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Abstract—Image hash functions find extensive applications in
content authentication, database search, and watermarking. This
paper develops a novel algorithm for generating an image hash
based on Fourier transform features and controlled randomiza-
tion. We formulate the robustness of image hashing as a hypothesis
testing problem and evaluate the performance under various image
processing operations. We show that the proposed hash function
is resilient to content-preserving modifications, such as moderate
geometric and filtering distortions. We introduce a general frame-
work to study and evaluate the security of image hashing systems.
Under this new framework, we model the hash values as random
variables and quantify its uncertainty in terms of differential en-
tropy. Using this security framework, we analyze the security of
the proposed schemes and several existing representative methods
for image hashing. We then examine the security versus robustness
tradeoff and show that the proposed hashing methods can provide
excellent security and robustness.

Index Terms—Differential entropy, image authentication, image
hashing, multimedia security.

I. INTRODUCTION

I N THE information era, the increasing availability of mul-
timedia data in digital form has led to a tremendous growth

of tools to manipulate digital multimedia. To ensure trustworth-
iness, multimedia authentication techniques have emerged to
verify content integrity and prevent forgery [1], [2]. Tradition-
ally data integrity issues are addressed by cryptographic hashes
or message authentication functions, which are key dependent
and sensitive to every bit of the input message. As a result, the
message integrity can be validated when every bit of the mes-
sage is unchanged [3]. While this sensitivity usually meets the
need to authenticate text messages, the definition of authenticity
for multimedia is not as straightforward. Multimedia data can
allow for lossy representations with graceful degradation. The
information carried by media data is mostly retained even when
the multimedia has undergone moderate levels of filtering, geo-
metric distortion, or noise corruption. Therefore, bit-by-bit ver-
ification is no longer a suitable way to authenticate multimedia
data, and a media authentication tool that validates the content
is more desired.
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Fig. 1. Hash functions for image authentication.

A number of media-specific hash functions have been pro-
posed for multimedia authentication [4]–[7]. A multimedia hash
is a content-based digital signature of the media data. To gen-
erate a multimedia hash, a secret key is used to extract certain
features from the data. These features are further processed to
form the hash. The hash is transmitted along with the media ei-
ther by appending or embedding it to the primary media data.
At the receiver side, the authenticator uses the same key to gen-
erate the hash values, which are compared to the ones trans-
mitted along with the data for verifying its authenticity. This
process is illustrated in Fig. 1.

In addition to content authentication, multimedia hashes are
used in content-based retrieval from databases [8]. To search for
multimedia content, naïve methods such as sample-by-sample
comparisons are computationally inefficient. Moreover, these
methods compare the lowest level of content representation and
do not offer robustness in such situations as geometric distor-
tions. Robust image hash functions can be used to address this
problem [4]. A hash is computed for every data entry in the data-
base and stored with the original data in the form of a lookup
table. To search for a given query in the database, its hash is
computed and compared with the hashes in the lookup table. The
data entry corresponding to the closest match, in terms of cer-
tain hash-domain distance that often accounts for content simi-
larity, is then fetched. Since the hash has much smaller size with
respect to the original media, matching the hash values is com-
putationally more efficient.

Image hash functions have also been used in applications in-
volving image and video watermarking. In nonoblivious image
watermarking, the need for the original image in watermark ex-
traction can be substituted by using hash as side information
[1], [9], [10]. The hash functions have also been used as image-
dependent keys for watermarking [11]. In video watermarking,
it has been shown that adversaries can employ “collusion at-
tacks” to devise simple statistical measures to estimate the wa-
termark if they have access to multiple copies of similar frames
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[12]. A solution to this problem is to use secure, content-depen-
dent hash values as a key to generate the watermark [13].

There are two important design criteria for image hash func-
tions, namely, robustness and security [4], [13]–[15]. By robust-
ness, we mean that when the same key is used, perceptually sim-
ilar images should produce similar hashes. Here, the similarity of
hashes is measured in terms of some distance metric, such as the
Euclidean or Hamming distance. In this work, we consider two
images to be similar if one image can be obtained from the other
through a set of content-preserving manipulations. This set of
manipulations includes moderate levels of additive noise, JPEG
compression, geometric distortions (such as the common rota-
tion, scaling, and translation operations, or more generally, affine
transformations), cropping, filtering operations (such as spatial
averaging and median filtering), and watermark embedding.

The security of image hash functions is introduced by incor-
porating a secret key in generating the hash. Without the knowl-
edge of the key, the hash values should not be easily forged or
estimated. Additionally, some design criteria for generic data
hash also apply to image hash functions, namely, the one-way
and collision-free properties. A hash is one way if given a hash

and a hash function , it is computationally expensive to
find an image such that . Collision-free property
refers to the fact that given an image and a hash function ,
it is computationally hard to find a second image such that

. Although some generic data hash functions, such
as MD5, satisfy these criteria [3], they are highly dependent on
every bit (or pixel) of the input data rather than on the content.
Hence, most of the them are not suitable for the emerging mul-
timedia applications and the need for building robust and secure
image hash is paramount.

