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Separation of Variables.  Application of eigenvalue-eigenvector to solution of PDE.  Start-up flow in 
a pipe. 
Instructor: Nam Sun Wang

Problem Statement.   A fluid of viscosity μ and density ρ fills the inside of a very long vertical 
cylindrical pipe of radius a. We suddenly remove the plug initially placed at the bottom of the pipe at 
time t'=0.  Find the velocity profile.  The only driving force is gravity.

The radial and angular components of the velocity field are 0, and 
only velocity component is in z-direction.  vz' is a function of both 
time t' and radius r'.

v r v θ 0 v z' v z'( ),t' r' r' a
Step 0. Develop a mathematical model.  The following partial 
differential equation (PDE) describes the development of velocity in 
the z-direction.  Note that the differential equation describes the laws 
of nature|physics -- the same laws of physics apply to all problems 
and never change; they remain the same beyond the day we die.  
Whereas, the boundary conditions are problem-specific (man-made) 
and depends on the particular physical set up or initial condition.

B.C. at t' 0 v z 0 -z.ρ d
dt'

v z' ..ρ g h .μ
r'

d
dr'

.r' d
d r'

v z'
at r' a v z 0

Step 1. Non-dimensionalization.  We usually scale everything to O(1).

Plugr r'
a

t t'
.a2 ρ

μ

v z
v z'

...ρ g h a2

.4 μ
B.C. at t 0 v z0( )r 0d

d t
v z 4 .1

r
d
dr

.r d
dr

v z
at r 1 v z 0

Step 2. Find steady-state solution. (See side note at the end) v ss( )r r2 1

Step 3. Work in deviation variable w w v z v ss v z 1 r2

This is mathematically equivalent to eliminating the constant term "-4" by shifting the dependent 
variable vz.  Rather than starting at initial condition of vz=0, we start at w≠0, and see how w 
approaches|decays to 0.

B.C. at t 0 w 1 r2 w t0( )r v z0( )r v ss( )rd
d t

w .1
r

d
dr

.r d
dr

w at r 1 w 0

Step 4. Find solution.  Almost all PDE problems have no "neat" analytical solution, and we have to 
settle for an approximation or a numeric one.  Failing to obtain a "neat" analytical expression, w e 
express w as a linear combination of linearly independent basis vectors.  Although the basis vectors 
can be random (as long as they are linearly independent -- even the old-fashioned power series {1, r, 
r2,...} will do, but it is way too complicated), we almost always prefer orthogonal eigenvectors wi, 
where each eigenvector wi satisfies the usual eigenvalue-eigenvector relationship.  Note that we have 
two different linear operators LT & LR for a PDE of two independent variables t and r; whereas, we 
have one linear operator for an ODE of one independent variable.
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General eigenvalue-eigenvector equation .L T w .LR w .λ' w

where L T
d
dt

. LR
.1

r
d
dr

.r d
dr

. ... two linear operators

First, find eigenvalues-eigenvectors; there are infinitely many in this PDE problem.
.L T w i .LR w i .λ' i w i

Then, express w as a linear combination of eigenvectors.

w

= 0

∞

i

.Ai wi
.A0 w0

.A1 w1 ...

We solve the eigenvalue-eigenvector problem for each of the two different operators.

eigenvector for the LT operator: .L T T d
dt

T .λ' T

eigenvector for the LR operator: .L R R ..1
r

d
dr

.r d
dr

. R .λ' R

Note that the above two are not equal. .L T T .L R R .λ' T .λ' R

Thus, neither T nor R is the solution.  Remember, the general eigenvalue-eigenvector satisfies the 
following.

.L T w .L R w .λ' w

The output from these two operators are made equal by multiplying each with the eigenvector from 
the other operator.

..L t T R .( ).λ' T R
⎯→ ..L t T R ..λ' T R ..L r R T ⎯→ .L t ( ).T R .L r ( ).T R .λ' ( ).T R

..L r R T .( ).λ' R T

It follows that if we let w=T⋅R, then w=T⋅R above is an eigenvector common to both operators LT & LR.
.L T w .L R w .λ' w where w .T R

We repeat the same for each eigenvalue λ'i and obtain for each eigenvalue a corresponding 
eigenvector.

for λ'i wi
.Ti Ri

The above derives (not assumes) that w is a product of T & R, and is exactly equivalent to the  
common method of PDE solution via separation of variables, where we assume w(t,r) is a product 
of two separate functions T(t) and R(r), where T(t) is a function of only t, and R(r) is a function of only 
r.

w( ),t r .T( )t R( )r

Substituting the above product into the PDE yields,

.d
d t

T R .T .1
r

d
dr

.r d
dr

R  ⎯→ .1
T

d
dt

T .1
R

.1
r

d
dr

.r d
dr

R

The LHS is a function of t only, and the RHS is a function of r only.  For these two statements to 
hold, the only possibility is for both the LHS and the RHS to be a constant λ'.  This give rise to a 
couple of eigenvalue-eigenvector equations -- the same thing we arrived at via the linear 
transformation approach.
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.1
T

d
dt

T λ' .1
R

.1
r

d
dr

.r d
dr

R

LHS: .1
T

d
dt

T λ'  ⎯→ .L t T d
dt

T .λ' T Eq (1) ... eigenvalue-eigenvector of a 
first derivative operator LT.

RHS: .1
R

.1
r

d
dr

.r d
dr

R λ'  ⎯→ .L r R .1
r

d
dr

.r d
dr

R .λ' R Eq (2) ... eigenvalue-eigenvector of a 
second derivative operator LR. 

Solution of eigenvectors T in Eq (1).

T( )t .A exp( ).λ' t

Note that although any value of λ' is an eigenvalue to the first derivative operator LT (and any value of 
λ' is an eigenvalue for LT ), consideration of the boundary condition in Eq (2) will allow only certain λ' 
to be valid.  

Solution of eigenvectors R in Eq (2).

.1
r

d
dr

.r d
dr

R .λ' R .λ
2 R where, for convenience, λ' λ

2 B.C. at r 0 R bound

at r 1 R 0
.r2 d

d

2

2r
R .r d

dr
R ..λ

2 r2 R 0

Let x .λ r  ⎯→ .x2 d

d

2

2x
R .x d

dx
R .x2 R 0 ... Bessel's differential equation of order 0

The solutions are Bessel's function of the first kind of order 0 (J 0) and Bessel's function of the second 
kind of order 0 (Y0). 

R .A J 0( )x .B Y 0( )x .A J 0( ).λ r .B Y 0( ).λ r

Evaluate constants (including eigenvalues) from boundary conditions .

Boundary Condition #0.  Bound solution at r=0 requires B =0, because Y0(0)=-∞. R( )r .A J 0( ).λ r

Boundary Condition #1. At r 1 w 0 This is where we pin down the eigenvalues and eigenfunctions.  

w( ),t 1 0 ..A exp .λ
2 t J 0( ).λ 1 Since exponential is never 0, 0 J 0( ).λ 1 J 0( )λ

Thus, the eigenvalues correspond to the roots of the Bessel's function J0.  Note that because the 
function J0 oscillates around 0 (much like the cosine function), there are infinitely many eigenvalues 
(λi, i=0,1,2,...) and the associated eigenfunctions. 

