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Multivariate Regression, leading up to Principal Component Regression/Analysis  
  -- an introductory tutorial to some of the most important ideas in multivariate regression.  
Instructor: Nam Sun Wang

Multivariate Regression. 
Let us expand the number of independent variables and dependent variables.  Here, we are given a 
set of data consisted of a series of m+1 independent variables x<0>, x<1>, ..., x<m>, and l+1 
dependent variables y<0>, y<1>, ..., y<l>.  An example is how the quality, thickness, and strength of a 
paper product (Y) depend on water content, source of fiber, digestion temperature, pH, etc. (X).  
Another example is how the yield and composition in a chemical reactor (Y) depend on stirrer speed, 
feed flow rate, reactant concentrations, ... (X).  The chemical composition (Y) measured with a 
chemical sensor may be related to the response of an array sensor (X).  The mechanical or chemical 
property of a material (Y) may depend on its color spectrum (X).  An economic example may be how 
the stock price and trading volume (Y) depend on the prevailing interest rate, the company's earning, 
the quarter in the calendar, ... (X).  The gross national product (Y) may depend on a country's 
population, literacy rate, average age, level of rainfall, ... (X).  The probability of death, thus, the 
premium of a life insurance policy, may depend on the many attributes of the insured.  The salary 
and popularity of a football player (Y) may depend on his height, weight, running speed, strength, 
running yards gained, passing yards gained, number of touchdowns, number of fumbles, hours of 
practice per day, ... (X).  The standardized test scores or the grade point average of a student (Y) 
may depend on the number of hours spent in school, amount of daily TV time, the household 
income, gender, the time of the day the test is taken, and maybe even the number of whip lashes 
received since one's birth or the average number of glasses of milk one consumes daily (X).  
Furthermore, a student's standardized test scores and grade point average may be closely 
correlated.  The examples are endless.  
 
What we include as an independent variable need not actually affect the dependent variables in any 
way.  It is not necessarily a reflection of what we believe to affect the process.  If we so desire, we 
can throw in everything that may remotely affect the dependent variables.  One thing regression tells 
us is whether there is indeed any correlation between the two.  A word of caution: existence of a 
correlation does not imply the existence of an actual connection or the existence of a direct 
cause-effect relationship.  It is often true that "look and thou shall find."  To judge whether a particular 
degree of correlation is significant, we need to resort to tools from probability, hypothesis testing, 
metrics, reliability, controlled experimentation, etc.  In addition, we need to worry about a lot of other 
things: how to include representative samples, adequate sample size, define the domain of validity to 
avoid extrapolation, and detection and rectification of outliers and gross errors -- none of which will be 
addressed in this worksheet.
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Let us start with some independent data x and some dependent data y.

Raw data: < >x 0
i

< >x 1
i ... < >x m

i and < >y 0
i

< >y 1
i ... < >y l

i ..i 0 n

Combine these data into an independent matrix X and a dependent matrix Y.

Raw data: X and Y

As before, our task is to find a set of regression coefficients a such that the given model function 
f(X,a) passes through the given data (X,Y) as closely as possible.  That is to say that we try to 
minimize some sort of error between Y and f(X,a).

Minimize error Y f( ),X a
a

There are many measures of this error.  One of them is the absolute error, which is mathematically 
cumbersome to work with because the absolute function is not differentiable at zero.

Minimize error Y f( ),X a
a

As before, we try to minimize the sum of squared errors, which is mathematically more tractable.

Minimize sse

= 0

n

i

errori
2

= 0

n

i = 0

l

k

y ,i k
< >f ,Xi a k 2

a

. .TE E .T( )Y f( ),X a ( )Y f( ),X a

Multivariate Linear Regression (MLR). 
The simplest model is a linear one where the X matrix is simply the plain given set of dependent 
variables x<0>, x<1>, ..., x<l>.  We can also have functions and combinations of x<•> in X (e.g., auto- 
or cross-terms of two independent variables such as x<0>⋅x<0> and x<0>⋅x<1>; or functions of one or 
several independent variables such as x<0>/x<1>, sin(x<0>), x<0>⋅exp(x<1>), etc.).  At any rate, the 
linear combination of these terms is expressed as:  

Y .X a E
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Example -- the Simplest Model . Let us generate some artificial data to demonstrate multivariate 
regression.

Number of points: N 50 i ..0 N

Dimension: m 2 j ..0 m

The independent variables vary randomly in three directions, but with more variation in the 0th 
direction,  a bit less in the 1st direction, and even less in the 2nd direction.  To generate a 
different set of artificial data, mark any part of the following equation with the cursor and press 
the F9 key on a PC.

< >X i .( )rnd( )1 0.5

10

0

0

.( )rnd( )1 0.5

0

1

0

.( )rnd( )1 0.5

0

0

0.1
X TX

Generate the dependent variable which varies linearly with the first two independent variables plus 
a small amount of noise.

Y y( )X ( )rnd( )0.1 0.05Yi X ,i 0
.3 X ,i 1 ( )rnd( )0.1 0.05

y( )x .x

1

3

0

↑ This formula is toggled off because 
the same noise is added uniformly to 
all data points.

The least squares solution is again given by the same normal equation as before.

a ...TX X
1

TX Y

Thus, we are able to recover the underlying structural relationship between 
X and Y, namely that Y is equally dependent on x<0> and x<1> but was not 
at all affected by x<2>.

=a

1.003

3

0.109

The regression equation, which is valid for both a single point and multiple number of points, is:

y regress( )x .x a

Examples: =y regress( )( )5 0.5 0.05 6.507 =y( )( )5 0.5 0.05 6.5

The following arguments are out of the calibration range.  Extrapolation is dangerous.

