| dr |

The LHS is a function of t only, and the RHS is a function of r only. For these two statements to
hold, the only possibility is for both the LHS and the RHS to be a constant A'. This give rise to a
couple of eigenvalue-eigenvector equations -- the same thing we arrived at via the linear
transformation approach.
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l.iT=}“=£. 11 r.QR
T dt R|rdr\| dr
LHS: l-d—T=7L‘ — L t-T-d—T=7U-T Eq (1) ... eigenvalue-eigenvector of a
T dt dt first derivative operator £,.
. 171d /[ d e _1d [ d gl . .
RHS: —|==|r=—R||=A' —> L R==—[r—R|=A"R Eq(2) ... eigenvalue-eigenvector of a
R | rdr\| dr rdr\ dr

second derivative operator L.
Solution of eigenvectors T in Eq (1).

T(t)=A-exp(A\'-t)
Note that although any value of ' is an eigenvalue to the first derivative operator £, (and any value of
A" is an eigenvalue for £, ), consideration of the boundary condition in Eq (2) will allow only certain A'
to be valid.
Solution of eigenvectors R in Eq (2).

—-d— r-d—R =7L'-R=77L2-R where, for convenience, k‘=—k2 B.C. at r=0 R=bound
r dr r
5 at r=1 R=0
29" Ry 9 R 24 R=0
d r2 dr
2 d2 d 2 . . .
Let x=Ar —— X"— R+ x-d—R+ x~-R=0 ... Bessel's differential equation of order O
d x2 X

The solutions are Bessel's function of the first kind of order 0 (J ;) and Bessel's function of the second

kind of order 0 (Y).
R=AJ g(X) + BY g(X)=AJ g(A-1) + B-Y (A1)
Evaluate constants (including eigenvalues) from boundary conditions.
Boundary Condition #0. Bound solution at r=0 requires B =0, because Y (0)=-cc. R(r)=A-J o(A-1)
Boundary Condition #1. At r=1 w=0 This is where we pin down the eigenvalues and eigenfunctions.
w(t, 1)=O=A-exp<f kz-t>-J o(A-1)  Since exponential is never 0, 0=Jg(A-1)=J ()
Thus, the eigenvalues correspond to the roots of the Bessel's function J,. Note that because the
function J;, oscillates around 0 (much like the cosine function), there are infinitely many eigenvalues
(%, 1=0,1,2,...) and the associated eigenfunctions.
Evaluate the eigenvalues.

Define a root-finding function that allows an initial guess to be specified. rootJO(x) :=root(JO(x),X)

n:=10 i:=0..n- 1 Start with the first root: Ay '=rootJO(1)
Add = to obtain an initial guess for the subsequent roots: 7‘i+1 = rootJ0<7»i + n>
2T = 0 1 2 3 4 5 6 7 8 9 10

0 2.4048|5.5200|8.6537|11.7915|14.9309 | 18.0711 | 21.2116 | 24.3525 | 27.4935 | 30.6346 | 33.7758

r.=0,0.01..1
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First Few Eigenfunctions
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Each eigenfunction satisfies the given PDE and the boundary condition w(t,1)=0.
2 .
wi(t,r)=exp{— <xi> -t}-J 0<ki-r> for i=0,1,...

Furthermore, any scalar multiple of an eigenfunction is also an eigenfunction. Thus, any linear
combination of the eigenfunctions also satisfies the given PDE along with Boundary Condition #1.

w(t,r)= i Ai-wi(t,r) = i Ai-exp{f (ki>2-t]J(i)(r) = i Ai-exp{f <xi>2-t]\]0<xi-r>
i=0 i=0 i=0

To repeat, w is a linear combination of eigenvectors w;. Furthermore, the above equation contains
the following elements:

A ... approximates w,y=1-r?, initial condition for the deviation variable w
exp{— <7L \2@ ... describes decay to steady-state w=0; each eigenfunction J component decays
i) with a different time constant. In other words, each mode has its own dynamics

that is independent on other modes -- another reason for working with
eigenfunctions. The eigenfunctions (J) themselves, being the basis, remain

unchanged; the magnitude of the component (A) decays.
J=J 0<ki-r> ... eigenvectors, where eigenvalues 2; chosen to satisfy the boundary condition at

the pipe wall r=1
Boundary Condition #2. At t=0 w=w;=1- *  Based on this, we find the coefficients A

o0 e}
- - 2_ \2 ) = ) = ( ) )
w0, =W (=1 = > Aexp (170 3g(hr) = > AT (i) =AGIo gt ¢ AL ¢
i=0 i=0
Thus, in plain English, we wish to express a given function w,=1-r? with a series of basis functions
(i.e., Bessel's functions J, in this case). We find the coefficients A; from the projection. If the basis

functions are orthogonal, each term is decoupled from other terms, and we can evaluate each term
independent of other terms, meaning no matrix inverse. Projection is simply the scalar product of
the function to be approximated and the Bessel basis vectors.
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e (Wio(r) I g(2T))
ITICUENCE)

Note: for a problem that starts with an initial velocity profile of v ,(t=0,r)=v ,4(r)#0

... approximate Wto(r):w(o,r):l-r2 with basis J, via projection

The initial deviation variable w is w(t=0,r)=w ;o(r)=Vv ,o(r) — V ()
We simply approximate w(0,r), instead of w(0,r)=1-r2, with Bessel basis vectors.

Numerical Evaluation. Although some people consider this approach analytical, it eventually
comes down to numerical evaluation, because it is difficult to visualize the solution when there are
many terms that make up the solution. First, we need to define a convenient scalar product. (Note
that other scalar product definition will also do, but the projection formula becomes a bit more
complicated. With the following definition involving a weighting function of r, the Bessel's functions
are mutually orthogonal (but not normalized).

1
Define scalar product: prod(f,g) J‘ r-f(r)-g(r) dr
0
Function to approximate via projection based on the above scalar product: w(r)
i=0..n 1
[ r-wto(r)-J0<ki-r> dr
A = (i Approximate w,, with Fourier Bessel series
: . o)
J rJO<7ui r .]0<7»i r dr
0
n ) «— Change the upper limit to see the effect of the
w(t,r) = Z Ai-exp{— <ki> -t]J0<ki-r> number of terms. In fact, we do a good job with just
i=0 one single term if we were to tolerate error at t=0. Try it!