Evaluate the eigenvalues.

Define a root-finding function that allows an initial guess to be specified. rootJ0( )x root( ),J0( )x x

n 10 i ..0 n 1 Start with the first root: λ0 rootJ0( )1

Add π to obtain an initial guess for the subsequent roots: λi 1 rootJ0 λi π

=T
λ 0 1 2 3 4 5 6 7 8 9 10

0 2.4048 5.5200 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346 33.7758

r ..,0 0.01 1
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First Few Eigenfunctions

J0 .λ0 r

J0 .λ1 r

J0 .λ2 r

J0 .λ3 r

J0 .λ4 r

r

Each eigenfunction satisfies the given PDE and the boundary condition w(t,1)=0.

w i( ),t r .exp .λi
2 t J 0 .λi r for ,,i 0 1 ...

Furthermore, any scalar multiple of an eigenfunction is also an eigenfunction.  Thus, any linear 
combination of the eigenfunctions also satisfies the given PDE along with Boundary Condition #1.

w( ),t r

= 0

∞

i

.Ai w i( ),t r

= 0

∞

i

..Ai exp .λi
2 t J( )i ( )r

= 0

∞

i

..Ai exp .λi
2 t J 0 .λi r

To repeat, w is a linear combination of eigenvectors wi.  Furthermore, the above equation  contains 
the following elements:

Ai ... approximates wt0=1-r2, initial condition for the deviation variable w

... describes decay to steady-state w=0; each eigenfunction J component decays 
with a different time constant.  In other words, each mode has its own dynamics 
that is independent on other modes -- another reason for working with 
eigenfunctions.  The eigenfunctions (J) themselves, being the basis, remain 
unchanged; the magnitude of the component (A) decays.

exp .λi
2 t

Ji J 0 .λi r ... eigenvectors, where eigenvalues λi chosen to satisfy the boundary condition at 
the pipe wall r=1

Boundary Condition #2. At t 0 w w t0 1 r2 Based on this, we find the coefficients Ai.

w( ),0 r w t0( )r 1 r2

= 0

∞

i

..Ai exp .λi
2 0 J 0 .λi r

= 0

∞

i

.Ai J 0 .λi r .A0 J 0 .λ0 r .A1 J 0 .λ1 r ...

Thus, in plain English, we wish to express a given function wt0=1-r2 with a series of basis functions 
(i.e., Bessel's functions J0 in this case).  We find the coefficients Ai from the projection.  If the basis 
functions are orthogonal, each term is decoupled from other terms, and we can evaluate each term 
independent of other terms, meaning no matrix inverse.  Projection is simply the scalar product of 
the function to be approximated and the Bessel basis vectors.
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Ai

,w t0( )r J 0 .λi r

,J 0 .λi r J 0 .λi r
... approximate wt0(r)=w(0,r)=1-r2 with basis J0 via projection

Note: for a problem that starts with an initial velocity profile of v z( ),t 0 r v z0( )r 0

The initial deviation variable w is w( ),t 0 r w t0( )r v z0( )r v ss( )r

We simply approximate w(0,r), instead of w(0,r)=1-r2, with Bessel basis vectors.

Numerical Evaluation.  Although some people consider this approach analytical, it eventually 
comes down to numerical evaluation, because it is difficult to visualize the solution when there are 
many terms that make up the solution.  First, we need to define a convenient scalar product.  (Note 
that other scalar product definition will also do, but the projection formula becomes a bit more 
complicated.  With the following definition involving a weighting function of r, the Bessel's functions 
are mutually orthogonal (but not normalized).

Define scalar product: prod( ),f g d
0

1
r..r f( )r g( )r

Function to approximate via projection based on the above scalar product: w t0(r)

i ..0 n

Ai

d
0

1
r..r w t0( )r J0 .λi r

d
0

1
r..r J0 .λi r J0 .λi r

←⎯ Approximate wt0 with Fourier Bessel series

←⎯ Change the upper limit to see the effect of the 
number of terms.  In fact, we do a good job with just 
one single term if we were to tolerate error at t=0. Try it!

w( ),t r

= 0

n

i

..Ai exp .λi
2 t J0 .λi r

Finally, the dimensionless z-direction velocity is: v z( ),t r w( ),t r v ss( )r
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Side Notes.  Steady-state solution.  It is usually easier to shift the variables so that "0" represents 
the steady-state and we study how the variable(s) approaches|decays toward steady-state. 

Analogy -- linearization around steady-state in PDE vs linearization around steady-state in 
local linearized stability analysis of ODEs.  In solving a set of nonlinear autonomous first-order 
ODEs, we first linearize around each steady-state value xss: 

Given "dx/dt=f(x)" d
dt

x f( )x f x ss .df
dx x ss

x x ss ...1
2

Tx x ss
d2f

dx2
x ss

x x ss ...

After ignoring higher order terms: d
dt

x f( )x f x ss .df
dx x ss

x x ss
d
d t

x d
d t

x x ss

In deviation variables: dX
dt

.A x where f x ss 0 A df
dx x ss

X x x ss

We then find eigenvalue-eigenvector for .A x .λ x .A V .V Λ X ...V exp( ).J t V 1 X 0 .exp( ).A t X 0

We finally examine the eigenvalues λ to determine stability by virtue of how the deviation variable X 
eventually settles from X0 to the origin X=0, and we examine the eigenvectors to find phase 
trajectories (which are attracted toward the origin X=0 if stable, or repulsed away from the origin X=0 if 
unstable).  Here in solving a PDE, we examine how the deviation variable w eventually settles from wt0 
to the origin w=0.
In this PDE solution via separation of variables, we also follow the same procedure by which we 
find the steady-state first, then linearize around the steady-state with a deviation variable.  This 
particular problem is a linear one (with linear operators|transformations Lt & Lr).  However, had the 
problem been a nonlinear one, we would execute the linearization step, and this linearization 
approach would remain the method we take as a first approximation.

Steady-state solution.  At steady state, d/dt=0

B.C. at t 0 v z 0d
dt

v z 0 .NL R v z
steady_state

4 .1
r

d
dr

.r d
dr

v ss
at r 1 v z 0

d
dr

.r d
dr

v ss .4 r ⎯→ d .r d
dr

v ss1 dr.4 r

.r d
dr

v ss .2 r2 C 1 ⎯→ apply BC at r=0 (symmetry)  d
dr

v ss 0 ⎯→ C 1 0 d
dr

v ss .2 r

v ss dr.2 r r2 C 2 ⎯→ apply BC at r=1 v ss 0 ⎯→ C 2 1 v ss( )r r2 1 steady state solution

Linearization to convert the original non-linear transformation (NLT or NLR) into a linear transformation 
 (LT or LR) .  The term "4" makes the original transformation nonlinear.