=y regress( )( )1 1 1 3.894 =y( )( )1 1 1 4

=y regress
1

5

1

0.5

1

0.05
3.894

6.507
=y

1

5

1

0.5

1

0.05
4

6.5
Goodness of fit:

sse old .Y Y =sse old 414.48

sse .Y y regress( )X Y y regress( )X =sse 0.043

r2
sse old sse

sse old
=r2 99.99 %

r r2 =r 99.995 %
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Example -- Multivariate Y.  If there are more than one dependent variable, we perform regression 
analysis no differently.

Y ,i 1 X ,i 0 X ,i 1 ( )rnd( )0.1 0.05 Y y( )X ( )rnd( )0.1 0.05

y( )x .x

1

3

0

1

1

0

↑ Toggled off because the noise is not 
added correctly with this formula.a ...TX X

1
TX Y

=a

1.003

3

0.109

1.001

0.957

0.037

← Linear regression has captured the underlying structure.  Compare 
it to the matrix in y(x).

y regress( )x .x a

Examples: =y regress( )( )5 0.5 0.05 6.507 5.486( ) =y( )( )5 0.5 0.05 6.5 5.5( )

The following arguments are out of the calibration range.  Extrapolation is dangerous.

=y regress( )( )1 1 1 3.894 1.996( ) =y( )( )1 1 1 4 2( )

=y regress
1

5

1

0.5

1

0.05
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1.996

5.486
=y
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Example -- Linear Combinations of Nonlinear Basis Functions .

Generate the dependent variable which varies nonlinearly with the first two independent variables 
plus a small amount of noise.

Y 0 ... reset the variable Y for a new assignment.

Yi X ,i 0
.3 X ,i 1

.X ,i 0 X ,i 1
.10000 X ,i 2

2 ( )rnd( )0.1 0.05

y( )x .x

1

3

0

..x

0

0

0

1

0

0

0

0

10000

Tx

The least squares solution that ignores the auto- and cross-terms is again given by the same 
normal equation.

a ...TX X
1

TX Y

As expected, with just the plain X terms, we fail to recover the underlying 
structural relationship between X and Y.=a

0.644

7.461

56.487

The regression equation is:

y regress( )x .x a

Examples: =y regress( )( )5 0.5 0.05 9.774 =y( )( )5 0.5 0.05 34

Goodness of fit:

sse old .Y Y =sse old 5.781 103

sse .Y y regress( )X Y y regress( )X =sse 5.318 103

r2
sse old sse

sse old
=r2 8.019 %

r r2 =r 28.318 % ← Not too much variation in Y has been captured.

Repeat regression by including the cross terms.  Below we expand the independent variable X to 
include the cross terms.  The resulting expanded matrix is Xx.

Xx X

Xx ,i 3
.X ,i 0 X ,i 0 Xx ,i 4

.X ,i 1 X ,i 1 Xx ,i 5
.X ,i 2 X ,i 2

Xx ,i 6
.X ,i 0 X ,i 1 Xx ,i 7

.X ,i 0 X ,i 2 Xx ,i 8
.X ,i 1 X ,i 2

The least squares solution that ignores the auto- and cross-terms is again given by the same 
normal equation.

a ...TXx Xx
1

TXx Y

=Ta 0.998 2.967 0.036 3.329 10 4 0.098 1 104 0.99 0.081 0.528( )
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The regression equation is:

y regress( )x .x

a0

a1

a2

..x

a3

0

0

a6

a4

0

a7

a8

a5

Tx

Examples: =y regress( )( )5 0.5 0.05 33.961 =y( )( )5 0.5 0.05 34

Goodness of fit:

sse old .Y Y =sse old 5.781 103

sse

= 0

last( )Y

i

Yi y regress

T< >
TX

i
2

=sse 0.031

r2
sse old sse

sse old
=r2 99.999 %

← Now, with the quadratic terms, practically all variation 
in Y is captured.

r r2 =r 100 %
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Example -- Linearly correlated X.  The independent variables have the same range as before; 
however, the first two independent variables x<0> and x<1> are mostly dependent, with x<0> being 10 
times of x<1>.

=conde .TX X 1.205 104 ... condition number of the last example

X 0 ... reset X to prepare for a new assignment.

< >X i .( )rnd( )1 0.5

10

1

0

.( )rnd( )1 0.5

0

0.001

0

.( )rnd( )1 0.5

0

0

0.1

X TX

↑ Without this small noise term, x<0> and x<1> are completely 
dependent and XTX is singular.

Y 0 Yi X ,i 0
.3 X ,i 1 ( )rnd( )0.1 0.05

y( )x .x

1

3

0a ...TX X
1

TX Y

← The recovered structure from linear regression is not what we had put in.  
(Compare to the vector in y(x))

=a

2.001

7.008

0.102

=conde .TX X 8.735 107 ← The condition number is very large, which means XT⋅X is 
almost singular.  This provides a warning that linear regression is 
breaking down.

Regression model (which is not to be trusted):

y regress( )x .x a

Examples.  The first example works O.K. because x<0> and x<1> are correlated.  On the other 
hand, the output numbers in the second example do not agree at all with the original model 
because the given x<0> and x<1> are not correlated the same way as the calibration data are.  
Note that although the input numbers are each within the range of the calibration data, the 
uncorrelated pattern in the second example is not included in the calibration data.  Technically, 
this, too, is a case of extrapolation.

=y regress( )( )5 0.5 0.05 6.507 =y( )( )5 0.5 0.05 6.5 ← O.K.

=y regress( )( )5 0.5 0.05 13.516 =y( )( )5 0.5 0.05 3.5 ← totally off -- extrapolation.