Finally, the dimensionless z-direction velocity is: v ,(t,r) :=w(t,r) + v (r)



v 4(0,r)

v,(0.1,1)

v 4(0.2,r)
v #(0.3,r)
v 4(0.4,r)

v 4(0.5,r)

v #(10,r)

Velocity in Z-Direction (dimensionless)
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t=10 (practically steady-state)
Steady-state
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Side Notes. Steady-state solution. It is usually easier to shift the variables so that "0" represents
the steady-state and we study how the variable(s) approaches|decays toward steady-state.

Analogy -- linearization around steady-state in PDE vs linearization around steady-state in
local linearized stability analysis of ODEs. In solving a set of nonlinear autonomous first-order
ODEs, we first linearize around each steady-state value Xg:

Given "dx/dt=f(x)" OI—x=f(x)=f<x ss> + dfl <x — X ss> L <x — X ss> T d—zz\ <x — X ss> +
dt dX X ss 2 dX /X .
o d df | d _d
After ignoring higher order terms: —x=f(X)=f(X ]+ [— (X=X —X=—(X- X
dt Xss) dx/xss< s dt dt< 55
In deviation variables: Xoax  where fx /=0 A= df!| X=X~ X g
dt v dX /o

We then find eigenvalue-eigenvector for A-x=A-x A-V=V-A X=V-exp(J-t)-\fl-X 0=exp(At)-X

We finally examine the eigenvalues A to determine stability by virtue of how the deviation variable X
eventually settles from X, to the origin X=0, and we examine the eigenvectors to find phase

trajectories (which are attracted toward the origin X=0 if stable, or repulsed away from the origin X=0 if
unstable). Here in solving a PDE, we examine how the deviation variable w eventually settles from w,

to the origin w=0.

In this PDE solution via separation of variables, we also follow the same procedure by which we
find the steady-state first, then linearize around the steady-state with a deviation variable. This
particular problem is a linear one (with linear operators|transformations £, & £,). However, had the

problem been a nonlinear one, we would execute the linearization step, and this linearization
approach would remain the method we take as a first approximation.

Steady-state solution. At steady state, d/dt=0

d*Vz=0=<‘/V'B:R'Vz\ =4, 10 r'd*Vss B.C. at t=0 v, =0

dt / steady _state rdr\ dr at =1 v,=0

d | d

= =V o |=4r — 1dir=v|= 4.rdr

dr\ dr ss) { ( dr 8 J‘

dy.=2Pic ly BC at r=0 t dy =0 c,=0 Yy =2
rd—rv =21"+C 1 —— apply at r=0 (symmetry) d—rv =0 —> 1= d—rv os=2-T

v 55=J‘ 2.rdr=r’ + C o ——applyBCatr=1 v,=0 — Co=1 v Ss(r)=r27 1 steady state solution

SS

Linearization to convert the original non-linear transformation (., or VL) into a linear transformation
(Lg0r Lg) . The term "4" makes the original transformation nonlinear.

Analogy: ~Z-x=A-x+ b is a nonlinear transformation because:
NL(X+ Y)=A(X+Y)+b=(AX+ D)+ (Ay+Db)- b= (X)+ M-(y) - b

NL(X+Y)ZNL(X) + N (Y) ... violate the definition of a linear transformation, unless b=0
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dt rdr
NE g (V)=-4 + 1d (r-dv\ is a nonlinear transformation because:

rdr\ dr
= 74+£.d7 r.di\/\ + ,4+£.d7 rd7W\
rdrl dr | rdrl dr |

NE (V+W)7NL (V) + NE (W) ... violate the definition of a linear transformation

Original: nonlinear transformation OI—v =4+-<r-v

1d

NE p(V+wW)=-4+ r'dr{r.jr(\m w) +4=NL (V) + NL (W) + 4

Shifting the term "-4" to LHS does not circumvent the nonlinear transformation problem, because
doing so merely shifts the nonlinearity to the other transformation.

d

NEL 5-(v)=d—v 24 is a nonlinear transformation because:
t
_d _ld d _
NE g (V+W)==(V+ W) +4= =V +d|+ =W+ d|+4=NL 5(V) + NL g(W) - 4
dt \dt dt
NE 5 (V+W)7ZNL 5 (V) + NE (W) ... violate the definition of a linear transformation

Since we must have linear transformations to even apply the eigenvalue-eigenvector idea, this
nonlinearization step is a must. In this PDE when we work with a deviation variable w=v -v that is

the difference between the original variable and its steady-state value, we also in effect linearize the
original nonlinear transformation WL into a linear one L.

df\ \ 1 \T d2f /

— (X=X — (X=X e X=X + o
SS

dx/ < < < 2>X$S >

. dx
Given "dx/dt=f(x)" —=f(x)=fx ss) + s
dt \ ) / dx \

\
ss)

X ss
Given "dv,/dt=NLg4V," j—v F=NL gV =NE Vo + L gy (v 7=V ss> + ...higher_order_terms
t
In solving for the steady-state solution, we have N£ gV (=0

L )=d*(Vz*V \

dt' % dt 55/
After ignoring higher order terms (there happen to be none in this PDE):
d =
d—t<vzf Vss>‘0+‘efk'<vz* Vss>

In deviation variables: OI—W=£ RW where w=v 7~ Xsg
dt

Analogy -- steady-state solution of PDE vs solution of Linear Algebraic Equation "A -x=b".
When solve a linear algebraic equation of the standard form A-x=b. Most students start by thinking
"A-x=b" as a linear algebraic equation problem, because that is the way the linear equation is usually
first introduced. However, the same problem can be viewed from many perspectives, one of them
being the vector perspective. From the vector perspective, with the equation "A-x=b", we are solving
a projection problem where we find the coefficients x; to represent the given vector b as a linear

combination of the individual vectors in A.
perspective of "standard" linear algebraic equation: A-x=b
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X0

X
projection perspective:  b=x 0-A<°> +X 1-A<1> Fo X n-A<">=<A<0> A AT > !