Analogy: .NL x .A x b is a nonlinear transformation because:
.NL ( )x y .A ( )x y b ( ).A x b ( ).A y b b .NL ( )x .NL ( )y b
.NL ( )x y .NL ( )x .NL ( )y ... violate the definition of a linear transformation, unless b=0
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Original: nonlinear transformation d
dt

v z 4 .1
r

d
dr

.r d
dr

v z

.NL R ( )v 4 .1
r

d
dr

.r d
dr

v is a nonlinear transformation because:

.NL R ( )v w 4 .1
r

d
dr

.r d
dr

( )v w 4 .1
r

d
dr

.r d
dr

v 4 .1
r

d
dr

.r d
dr

w 4 .NL R ( )v .NL R ( )w 4

.NL R ( )v w .NL R ( )v .NL R ( )w ... violate the definition of a linear transformation

Shifting the term "-4" to LHS does not circumvent the nonlinear transformation problem, because 
doing so merely shifts the nonlinearity to the other transformation. 

.NL T ( )v d
d t

v z 4 is a nonlinear transformation because:

.NL T ( )v w d
dt

( )v w 4 d
dt

v 4 d
dt

w 4 4 .NL T ( )v .NL T ( )w 4

.NL T ( )v w .NL T ( )v .NL T ( )w ... violate the definition of a linear transformation

Since we must have linear transformations to even apply the eigenvalue-eigenvector idea, this 
nonlinearization step is a must.  In this PDE when we work with a deviation variable w=vz-vss that is 
the difference between the original variable and its steady-state value, we also in effect linearize the 
original nonlinear transformation NLR into a linear one LR.

Given "dx/dt=f(x)" dx
dt

f( )x f x ss .df
dx x ss

x x ss ...1
2

Tx x ss
d2f

dx2
x ss

x x ss ...

Given "dvz/dt=NLR⋅vz"
d
dt

v z .NL R v z .NL R v ss .LR v z v ss ...higher_order_terms

In solving for the steady-state solution, we have .NL R v ss 0

d
d t

v z
d
d t

v z v ss
After ignoring higher order terms (there happen to be none in this PDE):

d
dt

v z v ss 0 .LR v z v ss

In deviation variables: d
dt

w .LR w where w v z x ss

Analogy -- steady-state solution of PDE vs solution of Linear Algebraic Equation "A ⋅x=b".  
When solve a linear algebraic equation of the standard form A ⋅x=b.  Most students start by thinking 
"A⋅x=b" as a linear algebraic equation problem, because that is the way the linear equation is usually 
first introduced.  However, the same problem can be viewed from many perspectives, one of them 
being the vector perspective.  From the vector perspective, with the equation "A⋅x=b", we are solving 
a projection problem where we find the coefficients xi to represent the given vector b as a linear 
combination of the individual vectors in A.

perspective of "standard" linear algebraic equation: .A x b
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projection perspective: b .x 0
< >A 0 .x 1

< >A 1 ... .x n
< >A n .< >A 0 < >A 1 ... < >A n

x 0

x 1

...

x n

Thus, we can regard an iterative algorithm, such as Gauss-Seidel's, as an eigenvalue-eigenvector 
problem with an eigenvalue of λ=1.  

Gauss-Seidel: x .A x eigenvalue-eigenvector perspective  ⎯→  .A x .λ x with λ 1

Analogy -- steady-state solution of PDE vs solution of nonlinear Algebraic Equation "f(x)=0" 
with Newton's method".  In Newton's method, we linearize f(x) around an initial guess x0:

Given "f(x)=0" f( )x 0 f x 0 .df
dx x 0

x x 0 ..1
2

d2f

dx2
x 0

x x 0
2 ...

After ignoring higher order terms: f( )x f x 0 .df
dx x 0

x x 0

In deviation variables: F .f x ξ where F f( )x f x 0 f x
df
dx x 0

ξ x x 0

Thus, we can regard this nonlinear equation solution process as first linearizing around the 
current|initial guess x0, and we represent the eventual value as x, and we work in terms of the 
deviation variables.  And as in the standard linear algebraic equation above, with the standard 
nonlinear equation, we regard the solution of the resulting linear algebraic equation either as a vector 
projection problem or as an eigenvalue-eigenvector problem.

Analogy: vector projection -- express F as a linear combination of the basis vectors f x
<i> 

F .f x ξ .< >f x
0 < >f x

1 ... < >f x
n

ξ 0

ξ 1

...

ξ n

.ξ 0
< >f x

0 .ξ 1
< >f x

1 ... .ξ n
< >f x

n

Basically with Newton's iterative procedure or any other iterative procedure for solving nonlinear 
algebraic equations, we are in effect solving an eigenvalue-eigenvector problem with an eigenvalue 
of λ=1.

Newton's iteration scheme with linearized approximation: xi 1 xi
.df

dx xi

1
f xi g xi

perspective of iteration algorithm: x g( )x

eigenvalue-eigenvector perspective for the linear operator G  ⎯→  .G x g( )x .λ x with λ 1
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With an iterative procedure such as Newton's method, we find a set of coefficients ξi that describe 
the given initial deviation vector|function F.  The dynamics of an iterative algorithm is such that the 
coefficient ξi eventually settle to a steady-state solution where the deviation independent variable ξ 
and the dependent variable F eventually become 0. Compare the above to our PDE problem here, 
where we find the coefficients Ai to describe the given initial deviation vector|function wt0.  The 
dynamics eventually settle to a steady-state solution where the deviation variable w become 0.  In 
summary, the next step in PDE solution is representation of the steady-state solution in the form of a 
deviation variable as a linear combination of basis vectors|functions.
Analogy with linear algebraic equations "Ax=b"

b .A x .< >A 0 < >A 1 ... < >A n

x 0

x 1

...

x n

.x 0
< >A 0 .x 1

< >A 1 ... .x n
< >A n

Analogy with nonlinear algebraic equations "f(x)=0"

F .f x ξ .< >f x
0 < >f x

1 ... < >f x
n

ξ 0

ξ 1

...

ξ n

.ξ 0
< >f x

0 .ξ 1
< >f x

1 ... .ξ n
< >f x

n

Analogy: vector projection -- in this PDE we represent the steady-state solution wt0 as a linear 
combination of the basis vectors|functions J0(λi⋅r) 

w t0 .J A .J 0 .λ0 r J 0 .λ1 r ... J 0 .λn r

A 0

A 1

...

A n

.A 0 J 0 .λ0 r .A 1 J 0 .λ1 r ... .A n J 0 .λn r

w t0 .A J .A 0 A 1 ... A n

J 0 .λ0 r

J 0 .λ1 r

...