In this paper, we introduce a new method to construct robust
and secure image hash functions. Our proposed method is based
on the rotation invariance of the Fourier–Mellin transform and
controlled randomization during image feature extraction. We
show that the proposed scheme is robust to geometric distor-
tions, filtering operations, and various content-preserving ma-
nipulations. We then present a new framework to study the se-
curity aspects of existing image hashing schemes. We propose
to evaluate the security from an information theoretic perspec-
tive by measuring the amount of randomness in the hash vector
using the differential entropy as a metric. We show that the sug-
gested security evaluation framework is generic and can be used
to analyze and compare the security of several classes of image
hashing algorithms. We derive analytical expressions of security
using an entropy-based metric for several representative image
hashing schemes and demonstrate that the proposed hashing al-
gorithm is more secure in terms of this metric. Finally, we use
the proposed security metric to discuss the tradeoffs between ro-
bustness and security that are exhibited in most existing image
hashing algorithms.

The rest of this paper is organized as follows. In Section II,
we introduce the general framework for image hashing. We then
present the proposed image hashing scheme and compare its
performance with several existing schemes in Section III. We
evaluate the security for a number image hashing schemes in
Section IV. Finally, the discussions and concluding remarks are
provided in Sections V and VI.

Fig. 2. Three-step framework for generating a hash.

II. GENERAL FRAMEWORK AND PRIOR ART

To achieve robustness and security in image hashing, most of
the existing schemes follow a three-step framework to generate
a hash. As shown in Fig. 2, these three steps include:
Step 1) generating a key-dependent feature vector from the

image;
Step 2) quantizing the feature vector;
Step 3) compressing the quantized vector.

The most challenging part of this framework has been the
feature extraction stage [4], [16], [17]. A typical approach is to
extract image features that are invariant allowed content-pre-
serving image processing operations [13], [18], [19], [22], [23].
These features are then used to generate the hash values. Some
of the features that have been proposed in the literature include
block-based histograms [24]–[26], image-edge information
[27], relative magnitudes of the discrete cosine transform
(DCT) coefficients [28], and the scale interaction model with
the Mexican-Hat wavelets [29]. However, since these features
are publicly known, using such features alone makes the
scheme susceptible to forgery attacks [13], even when the final
hash is obtained by encrypting these features [28], [29]. This
is because the attacker may create a new image with different
visual content, while still preserving the feature values. As the
resulting hash will be the same, such hashing approaches may
lead to misclassifications in database applications, and would
also be vulnerable to counterfeiting attacks in authentication
applications. Therefore, the security mechanism should be
combined into the feature extraction stage.

By jointly considering security and robustness, Fridrich
et al. propose to generate image hash by projecting an input
image onto zero-mean random smooth patterns, generated
using a secret key [13]. While the resulting hash is resilient to
filtering operations, it does not perform very well for geometric
distortions and is not collision free as shown in [30]. In [4],
Venkatesan et al. use the principal values calculated from the
wavelet transform of the image blocks to generate a feature
vector invariant to general gray-scale operations. The resulting
features are then randomly quantized and compressed to pro-
duce the final hash [5]. Recently, it has been shown that this
scheme does not perform well for some manipulations, such
as contrast changes, gamma correction, and object insertion
[31]. An iterative key-dependent image hash based on repeated
thresholding and spatial filtering was proposed in [16]. All
of these algorithms [4], [13], [16] described above perform
well under additive noise and common filtering operations,
but not under desynchronization and geometric distortions.
Considering these disadvantages, the radon soft hash algorithm
(RASH), based on the properties of the radon transform, was
proposed in [17] and [19]. Recently, other transform domain
features have been employed for perceptual hashing. Features
obtained from the singular value decomposition (SVD) of
pseudorandomly chosen regions of the image [20] and Randlet
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transform coefficients [21] have been shown to have good ro-
bustness properties especially for rotation and cropping attacks.

To enable fast comparison and searches, it is usually preferred
that the final hash be a short sequence of bits rather than a set
of real numbers. Therefore, the output of the feature extraction
stage is usually quantized, converted to binary representation,
and further compressed. Uniform, Lloyd–Max, or key-depen-
dent randomized quantizers have been used for hash quantiza-
tion [4], [5]; and the decoding stages of error-correcting codes
have been used for compressing the quantized hash [4], [32],
[33]. These methods reduce the length of the hash vector; yet
preserve the Hamming distance. Some works also secure the
compression stage by performing a key-dependent random se-
lection from the quantized hash values [5].