,X n .|

Thus, we can regard an iterative algorithm, such as Gauss-Seidel's, as an eigenvalue-eigenvector
problem with an eigenvalue of A=1.
Gauss-Seidel: x=A-x eigenvalue-eigenvector perspective —— A-x=A-x with A=l

Analogy -- steady-state solution of PDE vs solution of nonlinear Algebraic Equation "f(x)=0"
with Newton's method". In Newton's method, we linearize f(x) around an initial guess x:

df | 1 [dof
&/xo.<X7 XO> +'<>x0'<x XO>2jL

i " =0" =0=f/
Given "f(x)=0 f(x)=0=f/x 0>+ AP

After ignoring higher order terms: f(x) — f<x 0\=(df\ -<x ~Xg)
7 ldxx /
- . _ _ _ \ _[df) _
In deviation variables: F=f, & where F=f(x) - f<x 0, fx= ™ £= <x ~ X 0>
X0

Thus, we can regard this nonlinear equation solution process as first linearizing around the
current|initial guess x,, and we represent the eventual value as x, and we work in terms of the

deviation variables. And as in the standard linear algebraic equation above, with the standard
nonlinear equation, we regard the solution of the resulting linear algebraic equation either as a vector
projection problem or as an eigenvalue-eigenvector problem.

Analogy: vector projection -- express F as a linear combination of the basis vectors fx<i>

_ _le <0> o <1> <n>) E-'1_ <0> <1> <n>
Fefeem (£, 1,77 6T =, e 1T gty

Basically with Newton's iterative procedure or any other iterative procedure for solving nonlinear
algebraic equations, we are in effect solving an eigenvalue-eigenvector problem with an eigenvalue
of A=1.

1
Newton's iteration scheme with linearized approximation: X, =X - HT) ] -f<xi>=g <xi>
X /x>
Ul

perspective of iteration algorithm: x=g(x)

eigenvalue-eigenvector perspective for the linear operator ¢ —— G-x=g(x)=A-x with A=1
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With an iterative procedure such as Newton's method, we find a set of coefficients ¢; that describe

the given initial deviation vector|function F. The dynamics of an iterative algorithm is such that the
coefficient & eventually settle to a steady-state solution where the deviation independent variable &

and the dependent variable F eventually become 0. Compare the above to our PDE problem here,
where we find the coefficients A; to describe the given initial deviation vector|function w,,. The

dynamics eventually settle to a steady-state solution where the deviation variable w become 0. In
summary, the next step in PDE solution is representation of the steady-state solution in the form of a
deviation variable as a linear combination of basis vectors|functions.

Analogy with linear algebraic equations "Ax=b"

X0
[ <0> N <1> <> | X1 <0> <1> <n>
b=Ax=(A"" AT AT )T ek g A x AT L x A
Xn
Analogy with nonlinear algebraic equations "f(x)=0"
%o
<0> <1> <n> E-vl <0> <1> <n>
F=f,- =<fx B BT T =g e BT T gy
&n

Analogy: vector projection -- in this PDE we represent the steady-state solution w,, as a linear
combination of the basis vectors|functions J(A;r)

Ag|
A
w=3A=(3g(het) Jg(hyt) o Jg[hr) ) ! =Agdo(hy )+ Agdo(Ayr) s Agdohr)
,An,
() |
Jo(ryT)

W =AI=(Ag Ap o A ) =Agdo(hy )+ Apdo(hyt)+ ot Agdo(hr)
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Side Note. Analogy of dynamic solution of PDE vs solution of ODE. We compare z (ODE) vs
w (PDE), initial states z, (ODE) vs w,q (PDE), and exponential approach from z, to z=0 (ODE) vs

exponential approach from w,, to w=0 (PDE). The exponential approach to 0 in either the ODE case

and the present PDE case is based on the eigenvalues as the speed of approach (i.e., the time
constants of the dynamic process).

W=A exp( X :t)3 o Aot + Arexp(W ) J o (Apr) + o+ Ajexp(X T g (T A= 22

w=exp<7co-t>- <A0-J 0> + exp<7u1-t> : <A1-J 1> ot exp<x'n-t> : <An-J n>

PDE «— compare to first-order ODEs —— Non-orthogonal basis Orthogonal basis

OI—W=L: ] W %=A-x OI—z=A-z where AV=V:-A
dt dt dt 1
q q x=V:z =V "X
—W=L pWSL W, —z=Az=)\-2
dt 1 1 1 1 dt 1 1 1
- ' - (
wi-exp<x i't>'Wt0i zi-exp\ki-t>-z Oi
w=exp(A-1)-W x=exp(A-t)-X o z=exp(A-t)-z exp(A-t)=V-exp(A-t)-\f1

In this PDE problem the overall vector w is decomposed into different modes|eigenvectors J, of

different "frequencies"; whereas, in the ODE problem, z is composed of different individual states in
the eigenvector coordinates; each mode has a characteristic time constant A'; that is independent of

the other modes (i.e., the different modes are non-interacting). In other words, we break up a given
function w,, into different parts then "sort" different parts into different bins according to their time

constants, with the high frequency components (say, Jy(1;1)) decaying faster and the low frequency
components (say, Jq(Ay-t)) persisting longer. Had we worked with non-orthogonal basis, the

exponential decay term exp(A-t) would have been unnecessarily complicated, and each
non-orthogonal component would possess a mixture of different time constants.

7exp<7»'0-t> 0 0 ]
0 exp(n -t ... 0
exp(A-t)= < L
A
I 0 0 exp<knt/i
T
00
<0> \<1> <n> { <0> <1> / <n>} X10
T T T T T T T
X
no
Ao
Al
PDE  wy=lA=Aglgt Agdg ot Apdp=(lg Jg o Iy )
An
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PDE <— compare —— ODE /w eigenvector basis
deviation variable
w z
deviation variable at t=0
Wi0 Z0
coefficients to describe wg orz,  Ag,Aq,....,Ap X00:X10' X no
. \<0> <1> <n>
basis vectors Jodq e dy <VT/ | <VT> <VT>
exponential decay exp(A-t) exp(A-t)
t:=0,0.01..05
2 — —
‘AO‘ -exp[f <x0> -t} !
2
EER
RO
05— —
2
g o (13) % ~
2
A ()
Y S | |
0 0.1 0.2 0.4 05

I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIIIIII“I

S IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH‘

o
&

Except for Ay, all other coefficients very quickly decay to 0. That is why we need only a few terms.
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Side Note. Express w,(r) with non-orthogonal power series basis vectors -- just to

double-check for fun. This is truly silly because we already have orthogonal basis. Working with
ugly non-orthogonal basis when we already have beautiful orthogonal basis is like going for a
hamburger when there is already a juicy steak, or like cheating with ugly girls when we already have
a beautiful one -- just plain silly unless you enjoy deliberately making things complex.