J 0 .λn r

.A 0 J 0 .λ0 r .A 1 J 0 .λ1 r ... .A n J 0 .λn r
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Side Note.  Analogy of dynamic solution of PDE vs solution of ODE.   We compare z (ODE) vs 
w (PDE), initial states z0 (ODE) vs wt0 (PDE), and exponential approach from z0 to z=0 (ODE) vs 
exponential approach from wt0 to w=0 (PDE).  The exponential approach to 0 in either the ODE case 
and the present PDE case is based on the eigenvalues as the speed of approach (i.e., the time 
constants of the dynamic process).

w ..A0 exp .λ'0 t J 0 .λ0 r ..A1 exp .λ'1 t J 0 .λ1 r ... ..An exp .λ'n t J 0 .λn r λ' λ
2

w .exp .λ'0 t .A0 J 0 .exp .λ'1 t .A1 J 1 ... .exp .λ'n t .An J n
PDE  ←⎯  compare to first-order ODEs ⎯→  Non-orthogonal basis   Orthogonal basis
d
dt

w .L R w dx
dt

.A x d
dt

z .Λ z where .A V .V Λ

x .V z z .V 1 x
d
dt

wi
.L T wi

.λ'i wi
d
d t

zi
.A zi

.λi zi

wi
.exp .λ'i t w t0i

zi
.exp .λi t z 0i

w .exp( ).Λ t w t0 x .exp( ).A t x 0 z .exp( ).Λ t z 0 exp( ).A t ..V exp( ).Λ t V 1

In this PDE problem the overall vector w is decomposed into different modes|eigenvectors J0 of 
different "frequencies"; whereas, in the ODE problem, z is composed of different individual states in 
the eigenvector coordinates; each mode has a characteristic time constant λ'i that is independent of 
the other modes (i.e., the different modes are non-interacting).  In other words, we break up a given 
function wt0 into different parts then "sort" different parts into different bins according to their time 
constants, with the high frequency components (say, J0(λ10⋅t)) decaying faster and the low frequency 
components (say, J0(λ0⋅t)) persisting longer.  Had we worked with non-orthogonal basis, the 
exponential decay term exp(A ⋅t) would have been unnecessarily complicated, and each 
non-orthogonal component would possess a mixture of different time constants .

exp( ).Λ t

exp .λ'0 t

0

...

0

0

exp .λ'1 t

...

0

...

...

...

...

0

0

...

exp .λ'n t

ODE z 0 .TV x 0 .X 00
< >

TV
0

.X 10
< >

TV
1

... .X n0
< >

TV
n

.
< >

TV
0 < >

TV
1

...
< >

TV
n

X 00

X 10

...

X n0

PDE w t0 .J A .A 0 J 0 .A 1 J 1 ... .A n J n .J 0 J 1 ... J n

A 0

A 1

...

A n
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PDE ←⎯ compare ⎯→ ODE /w eigenvector basis

deviation variable w z
deviation variable at t=0 w t0 z 0
coefficients to describe w0 or z0 ,,,A 0 A 1 ... A n ,,,X 00 X 10 ... X n0
basis vectors ,,,J 0 J 1 ... J n ,,,

< >
TV

0 < >
TV

1
...

< >
TV

n

exponential decay exp( ).Λ t exp( ).Λ t

t ..,0 0.01 0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1.A0 exp .λ0
2

t

.A1 exp .λ1
2

t

.A2 exp .λ2
2

t

.A3 exp .λ3
2

t

.A4 exp .λ4
2

t

t

0 0.1 0.2 0.3 0.4 0.5
1 10 511 10 501 10 491 10 481 10 471 10 461 10 451 10 441 10 431 10 421 10 411 10 401 10 391 10 381 10 371 10 361 10 351 10 341 10 331 10 321 10 311 10 301 10 291 10 281 10 271 10 261 10 251 10 241 10 231 10 221 10 211 10 201 10 191 10 181 10 171 10 161 10 151 10 141 10 131 10 121 10 111 10 101 10 91 10 81 10 71 10 61 10 500.0010.010.11

10

.A0 exp .λ0
2

t

.A1 exp .λ1
2

t

.A2 exp .λ2
2

t

.A3 exp .λ3
2

t

.A4 exp .λ4
2

t

t

Except for A0, all other coefficients very quickly decay to 0.  That is why we need only a few terms.
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Side Note. Express wt0(r) with non-orthogonal power series basis vectors  -- just to 
double-check for fun.  This is truly silly because we already have orthogonal basis.  Working with 
ugly non-orthogonal basis when we already have beautiful orthogonal basis is like going for a 
hamburger when there is already a juicy steak, or like cheating with ugly girls when we already have 
a beautiful one -- just plain silly unless you enjoy deliberately making things complex.

Non-example of change-of-basis (Non-example of similarity transform) power .a bessel

1

r

...

rn

.

a 00

a 10

...

a n0

a 01

a 11

...

a n1

...

...

...

...

a 0n

a 1n

...

a nn

J0 .λ0 r

J0 .λ1 r

...

J0 .λn r

Evaluation of change-of-basis matrix a -- coefficients to change from Bessel series J to power series 

,r0 J0 .λ0 r

,r0 J0 .λ1 r

...

,r0 J0 .λn r

,r1 J0 .λ0 r

,r1 J0 .λ1 r

...

,r1 J0 .λn r

...

...

...

...

,rn J0 .λ0 r

,rn J0 .λ1 r

...

,rn J0 .λn r

.

,J0 .λ0 r J0 .λ0 r

,J0 .λ0 r J0 .λ1 r

...

,J0 .λ0 r J0 .λn r

,J0 .λ1 r J0 .λ0 r

,J0 .λ1 r J0 .λ1 r

...

,J0 .λn r J0 .λ1 r

...

...

...

...

,J0 .λn r J0 .λ0 r

,J0 .λn r J0 .λ1 r

...

,J0 .λn r J0 .λn r

a 00

a 01

...

a 0n

rJ0 .TJ0J0 Ta TrJ0 .a J0J0 a .TrJ0 J0J0 1

scalar products of r and basis J matrix of scalar products of basis J i ..0 n j ..0 n

actually only the diagonal 
elements are needed, 
because of orthogonality

rJ0 ,i j d
0

1
r..r rj J0 .λi r J0J0 ,i j d

0

1
r..r J0 .λi r J0 .λj r

a ,i j

rJ0 ,j i

J0J0 ,j j

Non-example of change-of-basis  (Non-example of similarity transform) bessel .b power

J0 .λ0 r

J0 .λ1 r

...

J0 .λn r

.

b 00

b 10

...

b n0

b 01

b 11

...

b n1

...

...

...

...

b 0n

b 1n

...

b nn

1

r

...

rn

Evaluation of change-of-basis matrix b -- coefficients to change from power series J to Bessel series

,J0 .λ0 r r0

,J0 .λ0 r r1

...

,J0 .λ0 r rn

,J0 .λ1 r r0

,J0 .λ1 r r1

...

,J0 .λ1 r rn

...

...

...

...

,J0 .λn r r0

,J0 .λn r r1

...

,J0 .λn r rn

.

,r0 r0

,r0 r1

...

,r0 rn

,r1 r0

,r1 r1

...

,r1 rn

...

...

...

...

,rn r0

,r0 r1

...

,r0 rn

b 00

b 01

...

b 0n

b 10

b 11

...

b 1n

...

...

...

...

b n0

b n1

...

b nn
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J0r .TRR Tb TJ0r .b RR b .TJ0r RR 1

scalar products of J and basis r i matrix of scalar products of basis {1,r,r2,..,rn}

The diagonal elements are needed, 
because the power series is 
non-orthogonal.