Non-example of change-of-basis (Non-example of similarity transform) power=a-bessel
/ .
1 aOO aOl aon \]0\7\,0 r/
( \
r _ a0 211 - 21n ' Jo\xlr/
r" a a JO/X )
ano @n1 - @nn| V)

Evaluation of change-of-basis matrix a -- coefficients to change from Bessel series J to power series

<r o[ ) <r J0(2 A <rn,JO<xO-r>>i (30(2gt),30(kgr)) (30/21),30(agr)) L (30(2,1),30(251)) ] Tagg

0"/ 0"/ \1)e 0°/) o))
<r 302 r>> <r J0(3, r>> <rn,30<k1.r>> ) (90(Ag), 302} ) (30(2 1), 30(2pr) o (J0(2) 30T | 2y

<r J0"<.7\ A <r1 Jo"<.x ) <r” Jou<.k_r>> (30(ngr),30(2 1)) (JO(2 ) JO(A 1)) e (30(2T) Jo/x )| 2on
, o [mao(n,

n // n // | L 1 // \ n / L
rj0=J0J0"-a"  rJ0'=a-J0J0 a=rJ0'-J0J0°*
scalar products of r and basis J  matrix of scalar products of basis J i=0.n  j:=0.n
! ' ! tuall ly the di I
o, = | rldo(ar) dr 000, = r30(3er)30(2r) o actually only the diagona
i i) i \i i elements are needed,
0 0 because of orthogonality
rJ0. i
a =1
b1 JoJo.
I

Non-example of change-of-basis (Non-example of similarity transform) bessel=b-power
(%57} | [bog bog - bon|[1

n

30(2,1) | [bpg bpg e b LT
Evaluation of change-of-basis matrix b -- coefficients to change from power series J to Bessel series
[30(2gr) ) (0(2pr) ) e (300t ) | (0 0) (2 0) (0| Tbgg bag - bpg]
0(2gr) ) (30(apr) (303 r) ) o) L ) [ Poy by - by

7<J0<xo-r>,r”> <J0<xl-r>,r”> <J0<kn-r>,r”> ) ) L (O | [bon bap e ban



Jor=RR"-b"

scalar products of J and basis ri

1

.

b.=Jor-RR?

Jor. ..
I’J

Jor'=b-RR

r-J0<xJ.-r> -ri dr

14

b=Jor-RR !

matrix of scalar products of basis {1,r,r2,..,r"}

¥

0

1
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The diagonal elements are needed,
because the power series is
non-orthogonal.

rr'd dr

Why "non-example"? Note that, because one set of basis does not exactly dependent on the
second set of basis (in fact, they are both independent of the other), we are only approximating one
set with the second set. As a result, one is not the inverse of the other. This is not exactly a
change-of-basis. This is not exactly a similarity transform.

1

azb b7a

Check: the following two are similar only for the first few columns (thus, "a" is ok, but b1 fails.)

0 1 2 g 4 5 0 1 2 g 4 5
0/1.602-1.065|0.851|-0.73 |0.649|-0.59 0 1.602|-1.072|0.972|1.967|4.89 |-8.657
1{0.817|-1.134|0.798|-0.747|0.632 | -0.597 1/0.817|-1.14 |0.919|1.952|4.876|-8.667
2 /0.494|-0.925|0.806 | -0.709| 0.637 | -0.582 2 10.494|-0.932|0.926 | 1.976 | 4.858 | -8.617
3/0.33 |-0.73 |0.755|-0.6810.623|-0.573 3/0.33 |-0.737|0.875|1.987|4.819|-8.568
4 10.235(-0.579|0.679 | -0.648 | 0.603 | -0.561 4 0.235/-0.586|0.798|1.992 | 4.755 | -8.478

a=1510.176|-0.466 | 0.599 | -0.607 | 0.579|-0.546 ||, 1 =|5 0.176|-0.473|0.717 | 2.014 | 4.698 | -8.422
6 |0.137|-0.381|0.525|-0.562 | 0.551 | -0.528 6 0.137|-0.387(0.641|2.028|4.621|-8.318
7 10.109|-0.3160.459|-0.516 | 0.521 | -0.508 710.109|-0.322|0.573|2.032| 4.524 | -8.189
8 /0.089|-0.265|0.403|-0.471|0.49 |-0.486 8 10.089|-0.272|0.515|2.039 | 4.433 | -8.07
9 /0.074|-0.2260.355|-0.429|0.459 | -0.464 9 0.074|-0.232(0.465|2.048 |4.348|-7.968
10/0.062 |-0.194|0.313|-0.391 | 0.429 | -0.441 10/ 0.062|-0.2 |0.422|2.042|4.246|-7.826
Check: the following two are not similar (thus, "b" is ok, but a1 fails.)

0 1 2 3 4 0 1 2 3
01 0.008 |[-1.515 [0.25 0.136 01 0 -1.449 0.01
1/0.987|0.34 |[-10.268 |8.64 3.111 1/0.996 [0.48 -14.909 40.888
2/0.891|2.818 |-41.459 |77.488 |-14.684 2 /1.062 |-5.863 70.084 -508.345
3 1.077|0.256 |-61.297 [195.921 |-135.73 3 1905 |-91.21 1345.643 |-7830.291
4 2.482|-31.088|103.399 |-71.331 |-107.452 4 1741 |-95.283 |1405.387 |-8214.344

b =|5 2.233|-35.755|174.205|-323.95 |184.986 al=|5-2.067 [204.089 |-3044.854 |17039.069
6 0.194|1.406 |-25.419 |71.674 |-11.239 6 -0.549 |61.413 -949.002 |5369.601
7 10.963|-15.521|73.167 |-118.766|16.757 7 |-15.489|1974.324 |-30616.947|174597.879
8 054 |-9.28 |53.93 |-137.635|134.925 8 |-23.519|3049.668 |-47489.164|271717.759
9 0.576|-9.209 [43.349 |-71.504 |13.318 9 32.394 |-3005.933|44728.773 |-251209.902
10 0.35 |-6.261 |37.146 |-94.814 |92.211 10 39.274 |-4007.637 | 60566.16 |-342551.753
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n 1 n
. ainv . —a . . i
power(i,r) = Z a, J.-JO(AJ.-r) . bessel(i,r) := Z ainv, j-rJ
j=0 cond2(a) =1.774-10 i=0
Represent Power with Bessel (OK) Back to Bessel with Power (Fail)
\\\ I ) /A\\ 1 \ ::, — I
L\ - AN \ PN ~_
power(0,r) = \/ \\ S bessel(0,r) . \A\
T YAl — \ N, |
power(1,r) //A\\ ] ﬂ bessel(1,r) \ |
= S - ‘ RN
power(2,r) SN / tl bessel(2,r) ‘ N \ \\\‘
05 K ~ - 0+ T N
power(3,r) ;- | bessel(3,r) N R
power(4,r) . //ﬁ\/ | bessel(4,r) P
\ /
o : -
l -1 l
0 0.5 1 0 0.5 1
r r
binv :=b!

cond2(b) = 9.489+10°

n
power(i,r) = Z binvi’j-JO<7\j-r>

=0

Back to Power with Bessel (Fail)

200

N

@ver( 0,r)
Eqwer( 1,r)
power(2,r)
Bwer( 3,r1)

power(4,r)

—200
0

0.5 1
r

bessel(0,r)

bessel(1,r) 05

bessel(2,r)

bessel(3,r)

bessel(4,r)
—05

Represent Bessel

n
bessel(i,r) := Z bi J.-rj
j=0

with Power (OK)

(D

Once again, the above demonstrates that, in representing one basis with another basis, the formula
involving "a" or "b" are good, but that involving a1 works borderline only for the first few Bessel

function and that involving b

-1 totally fails.

Representation of w,y with power series -- coefficients to change from power series J to Bessel
series. (The above was representing Bessel series, instead of a given function w,,, with power

series.)

<W to(r), r°> ]
<W to(r), r1>

)
RICRON

o) |

i)

\ \ :
A0 (0 A

\ \ -
rllrl/ <r°,rl/ A

\ \ .
rllrn/ <r01rn/ A

n
_ \
W t0.approx(") = Z Ai'JO<7‘i'r/
i=0
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wr=RRT-A'  A=RR hwr

scalar products of w,, and basis r'

1 n
i o -1 ' L v
wr, [ rwi(r)r'dr A" =RR wr W' 10, approx(") = Z At
0 i=0

The above calculates the coefficients to represent w,, with power series Another way of calculating
A'is based on the change-of-basis matrix a that relates A to A’ that approximates a given
vector|function w,,
Representation of w,, with Bessel basis

‘A . }
Vet
WtO.apprix=<J 091 - Jn,

n
Change-of-basis results in a different set of coefficients A’ to describe the same vector|function w,,

Ao apgp 210 - ano||A'0

A

apgy aqq - @ A
= = 01 ¢11 nl 1

' \

W'10.apprix <1 r..nry <J0 Jp o In ) .

A 3on 1n - @pn| | An

Thus, the two sets of coefficients A & A’ are related by the change-of-basis matrix a

Ao | (200 210 -+ 2no |A0

=T o .

Al _ agy 217 - app ' A 1 A=a ‘A" .. A&A'inacolumn format
[\

A'=\aT/ A

An| |80n @1n - @pn | [A'n

Each method yields a different set of coefficients A to represent w,, with Bessel series.
vector projection change-of-basis #1  change-of-basis #2

0 0 0
0 1.108 0 1.108 0 1.108
1 -014 1/-0.14 1/-0.14 | power to Bessel ... good
2 0.045 2 0.045 2 0.046 n
w (r) := <aT-A'> 3071
3 -0.021 3 (-0.021 3 |-0.008 t0.approx.cob1t’/) YN >
4 0.012 40.012 40.032 i=0
-1
A=/5 0007 ,Ta=[5-0007 (p7) A =[5 -0.04
6 0.005 6 | 0.005 6 [-0.019| inverse(Bessel to power) ... bad
7 -0.003 7 1-0.003 7 -0.592 n 1
-3 [ L
8 0.003 80.003 8/-0994)  Wi0.approx.cob2() = Z ') A0
9 -0.003 9 -0.002 9 1.013 i=0
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Each method yields a different set of coefficients A’ to represent w,, with power series.

vector projection change-of-basis #1 change-of-basis #2

0

o

1
-

0

0.998

0.035

-1.208

0.465

-0.358

0.314

-1.446

2.051

-0.357

>
1
OO |N|jolo|(d|fw N |- |O

>
I
olo|v|o|a|s|w|[d|R]|o

[y
o

O |o|lo|jlo|/lo|lo|o |o

-0.955

[y
o

0.461

0

0.965

3.197

-48.544

266.954

-663.179

596.577

312.48

-687.867

-271.682

Ol |IN|OO|O|d|W|IN |- |O

841.248

[y
o

-350.282

Bessel to power ... good

n
. L T i
W' t0.approx.cob1(") = Z <b 'A>i'f
i=0
inverse(power to Bessel) ... borderline ok
n -1
. L T [
W' 10.approx.cob2(") = Z Ra > -Al-r
i=0

The first of the above (projection) does a descent job in approximating w .

wig(n)

W' 10.approx(")

Velocity in Z-Direction (dimensionless)

W t0.approx( ")
- 05 |-

Initial Velocity Profile at t=0

T T T

0.4

Radius (dirrrlensionless)
~ Analytical
~~ Approximation (Bessel)
~ Approximation (Power Series)
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Initial Velocity Profile at t=0
| |

w to(r) e

W t0.approx.cob1(F) R

W t0.approx.cob2(") \

W' t0.approx.cob1(f) g 5 [ \ i
W' 10.approx.cob2(")

0 | | | |
0 0.2 0.4 0.6 0.8 1

Velocity in Z-Direction (dimensionless)

Radius (dinQensionIess)
~ Analytical
~~ Approximation -- COB from Power to Bessel
Approximation -- COB inverse(Bessel to Power)
Approximation -- COB from Bessel to Power
Approximation -- COB inverse(Power to Bessel)

Once again, the above demonstrates that, similar to representing one basis with another basis, in
representing a given function, the formula involving "a" or "b" are good, but that involving a1 works
borderline, and that involving b1 fails, following the trend only roughly.

Summary: action of linear transformation £ on basis vectors J or power

J & power in row format J & power in column format
power=J-aT power=a-J
£J=J-A £J=A")

L-power=J-A-aT={ power- (aT>7l} -A-aT=power[ <aT>7l-A-aT} L-power=a-A-J=a-A- <a’1-power>= (a-A-a’l>-power
Matrices in "non-similarity transform" (vectors in a column format)
compare definition of a matrix L to describe the action of £. Compare it to the line above
L-power'=L-power' <«— compare —> L-power=<a-A-a’1>-power — Ai'i ::xi Li=aAa’
We see that matrix "L" in this problem corresponds to the matrix "A" in the "standard" notation.