J0r ,i j d
0

1
r..r J0 .λj r ri RR ,i j d

0

1
r..r ri rj

b .TJ0r RR 1

Why "non-example"?  Note that, because one set of basis does not exactly dependent on the 
second set of basis (in fact, they are both independent of the other), we are only approximating one 
set with the second set.  As a result, one is not the inverse of the other.  This is not exactly a 
change-of-basis.  This is not exactly a similarity transform.

a b 1 b a 1

Check: the following two are similar only for the first few columns (thus, "a" is ok, but b-1 fails.)

=a

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10

1.602 -1.065 0.851 -0.73 0.649 -0.59
0.817 -1.134 0.798 -0.747 0.632 -0.597
0.494 -0.925 0.806 -0.709 0.637 -0.582
0.33 -0.73 0.755 -0.681 0.623 -0.573
0.235 -0.579 0.679 -0.648 0.603 -0.561
0.176 -0.466 0.599 -0.607 0.579 -0.546
0.137 -0.381 0.525 -0.562 0.551 -0.528
0.109 -0.316 0.459 -0.516 0.521 -0.508
0.089 -0.265 0.403 -0.471 0.49 -0.486
0.074 -0.226 0.355 -0.429 0.459 -0.464
0.062 -0.194 0.313 -0.391 0.429 -0.441

=b 1

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10

1.602 -1.072 0.972 1.967 4.89 -8.657
0.817 -1.14 0.919 1.952 4.876 -8.667
0.494 -0.932 0.926 1.976 4.858 -8.617
0.33 -0.737 0.875 1.987 4.819 -8.568
0.235 -0.586 0.798 1.992 4.755 -8.478
0.176 -0.473 0.717 2.014 4.698 -8.422
0.137 -0.387 0.641 2.028 4.621 -8.318
0.109 -0.322 0.573 2.032 4.524 -8.189
0.089 -0.272 0.515 2.039 4.433 -8.07
0.074 -0.232 0.465 2.048 4.348 -7.968
0.062 -0.2 0.422 2.042 4.246 -7.826

Check: the following two are not similar (thus, "b" is ok, but a-1 fails.)

=b

0 1 2 3 4
0
1
2
3
4
5
6
7
8
9
10

1 0.008 -1.515 0.25 0.136
0.987 0.34 -10.268 8.64 3.111
0.891 2.818 -41.459 77.488 -14.684
1.077 0.256 -61.297 195.921 -135.73
2.482 -31.088 103.399 -71.331 -107.452
2.233 -35.755 174.205 -323.95 184.986
0.194 1.406 -25.419 71.674 -11.239
0.963 -15.521 73.167 -118.766 16.757
0.54 -9.28 53.93 -137.635 134.925
0.576 -9.209 43.349 -71.504 13.318
0.35 -6.261 37.146 -94.814 92.211

=a 1

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10

1 0 -1.449 0.01
0.996 0.48 -14.909 40.888
1.062 -5.863 70.084 -508.345
1.905 -91.21 1345.643 -7830.291
1.741 -95.283 1405.387 -8214.344
-2.067 204.089 -3044.854 17039.069
-0.549 61.413 -949.002 5369.601
-15.489 1974.324 -30616.947 174597.879
-23.519 3049.668 -47489.164 271717.759
32.394 -3005.933 44728.773 -251209.902
39.274 -4007.637 60566.16 -342551.753
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ainv a 1
power( ),i r

= 0

n

j

.a ,i j J0 .λj r bessel( ),i r

= 0

n

j

.ainv ,i j rj

=cond2( )a 1.774 107

0 0.5 1

0

0.5

1

Represent Power with Bessel (OK)

power( ),0 r

power( ),1 r

power( ),2 r

power( ),3 r

power( ),4 r

r

0 0.5 1
1

0

1
Back to Bessel with Power (Fail)

bessel( ),0 r

bessel( ),1 r

bessel( ),2 r

bessel( ),3 r

bessel( ),4 r

r

binv b 1
power( ),i r

= 0

n

j

.binv ,i j J0 .λj r bessel( ),i r

= 0

n

j

.b ,i j rj

=cond2( )b 9.489 105

0 0.5 1
200

0

200
Back to Power with Bessel (Fail)

power( ),0 r

power( ),1 r

power( ),2 r

power( ),3 r

power( ),4 r

r

0 0.5 1
0.5

0

0.5

1
Represent Bessel  with Power (OK)

bessel( ),0 r

bessel( ),1 r

bessel( ),2 r

bessel( ),3 r

bessel( ),4 r

r

Once again, the above demonstrates that, in representing one basis with another basis, the formula 
involving "a" or "b" are good, but that involving a-1 works borderline only for the first few Bessel 
function and that involving b-1 totally fails.
Representation of wt0 with power series  -- coefficients to change from power series J to Bessel 
series. (The above was representing Bessel series, instead of a given function w t0, with power 
series.)

,w t0( )r r0

,w t0( )r r1

...

,w t0( )r rn

.

,r0 r0

,r0 r1

...

,r0 rn

,r1 r0

,r1 r1

...

,r1 rn

...

...

...

...

,rn r0

,r0 r1

...

,r0 rn

A' 0

A' 1

...

A' n

w t0.approx( )r

= 0

n

i

.Ai J0 .λi r
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wr .TRR A' A' .RR 1 wr

scalar products of wt0  and basis ri 

wri d
0

1
r..r w t0( )r ri A' .RR 1 wr w' t0.approx( )r

= 0

n

i

.A'i ri

The above calculates the coefficients to represent wt0 with power series  Another way of calculating 
A' is based on the change-of-basis matrix a that relates A to A' that approximates a given 
vector|function wt0 
Representation of wt0 with Bessel basis

w t0.apprix .J 0 J 1 ... J n

A 0

A 1

...

A n
Change-of-basis results in a different set of coefficients A' to describe the same vector|function w t0 

w' t0.apprix .1 r ... rn

A' 0

A' 1

...

A' n

..J 0 J 1 ... J n

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

A' 0

A' 1

...

A' n

Thus, the two sets of coefficients A & A' are related by the change-of-basis matrix a

A .Ta A' ... A & A' in a column format

A 0

A 1

...

A n

.

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

A' 0

A' 1

...