Likewise, matrix "a" in this problem corresponds to the transform matrix "V" in the "standard"
notation.

L-a=a-A ... hotation in this problem
AV=V-A .. "standard" notation in similarity transform

Eigenvalue-eigenvector for the linear transform L. =eigenvals(L) V :=eigenvecs(L)

A power
Note that Mathcad returns 1, that is arranged differently from A. Likewise, V is arranged differently

from a.
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Rearrange in ascending order AV = augment(k VT> AV =csort(AV,0)

power’
A power '=submatrix(AV,0,rows(AV) - 1,0,0) A power ::diag<x power>
V = submatrix(1V, 0, rows(AV) — 1,1, cols(AV) - 1)T
check: 2T = 0 1 2 8 4 5 6 7 8 9 10
0 2.405|5.52(8.654|11.792|14.931|18.071|21.212 | 24.352 | 27.493 | 30.635| 33.776
Y T_ 0 1 2 3 4 5 6 7 8 9 10
power
0/2.405(5.52(8.654|11.791|14.931|18.071|21.212 | 24.354 | 27.491| 30.632| 33.779

Mathcad returns normalized eigenvectors V. To better compare matrix "a" with matrix "V", normalize "a".
<i>
<i> _ a
norm

<aT'a>i,i

check: Note that a =V is not orthogonal, and some eigenvectors differ in sign.

norm

o1 [ 23] 4T7]s 0 1 [ 2] 3] aT7] s
0 0.83 |0.488(0.412/0.365]0.346 | 0.331 0 0.83 |-0.488]0.412]-0.365|0.346 | -0.331
1 0.424(0.519/0.3860.374|0.337 | 0.336 10.424|-0.519|0.386 | -0.374| 0.337| -0.336
2 0.256|0.424(0.39 |0.355|0.339|0.327 2 0.256|-0.424|0.39 |-0.355|0.339|-0.327
3 0.171/0.334(0.365|0.341|0.332|0.322 3 0.171|-0.334|0.365| -0.341| 0.332 | -0.322
4 0.122|0.265|0.3280.325|0.321|0.315 4 0.122|-0.265|0.328|-0.325| 0.321 | -0.315
v =|5 0091/0213/029 |0.304/0308/0307|5  =|6 0.091-0.213/0.29 |-0.304|0.308 -0.307
6 0.0710.174|0.254|0.281(0.294 | 0.297 6 0.071|-0.174|0.254|-0.2810.294 | -0.297
7 0.057|0.145|0.222|0.258|0.278 | 0.285 7 0.057|-0.145|0.222 | -0.258| 0.278 | -0.285
8 0.046|0.122(0.195|0.236|0.261|0.273 8 0.046|-0.122|0.195|-0.236| 0.261 | -0.273
9 0.038/0.103(0.171|0.215| 0.245 | 0.261 9 0.038/-0.103|0.171|-0.215| 0.245 | -0.261
10 0.032|0.089 | 0.152|0.196 | 0.228 | 0.248 10/ 0.032 | -0.089|0.152 | -0.196 | 0.228 | -0.248

Dynamics with non-orthogonal basis vs orthogonal basis

Analogy with 1st-order ODEs j—z=A-z solution ——  z=exp(A-t)-z
t

For PDE in this problem j—w=£ ] W solution ——  w=exp(A-t)-wq
t

solution /w non-orthogonal basis vectors ——  w=exp(A-t)-W' o= <V-exp(A-t)-\fl>-(J'-A')
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\ o
expAt(t) V-diag<exp<kpowerz.t>/.v1 1
r
2
3
A
w'(t,r) = expAt(t)- P LA
8
7
n —_ 8
w(t,r) = Z Z(eprt(t)<J>-A'>-rJ .
j=0 r
10
V() =Wt r) + v ogg(r) Lr
Velocity Profile
I |
O .
V' 5(0,r1) //
g v 0L, ///’// .
N P
'z V' (02,1) I /
£ v (03,9 e A
s 04T o |
*;i v ,(04,1) - -
3 (0.5,1) -~ -
q Vv r .
-~ —0.6~ - = |
2 V' ,(10,1) yd
g -
> vg(n) -
— 0.8 o |
/
| - /
-1 — | | I |
0 0.2 0.4 0.6 08 1

r
Radius (dimensionless)

~

initial condition)

OO OOOo
A OWN P

t=
t=0.
t=0.
t=0.
t=0.
~~ t=05

t=10 (practically steady-state)
~  Steady-state
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Side Note. Express w(r) with non-orthogonal randomly generated Bessel series basis

vectors.

Example of change-of-basis (example of similarity transform)

7.]'07 7a00 a01 aoni 7J0<7»0-r>
Iy _310 311 - a1n | JO(kl-r>
In) 200 an1 - apn |00

bessel'=a-bessel

Randomly generate a second set of basis that is a linear combination of the original set of Bessel

basis

q | =rnd(2) - 1

Unlike the previous non-example between power series and Bessel series, this is a change-of-basis
(similarity transform) problem.

b ::a’1

(0.0
I
(2,0
ER)

J(4,r)

bessel(0,
Pefsel( 1,
bessel( 2,
biessel( 3,

bessel(4,

Representation of w,, with the second random power series

series J to Bessel series

(Wi(N. 3 o) |
(Wig(r). ')

(g 30)

wr=JJT A

(Y090) (Y190

- (Jo01) (I1.99)

Fodn) P,

A=17Lwy

(Indo) [[Ag
(Indq) 1A
Indn) [[An]

r
D 05
r
r

r)0

—05

Back to Bessel with Power (OK)

—
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scalar products of wy; and basis J' matrix of scalar products of basis J'

1 1
wl, J rWo(r)-J'(i,r) dr JJ, J. { r-J(i,r)-J(j,r) dr
0 ' 0

n
Vool . o T
AEITWE W g approx(D T YL AL
i=0

The above calculates the coefficients to represent w,, with power series Another way of calculating

A'is based on the change-of-basis matrix a that relates A to A’ that approximates a given
vector|function w,,

Representation of w,, with Bessel basis
Ao
AL
W0.apprix=(90 J1 = In )’ =-A

Change-of-basis results in a different set of coefficients A’ to describe the same vector|function w

Ao 200 @10 = @no| Ao
A agy aqq .. a A
1 01 211 ni 1 T
il - T ] 1 \ - \ _ ,
WtO.apprix‘<JO I Jn/' -<J0 Jp - Jn/' . =Ja A
,A'n, 12on 21n - @nn| 7A'n7

' _1 Al AT At
W' t0.apprix=? A=Ja A

Thus, the two sets of coefficients A & A’ are related by the change-of-basis matrix a

Aol |200o 210 ~ 2no| A0

N .

Al agy 217 - ang ' A 1 A=a -A' ...A&A'in acolumn format
[ 1\

A=a', A

An| |80n @1n - @pn ) |[A'n
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Each method yields a different set of coefficients A to represent w,, with Bessel series.

vector projection

change-of-basis

separate.mcd

Radius (dirrrlensionless)
~ Analytical
Approximation (Bessel)
Approximation (combination of Bessel)

Representation of the same vector w with different set of basis J and J'.
,éo,
g1
W=é0'.]0+é1'.]1+...+<in' n=<‘]0 Jl Jn>'

&n

W=E 0T gt E Y e E T = (T T T )

0 0

0 1.108 01.108

1 -0.14 1-0.139

2 0.045 2 0.047

3 -0.021 3 /-0.018

4 0.012 4 10.011
A=|5 -0.007| 3T.A'=|5 -0.012

6 0.005 6 (0.004

7 -0.003 7 [-0.005

8 0.003 8 /0.003

9 -0.003 9 -0.002

10 0.002 10| 0.006
£ Initial Velocity Profile at t=0
5 ! i |
_% YV}O.approx(r) os - ~ i
‘5 W' 0. approx(")
N .
£ ~_
2 0 | | | -
2 0 0.2 04 06 1
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Representation of the same output vector £-w resulting from linear transformation £ with different set
of basis J and J'.
£W=E_,0£J 0 + E_, 1£J 1 + ot E_, n.BJ n=E_, 07\. OJ 0 + E_, 17\. 1.] 1 + ..+ E_,n}\, n'J n

g 0 .. 0 |lgg
0 Ay .. 0 |8
2 1
=/ \ =
=031« In) | T l=aag
0 0 . Ap||épy

L'W=E_,I 0'[,'\]' 0" E_,' 1'5\]’ 1t .t E; n'L'\]' n

.=E; O'ﬁ' <a 00.] 0 +- aOlJ 1 + o+ aon'J n> + E_,' 1'£'<a 10J 0 +a 11J 1 +..+a 1nJ n>
+& n-[,-<a nodotandgt ...+ann-Jn>

=z \ \
=5 0'\3/00'7°0'J 0201ty dat -+ agninp) fi (2107030 a1 h It A i) -
+¢& n \a no?\. O\] 0t a nl}\/ 1J 1t.--t+a nn'?\. n'\] n

0 Aq .. O a a .oa &
1 01 11 nl 1 T
=/ \ -
-‘\JO Jq - Jn/- . . =J-Aa &
0 0 .. An|l30n 81n ~ 8pn | &p

We can define the linear transformation £ based on what it does to each of the basis vectors J

£3=6:(3g Ig o Ip)=(Ldg £Ig £dp)=(hgdg Aqdq e hpdp]

Ao O .. O

/ 0 g0
=\\]0 Jl \]n/' =JA

0 0 ..

We can define the same linear transformation £ equally well based on what it does to any set of
basis vectors J'

£d=L(3g g o Y )=(Ldg £Tq e LTy
.=[£'<300'Jo+301'\]1+...+aon'Jn> £'<310'J0+311'\]1+...+aln'Jn> [,'<an0'\]0+an1'\]1+...Jrann'.]n>}

- \ (
'[(aOOKO‘]O+a017‘1‘]1+*aOnkn‘]n/ L<a10k030+a11k1J1++a1nkn.]n> L\an0k0J0+an1

ko O o 0 lagg agg - apg
0 Aq ... O a a .oa
1 01 ¢11 nl T
=/ \ =
-‘\JO Jq - Jn/- . =J-A-a
o 0 .. xn 7a0n aln - anni
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: : : . L T T T T
or, simply substitute in =a-J we obtain: £-J=c- <J-a >=(L-J)-a =(JA)a=J)Aa

Summary: action of linear transformation £ on basis vectors J or J'

J & J'in row format J & J'in column format
r=la’ J=a
£J=JA L£-J=A]

V-1 -1 \
L-J‘=J-A-aT={J'- <aT/ ]A-aT=J'[ <aT> -A-aT} LJ=aA-J=a-A- <a’1-J'/= <a-A-a’ 1> J'
Matrices in similarity transform (vectors in a column format)
compare definition of a matrix L to describe the action of £. Compare it to the line above
( “1) _
£J=L-J <«—compare —> L J=\a-Aa 1/-J' —> A izki Li—aAa "

We see that matrix "L" in this problem corresponds to the matrix "A" in the "standard" notation.
Likewise, matrix "a" in this problem corresponds to the transform matrix "V" in the "standard"
notation.

L-a=a-A ... hotation in this problem
A-V=V-A ... "standard" notation in similarity transform
Eigenvalue-eigenvector for the linear transform £, A y:=eigenvals(L) V :=eigenvecs(L)

Note that Mathcad returns 1 that is arranged differently from A. Likewise, V is arranged differently
from a. /
Rearrange in ascending order AV = augment\k J-,VT> AV :=csort(AV,0)

A y 1= submatrix(AV,0, rows(AV) - 1,0,0) A y ::diag<x J->

V =submatrix(AV, 0, rows(AV) — 1,1, cols(AV) — 1)T

checke 2T=[[ 0 1 2] 3 4 5 6 7 8 9 [ 10
0 2.405]5.52|8.654] 11.792] 14.931| 18.071] 21.212] 24.352 27.493| 30.635 | 33.776

Iy J,T = 0 1 2 3 4 5 6 7 8 9 10
0/2.405|5.52(8.654|11.792|14.931|18.071|21.212 | 24.352 | 27.493 | 30.635| 33.776

Mathcad returns normalized eigenvectors V. To better compare matrix "a" with matrix "V", normalize "a".
<i>
<i>,_ a
norm

<aT'a>i,i



check: Note that a
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norm=V IS not orthogonal, and some eigenvectors differ in sign.