A' n
A' .Ta

1
A

Each method yields a different set of coefficients A to represent wt0 with Bessel series. 
vector projection   change-of-basis #1     change-of-basis #2

power to Bessel ... good

w t0.approx.cob1( )r

= 0

n

i

..Ta A' i J0 .λi r

=A

0
0
1
2
3
4
5
6
7
8
9

1.108
-0.14
0.045
-0.021
0.012
-0.007
0.005
-0.003
0.003
-0.003

=.Ta A'

0
0
1
2
3
4
5
6
7
8
9

1.108
-0.14
0.045
-0.021
0.012
-0.007
0.005
-0.003
0.003
-0.002

=.Tb
1

A'

0
0
1
2
3
4
5
6
7
8
9

1.108
-0.14
0.046
-0.008
0.032
-0.04
-0.019
-0.592
-0.994
1.013

inverse(Bessel to power) ... bad

w t0.approx.cob2( )r

= 0

n

i

..Tb
1

A' i J0 .λi r
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Each method yields a different set of coefficients A' to represent wt0 with power series. 
vector projection   change-of-basis #1   change-of-basis #2

Bessel to power ... good

w' t0.approx.cob1( )r

= 0

n

i

..Tb A i ri

inverse(power to Bessel) ... borderline ok=A'

0
0
1
2
3
4
5
6
7
8
9
10

1
0
-1
0
0
0
0
0
0
0
0

=.Tb A

0
0
1
2
3
4
5
6
7
8
9
10

0.998
0.035
-1.208
0.465
-0.358
0.314
-1.446
2.051
-0.357
-0.955
0.461

=.Ta
1

A

0
0
1
2
3
4
5
6
7
8
9
10

0.965
3.197
-48.544
266.954
-663.179
596.577
312.48
-687.867
-271.682
841.248
-350.282

w' t0.approx.cob2( )r

= 0

n

i

..Ta
1

A i ri

The first of the above (projection) does a descent job in approximating w t0.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Analytical
Approximation (Bessel)
Approximation (Power Series)

Initial Velocity Profile at t=0

Radius (dimensionless)
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)

w t0( )r

w t0.approx( )r

w' t0.approx( )r

r
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

Analytical
Approximation -- COB from Power to Bessel
Approximation -- COB inverse(Bessel to Power)
Approximation -- COB from Bessel to Power
Approximation -- COB inverse(Power to Bessel)

Initial Velocity Profile at t=0

Radius (dimensionless)
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ity

 in
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n 
(d

im
en
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on
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ss

)

w t0( )r

w t0.approx.cob1( )r

w t0.approx.cob2( )r

w' t0.approx.cob1( )r

w' t0.approx.cob2( )r

r

Once again, the above demonstrates that, similar to representing one basis with another basis, in 
representing a given function, the formula involving "a" or "b" are good, but that involving a -1 works 
borderline, and that involving b-1 fails, following the trend only roughly.
Summary: action of linear transformation L on basis vectors J or power 

J & power in row format                                                     J & power in column format

power .J Ta power .a J
.L J .J Λ .L J .Λ J

.L power ..J Λ Ta ...power Ta
1

Λ Ta .power ..Ta
1
Λ Ta .L power ..a Λ J ..a Λ .a 1 power ...a Λ a 1 power

Matrices in "non-similarity transform" (vectors in a column format)

compare definition of a matrix L to describe the action of L. Compare it to the line above
.L power' .L power' ←⎯ compare ⎯→ .L power ...a Λ a 1 power ⎯→ Λ ,i i λi L ..a Λ a 1

We see that matrix "L" in this problem corresponds to the matrix "A" in the "standard" notation.  
Likewise, matrix "a" in this problem corresponds to the transform matrix "V" in the "standard" 
notation.  

.L a .a Λ ... notation in this problem
.A V .V Λ ... "standard" notation in similarity transform

Eigenvalue-eigenvector for the linear transform LR. λ power eigenvals( )L V eigenvecs( )L

Note that Mathcad returns λJ' that is arranged differently from λ. Likewise, V is arranged differently 
from a. 
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Rearrange in ascending order λV augment ,λ power
TV λV csort( ),λV 0

λ power submatrix( ),,,,λV 0 rows( )λV 1 0 0 Λ power diag λ power

V Tsubmatrix( ),,,,λV 0 rows( )λV 1 1 cols( )λV 1

check: =T
λ 0 1 2 3 4 5 6 7 8 9 10

0 2.405 5.52 8.654 11.792 14.931 18.071 21.212 24.352 27.493 30.635 33.776

=T
λ power

0 1 2 3 4 5 6 7 8 9 10
0 2.405 5.52 8.654 11.791 14.931 18.071 21.212 24.354 27.491 30.632 33.779

Mathcad returns normalized eigenvectors V. To better compare matrix "a" with matrix "V", normalize "a".

< >a norm
i

< >a i

.Ta a ,i i

check: Note that anorm=V is not orthogonal, and some eigenvectors differ in sign.

=V

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10

0.83 0.488 0.412 0.365 0.346 0.331
0.424 0.519 0.386 0.374 0.337 0.336
0.256 0.424 0.39 0.355 0.339 0.327
0.171 0.334 0.365 0.341 0.332 0.322
0.122 0.265 0.328 0.325 0.321 0.315
0.091 0.213 0.29 0.304 0.308 0.307
0.071 0.174 0.254 0.281 0.294 0.297
0.057 0.145 0.222 0.258 0.278 0.285
0.046 0.122 0.195 0.236 0.261 0.273
0.038 0.103 0.171 0.215 0.245 0.261
0.032 0.089 0.152 0.196 0.228 0.248

=a norm

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10

0.83 -0.488 0.412 -0.365 0.346 -0.331
0.424 -0.519 0.386 -0.374 0.337 -0.336
0.256 -0.424 0.39 -0.355 0.339 -0.327
0.171 -0.334 0.365 -0.341 0.332 -0.322
0.122 -0.265 0.328 -0.325 0.321 -0.315
0.091 -0.213 0.29 -0.304 0.308 -0.307
0.071 -0.174 0.254 -0.281 0.294 -0.297
0.057 -0.145 0.222 -0.258 0.278 -0.285
0.046 -0.122 0.195 -0.236 0.261 -0.273
0.038 -0.103 0.171 -0.215 0.245 -0.261
0.032 -0.089 0.152 -0.196 0.228 -0.248

Dynamics with non-orthogonal basis vs orthogonal basis

Analogy with 1st-order ODEs d
dt

z .Λ z solution ⎯→ z .exp( ).Λ t z 0

For PDE in this problem d
dt

w .L R w solution ⎯→ w .exp( ).Λ t w t0

solution /w non-orthogonal basis vectors  ⎯→ w .exp( ).A t w' t0 ...V exp( ).Λ t V 1 ( ).J' A'
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expAt( )t ..V diag exp .λ power
2 t V 1

w'( ),t r ..expAt( )t

1

r

r2

r3

r4

r5

r6

r7

r8

r9

r10

A'

w'( ),t r

= 0

n

j

..< >expAt( )t j A' rj

v' z( ),t r w'( ),t r v ss( )r
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t=0 (initial condition)
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5
t=10 (practically steady-state)
Steady-state

Velocity Profile

Radius (dimensionless)
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v' z( ),0 r

v' z( ),0.1 r

v' z( ),0.2 r

v' z( ),0.3 r

v' z( ),0.4 r

v' z( ),0.5 r

v' z( ),10 r

v ss( )r

r
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Side Note. Express wt0(r) with non-orthogonal randomly generated Bessel series basis 
vectors.   
Example of change-of-basis  (example of similarity transform) bessel' .a bessel

J' 0

J' 1

...

J' n

.

a 00

a 10

...

a n0

a 01

a 11

...

a n1

...

...

...

...

a 0n

a 1n

...

a nn

J0 .λ0 r

J0 .λ1 r

...