0 1 2 3 4 0 1 2 & 4
0 0.523 0.333 |0.097 | 0.194 |0.346 0 |-0.523 -0.333|0.097 |-0.194(0.346
1 04 0.534 | 0.036 |-0.132|-0.358 1/-04 -0.534|0.036 | 0.132 |-0.358
2 -0.041 0.041 | 0.415 |-0.362(0.533 2 /0.041 -0.041|0.415 | 0.362 |0.533
3 0.235 -0.096|0.387 | 0.019 |0.261 3 -0.235 0.096 |0.387 |-0.019(0.261
4 0.079 -0.019|0.288 | 0.428 |-0.009 4 1-0.079 0.019 | 0.288 |-0.428|-0.009
=|5 0.364 -0.35 |-0.354|-0.41 |-0.369 A norm = 5 1-0.364 0.35 |-0.354|0.41 |[-0.369
6 -0.018 0.08 |0.515 |-0.064|-0.03 6 /0.018 -0.08 |0.515 |0.064 |-0.03
7 -9.571-10-4 0.514 | 0.083 |-0.041(0.368 7 9.571-10-4 -0.514/0.083 | 0.041 |0.368
8 -0.351 -0.109|-0.284|0.645 |0.328 8 0.351 0.109 |-0.284|-0.645(0.328
9 -0.206 0.069 |0.089 |-0.166(0.004 9 /0.206 -0.069|0.089 |0.166 |0.004
10 -0.453 -0.429|-0.313|0.115 |0.137 10/ 0.453 0.429 |-0.313|-0.115(0.137

Dynamics with non-orthogonal basis vs orthogonal basis

Analogy with 1st-order ODEs j—z=A-z solution ——  z=exp(A-t)-z
t

For PDE in this problem j—w=£ ] W solution ——  w=exp(A-t)-W
t

solution /w non-orthogonal basis vectors ——  w=exp(At)-W' o= <V-exp(A-t)-\fl>-(J'-A')
IR

expAt(t) V-dmg(exp(ky -t//-\f
L 3(0,r) |
J(1,r)
J(2,r)
J(3,r)
J(4,r) n
w'(t,r) :=expAt(t)-| J(5,r) [-A w'(t,r) = Z Z(eprt(t)<j>-A‘>-J'(j,r)

J(6,r) j=0

J(7.1) V(6 1) =W ) + v g(r)

J(8,r)

J(9,r)
1 J'(10,r) |

1
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Velocity Profile

- A
viz(Oyr) /
vV (0.1,1) /////

— —0.2 _-7 7 —]

V' ,(0.2,1) ) ///// : /

V' #(0.3,1) B === S /

— —0.4f— -
V' 5(0.4,1) - /

Velocity in Z-Direction (dimensionless)

V' ,(0.5,1) .7
o o6l P - -
V' 7(10,r) i /
- /
v g5(r) = -
e —08 - — - o ]
/
| - - /
- _— — | | | |
0 0.2 0.4 0.6 0.8 1

t=10 (practically steady-state)
~—  Steady-state
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Side Note. Express w,(r) with non-orthogonal Bessel series basis vectors (due to a different

scalar product definition with a different weight function) ., although the basis remain
unchanged. This is not an example of change-of-basis.
Representation of w,, with the Bessel series

7<Wt0(r),\]0>7 7<\]0,\]0> <J1,J0> <\]n,\]0>7 AIO
(Wip(r).Jq) _ Jod1) (91.31) — (Indq) 1A

((weo(.3n) | [ (Jodn) (G290, -« (Indn) || Ay

wr=3rTA A=y twe

scalar products of wy; and basis J' matrix of scalar products of basis J'

1 1
wl; J wto(r)-JO<xi-r> dr JI i [ JO(hi-r>-J0<xj-r> dr different weight function
0 0

n
vl . . o . (
A=ITRWE W g oD Z A0 (2]
i=0

The above calculates the coefficients to represent w,, with Bessel series, but with a different scalar

product definition. A product definition that makes the basis non-orthogonal basically produces the
same set of coefficients, albeit with more calculations from matrix inverse.

Al = 0 1 2 3 4 5 6 7 8 9 10
0/1.108|-0.14{0.045|-0.021|0.012 | -0.007 | 0.005 | -0.003 | 0.003 | -0.003 | 0.002

AT = 0 1 2 3 4 5 6 7 8 9 10
1.108|-0.14|0.045|-0.021|0.012 | -0.007 | 0.005 | -0.003 | 0.002 | -0.002 | 0.001

o

Since the coefficients are the same, the initial velocity profile is approximated similarly. Because the
exponential decay of each mode remains identical (this decay behavior is not affected by the scalar
product definition), so does the subsequent velocity profile. This non-orthogonal example
demonstrates that orthogonality only simplifies the calculation of the coefficients when we try to
represent the initial velocity profile, but does not affect the evolution of solution with time. The
eigenvectors from the £, operator are not orthogonal, nor does orthogonality enters into the

time-dependent behavior. The coupling of the £, operator and the £, operator in the original given
PDE dictates how pairs of eigenvectors from these two operators (T; and R;) are coupled to form
overall eigenvectors wi=T;-R;. This coupling determines how each mode (each eigenvector

component) evolves with time, independent of all the other modes. And this coupling does not
depend on the definition of a scalar product, where orthogonality becomes affected.
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Initial Velocity Profile at t=0
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! —T T T

—

w to(r) —
W t0.approx( ")
— W.app! 05

W' 10.approx(")

0 | | |

Velocity in Z-Direction (dimensionless)

0 0.2 0.4 0.6

Radius (dinr1ensi0nless)
~ Analytical
Approximation (Bessel)
Approximation (combination of Bessel)

The following formula remain unchanged; orthogonality does not enter into the dynamics part of the

solution.

n
' L \ / 2 \
w'(t,r) = Z Ai-exp{f \ki> -t]JO(ki-r/
i=0
Finally, the dimensionless z-direction velocity is: V' ,(t,r) =wW'(t,r) + Vv ¢(r)

Velocity Profile

V'

(0,1

N

<
I
>
o
=
.
=
|
o
)

V' 5(0.2,1) -7
V' 2(0.3,1) B s

V' 5(0.4,r)

V' 5(0.5,r) -~ ’
bA 06 - /
V' 5(10,r) ] /
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- 08— - — /

|
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(practically steady-state)