J0 .λn r

Randomly generate a second set of basis that is a linear combination of the original set of Bessel 
basis 

a ,i j rnd( )2 1

Unlike the previous non-example between power series and Bessel series, this is a change-of-basis 
(similarity transform) problem.

b a 1

J'( ),i r

= 0

n

j

.a ,i j J0 .λj r bessel( ),i r

= 0

n

j

.b ,i j J'( ),j r

0 0.5 1

2

0

2

Represent Power with Bessel

J'( ),0 r

J'( ),1 r

J'( ),2 r

J'( ),3 r

J'( ),4 r

r

0 0.5 1
0.5

0

0.5

1
Back to Bessel with Power (OK)

bessel( ),0 r

bessel( ),1 r

bessel( ),2 r

bessel( ),3 r

bessel( ),4 r

r

Representation of wt0 with the second random power series -- coefficients to change from power 
series J to Bessel series

,w t0( )r J' 0

,w t0( )r J' 1

...

,w t0( )r J' n

.

,J' 0 J' 0

,J' 0 J' 1

...

,J' 0 J' n

,J' 1 J' 0

,J' 1 J' 1

...

,J' 1 J' n

...

...

...

...

,J' n J' 0

,J' n J' 1

...

,J' n J' n

A' 0

A' 1

...

A' n

wJ' .TJ'J' A' A' .J'J' 1 wJ'
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scalar products of wt0  and basis J' matrix of scalar products of basis J'

wJ'i d
0

1
r..r w t0( )r J'( ),i r J'J' ,i j d

0

1
r..r J'( ),i r J'( ),j r

A' .J'J' 1 wJ' w' t0.approx( )r

= 0

n

i

.A'i J'( ),i r

The above calculates the coefficients to represent wt0 with power series  Another way of calculating 
A' is based on the change-of-basis matrix a that relates A to A' that approximates a given 
vector|function wt0 

Representation of wt0 with Bessel basis

w t0.apprix .J 0 J 1 ... J n

A 0

A 1

...

A n

.J A

Change-of-basis results in a different set of coefficients A' to describe the same vector|function w t0 

w' t0.apprix .J' 0 J' 1 ... J' n

A' 0

A' 1

...

A' n

..J 0 J 1 ... J n

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

A' 0

A' 1

...

A' n

..J Ta A'

w' t0.apprix .J' A' ..J Ta A'

Thus, the two sets of coefficients A & A' are related by the change-of-basis matrix a

A .Ta A' ... A & A' in a column format

A 0

A 1

...

A n

.

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

A' 0

A' 1

...

A' n
A' .Ta

1
A
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Each method yields a different set of coefficients A to represent wt0 with Bessel series. 
vector projection       change-of-basis

=A

0
0
1
2
3
4
5
6
7
8
9
10

1.108
-0.14
0.045
-0.021
0.012
-0.007
0.005
-0.003
0.003
-0.003
0.002

=.Ta A'

0
0
1
2
3
4
5
6
7
8
9
10

1.108
-0.139
0.047
-0.018
0.011
-0.012
0.004
-0.005
0.003
-0.002
0.006
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w t0( )r

w t0.approx( )r

w' t0.approx( )r

r

Representation of the same vector w with different set of basis J and J'.

w .ξ 0 J 0 .ξ 1 J 1 ... .ξ n J n .J 0 J 1 ... J n

ξ 0

ξ 1

...

ξ n

w .ξ' 0 J' 0 .ξ' 1 J' 1 ... .ξ' n J' n .J' 0 J' 1 ... J' n

ξ' 0

ξ' 1

...

ξ' n
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Representation of the same output vector L⋅w resulting from linear transformation L with different set 
of basis J and J'.

.L w ..ξ 0 L J 0 ..ξ 1 L J 1 ... ..ξ n L J n ..ξ 0 λ 0 J 0 ..ξ 1 λ 1 J 1 ... ..ξ n λ n J n

. ..J 0 J 1 ... J n

λ 0

0

...

0

0

λ 2

...

0

...

...

...

...

0

0

...

λ n

ξ 0

ξ 1

...

ξ n

..J Λ ξ

.L w ..ξ' 0 L J' 0 ..ξ' 1 L J' 1 ... ..ξ' n L J' n

.
+

.....ξ' 0 L .a 00 J 0 .a 01 J 1 ... .a 0n J n ..ξ' 1 L .a 10 J 0 .a 11 J 1 ... .a 1n J n
..ξ' n L .a n0 J 0 .a n1 J 1 ... .a nn J n

.
+

....ξ' 0 ..a 00 λ 0 J 0 ..a 01 λ 1 J 1 ... ..a 0n λ n J n .ξ' 1 ..a 10 λ 0 J 0 ..a 11 λ 1 J 1 ... ..a 1n λ n J n
.ξ' n ..a n0 λ 0 J 0 ..a n1 λ 1 J 1 ... ..a nn λ n J n

. ...J 0 J 1 ... J n

λ 0

0

...

0

0

λ 1

...

0

...

...

...

...

0

0

...

λ n

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

ξ 0

ξ 1

...

ξ n

...J Λ Ta ξ

We can define the linear transformation L  based on what it does to each of the basis vectors J
.L J .L J 0 J 1 ... J n .L J 0 .L J 1 ... .L J n .λ 0 J 0 .λ 1 J 1 ... .λ n J n

. .J 0 J 1 ... J n

λ 0

0

...

0

0

λ 1

...

0

...

...

...

...

0

0

...

λ n

.J Λ

We can define the same linear transformation L  equally well based on what it does to any set of 
basis vectors J'

.L J' .L J' 0 J' 1 ... J' n .L J' 0 .L J' 1 ... .L J' n

. .L .a 00 J 0 .a 01 J 1 ... .a 0n J n .L .a 10 J 0 .a 11 J 1 ... .a 1n J n ... .L .a n0 J 0 .a n1 J 1 ... .a nn J n

. ..a 00 λ 0 J 0 ..a 01 λ 1 J 1 ... ..a 0n λ n J n .L ..a 10 λ 0 J 0 ..a 11 λ 1 J 1 ... ..a 1n λ n J n ... .L ..a n0 λ 0 J 0 a n1

. ..J 0 J 1 ... J n

λ 0

0

...

0

0

λ 1

...

0

...

...

...

...

0

0

...

λ n

a 00

a 01

...

a 0n

a 10

a 11

...

a 1n

...

...

...

...

a n0

a n1

...

a nn

..J Λ Ta
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or, simply substitute in J' .a J we obtain: .L J' .L .J Ta .( ).L J Ta .( ).J Λ Ta ..J Λ Ta

Summary: action of linear transformation L on basis vectors J or J' 

J & J' in row format                                          J & J' in column format

J' .J Ta J' .a J
.L J .J Λ .L J .Λ J

.L J' ..J Λ Ta ...J' Ta
1

Λ Ta .J' ..Ta
1
Λ Ta .L J' ..a Λ J ..a Λ .a 1 J' ...a Λ a 1 J'

Matrices in similarity transform (vectors in a column format)

compare definition of a matrix L to describe the action of L. Compare it to the line above
.L J' .L J' ←⎯ compare ⎯→ .L J' ...a Λ a 1 J' ⎯→ Λ ,i i λi L ..a Λ a 1

We see that matrix "L" in this problem corresponds to the matrix "A" in the "standard" notation.  
Likewise, matrix "a" in this problem corresponds to the transform matrix "V" in the "standard" 
notation.  

.L a .a Λ ... notation in this problem
.A V .V Λ ... "standard" notation in similarity transform

Eigenvalue-eigenvector for the linear transform LR. λ J' eigenvals( )L V eigenvecs( )L

Note that Mathcad returns λJ' that is arranged differently from λ. Likewise, V is arranged differently 
from a. 
Rearrange in ascending order λV augment ,λ J'

TV λV csort( ),λV 0

λ J' submatrix( ),,,,λV 0 rows( )λV 1 0 0 Λ J' diag λ J'

V Tsubmatrix( ),,,,λV 0 rows( )λV 1 1 cols( )λV 1

check: =T
λ 0 1 2 3 4 5 6 7 8 9 10

0 2.405 5.52 8.654 11.792 14.931 18.071 21.212 24.352 27.493 30.635 33.776

=T
λ J'

0 1 2 3 4 5 6 7 8 9 10
0 2.405 5.52 8.654 11.792 14.931 18.071 21.212 24.352 27.493 30.635 33.776

Mathcad returns normalized eigenvectors V. To better compare matrix "a" with matrix "V", normalize "a".

< >a norm
i

< >a i

.Ta a ,i i
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check: Note that anorm=V is not orthogonal, and some eigenvectors differ in sign.

=V

0 1 2 3 4
0
1
2
3
4
5
6

7
8
9
10

0.523 0.333 0.097 0.194 0.346
0.4 0.534 0.036 -0.132 -0.358
-0.041 0.041 0.415 -0.362 0.533
0.235 -0.096 0.387 0.019 0.261
0.079 -0.019 0.288 0.428 -0.009
0.364 -0.35 -0.354 -0.41 -0.369
-0.018 0.08 0.515 -0.064 -0.03

-9.571 10-4 0.514 0.083 -0.041 0.368
-0.351 -0.109 -0.284 0.645 0.328
-0.206 0.069 0.089 -0.166 0.004
-0.453 -0.429 -0.313 0.115 0.137

=a norm

0 1 2 3 4
0
1
2
3
4
5
6

7
8
9
10

-0.523 -0.333 0.097 -0.194 0.346
-0.4 -0.534 0.036 0.132 -0.358
0.041 -0.041 0.415 0.362 0.533
-0.235 0.096 0.387 -0.019 0.261
-0.079 0.019 0.288 -0.428 -0.009
-0.364 0.35 -0.354 0.41 -0.369
0.018 -0.08 0.515 0.064 -0.03

9.571 10-4 -0.514 0.083 0.041 0.368
0.351 0.109 -0.284 -0.645 0.328
0.206 -0.069 0.089 0.166 0.004
0.453 0.429 -0.313 -0.115 0.137

Dynamics with non-orthogonal basis vs orthogonal basis

Analogy with 1st-order ODEs d
dt

z .Λ z solution ⎯→ z .exp( ).Λ t z 0

For PDE in this problem d
dt

w .L R w solution ⎯→ w .exp( ).Λ t w t0

solution /w non-orthogonal basis vectors  ⎯→ w .exp( ).A t w' t0 ...V exp( ).Λ t V 1 ( ).J' A'

expAt( )t ..V diag exp .λ J'
2 t V 1

w'( ),t r ..expAt( )t

J'( ),0 r

J'( ),1 r

J'( ),2 r

J'( ),3 r

J'( ),4 r

J'( ),5 r

J'( ),6 r

J'( ),7 r

J'( ),8 r

J'( ),9 r

J'( ),10 r

A' w'( ),t r

= 0

n

j

..< >expAt( )t j A' J'( ),j r

v' z( ),t r w'( ),t r v ss( )r
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v' z( ),0 r

v' z( ),0.1 r

v' z( ),0.2 r

v' z( ),0.3 r

v' z( ),0.4 r

v' z( ),0.5 r

v' z( ),10 r

v ss( )r

r
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Side Note. Express wt0(r) with non-orthogonal Bessel series basis vectors (due to a different 
scalar product definition with a different weight function) ., although the basis remain 
unchanged.  This is not an example of change-of-basis.
Representation of wt0 with the Bessel series

,w t0( )r J 0

,w t0( )r J 1

...

,w t0( )r J n

.

,J 0 J 0

,J 0 J 1

...

,J 0 J n

,J 1 J 0

,J 1 J 1

...

,J 1 J n

...

...

...

...

,J n J 0

,J n J 1

...

,J n J n

A' 0

A' 1

...

A' n

wJ' .TJ'J' A' A' .J'J' 1 wJ'

scalar products of wt0  and basis J' matrix of scalar products of basis J'

wJ'i d
0

1
r.w t0( )r J0 .λi r J'J' ,i j d

0

1
r.J0 .λi r J0 .λj r different weight function

A' .J'J' 1 wJ' w' t0.approx( )r

= 0

n

i

.A'i J0 .λi r

The above calculates the coefficients to represent wt0 with Bessel series, but with a different scalar 
product definition.  A product definition that makes the basis non-orthogonal basically produces the 
same set of coefficients, albeit with more calculations from matrix inverse.

=TA 0 1 2 3 4 5 6 7 8 9 10
0 1.108 -0.14 0.045 -0.021 0.012 -0.007 0.005 -0.003 0.003 -0.003 0.002

=TA' 0 1 2 3 4 5 6 7 8 9 10
0 1.108 -0.14 0.045 -0.021 0.012 -0.007 0.005 -0.003 0.002 -0.002 0.001

Since the coefficients are the same, the initial velocity profile is approximated similarly.  Because the 
exponential decay of each mode remains identical (this decay behavior is not affected by the scalar 
product definition), so does the subsequent velocity profile.  This non-orthogonal example 
demonstrates that orthogonality only simplifies the calculation of the coefficients when we try to 
represent the initial velocity profile, but does not affect the evolution of solution with time.  The  
eigenvectors from the LT operator are not orthogonal, nor does orthogonality enters into the 
time-dependent behavior.  The coupling of the LT operator and the LR operator in the original given 
PDE dictates how pairs of eigenvectors from these two operators (Ti and Ri) are coupled to form 
overall eigenvectors wi=Ti⋅Ri.  This coupling determines how each mode (each eigenvector 
component) evolves with time, independent of all the other modes.  And this coupling does not 
depend on the definition of a scalar product, where orthogonality becomes affected.
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r

The following formula remain unchanged; orthogonality does not enter into the dynamics part of the 
solution.

w'( ),t r

= 0

n

i

..A'i exp .λi
2 t J0 .λi r

Finally, the dimensionless z-direction velocity is: v' z( ),t r w'( ),t r v ss( )r
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v' z( ),0 r

v' z( ),0.1 r

v' z( ),0.2 r

v' z( ),0.3 r

v' z( ),0.4 r

v' z( ),0.5 r

v' z( ),10 r

v ss( )r

r