Since the feature extraction stage is the most important stage
in the general image hashing framework, we will investigate the
feature extraction stage in greater detail in this paper. We design
a randomized hashing scheme and examine its performance in
terms of robustness and security.

III. IMAGE HASHING ALGORITHMS BASED ON

POLAR FOURIER TRANSFORM

In this section, we present the proposed image hashing al-
gorithm. Our proposed scheme is based on the Fourier–Mellin
transform, which has been shown to be invariant to two-dimen-
sional (2-D) affine transformations [34]–[36]. We incorporate
key-dependent randomization into the Fourier–Mellin trans-
form outputs to form secure and robust image hash.

A. Underlying Robustness Principle of the Proposed Algorithm

Consider an image and its 2-D Fourier transform
, where and are the normalized spatial fre-

quencies in the range [0,1]. We denote a rotated, scaled and
translated version of the as . We can relate them
as

(1)

where the rotation, scaling, and translation (RST) parameters
are , , and , respectively. The magnitude of the 2-D
Fourier transform of can be written as

(2)

Consider now a polar coordinate representation in the Fourier
transform domain, that is and , where

is the normalized radius and is the angle
parameter. The (2) can be written using polar coordinates as

(3)

In (3), we observe that the magnitude of the Fourier transform is
independent of the translational parameters . Observing
that a rotation in image domain leads to a rotation by the same

amount in the Fourier transform domain, we integrate the trans-
form magnitude along a circle centered at zero fre-
quency with a fixed radius to obtain

(4)

These properties of the Fourier transform enable us to con-
struct robust features. In the next subsection, we present the de-
tailed steps of the proposed algorithms.

B. Basic Steps of the Proposed Algorithms

The basic steps of the proposed algorithm include prepro-
cessing, feature generation, and post processing.

1) Preprocessing: We first apply a low-pass filter on the input
image and downsample it. We then perform histogram equaliza-
tion on the downsampled image to get . We take a Fourier
transform on the preprocessed image to obtain . The
Fourier transform output is converted into polar coordinates to
arrive at as in (3).

2) Feature Generation: We sum up along the -axis
at equidistant points in the range of (i.e., for

) to obtain an image feature
vector . is used in our implementation. Since the
feature is only dependent on the image content, we propose
two randomization methods to obtain key-dependent features
using :

• Scheme 1:
We obtain as in (3) and compute a weighted sum
along the -axis to obtain the th hash value

(5)

where are key-dependent pseudorandom numbers
that are normally distributed with mean and variance .

• Scheme 2:
We first use a secret key to generate random sets of radii

. We then take obtained in (3) and do a sum-
mation along the -axis for each radii in this set. A random
linear combination of the resulting summations gives the
th hash value. This can be represented as

(6)

where are key-dependent pseudorandom numbers that
are normally distributed with mean and variance .
This method is illustrated in Fig. 3.

3) Post Processing: We quantize the resulting statistics
vector and apply gray coding to obtain the binary hash sequence
[37]. This bit sequence is then passed through the decoding
stage of an order-3 Reed–Muller decoder for compression [5].
This step may also be replaced with the Wyner–Ziv decoder
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Fig. 3. 2-D Fourier transform of the Lena image. The jth hash value-h , is
obtained by a random weighted summation along the circumference of chosen
radii � 2 � in scheme-2. Some of the constant radii circles used in the sum-
mation are displayed in the figure. The magnitude of the Fourier transform is
shown in the log scale and has been appropriately scaled for display purposes.

[32], [38]. Furthermore, we can enhance the security of the hash
by making the quantization and compression stages key depen-
dent. For example, randomized quantization algorithms may be
used to quantize the hash [5]; for the compression stage, we can
randomly select the hash values from the quantized hash vector
[16] or randomly choose the order of the Reed–Muller decoder
used for different subsections of the hash. These techniques
would further enhance the security of the resultant hash vector.
Finally, the compressed hash is randomly permuted according
to a permutation table generated using the key.

C. Performance Study and Comparison

1) Performance Metrics and Experiment Setup: To measure
the performance of image hashing, we choose the Hamming dis-
tance between the binary hashes, normalized it with respect to
the length of the hash as a performance metric. The normal-
ized Hamming distance is defined as

(7)

which is expected to be close to 0 for similar images and
close to 0.5 for dissimilar ones. As more parts of a picture are
changed, the manipulated image and the original image become
more dissimilar. For an ideal hashing scheme, the normalized
Hamming distance between the corresponding hashes should
increase accordingly.

We test the proposed schemes on a database of around
157 200 images. In this database, there are 1200 original
gray-scale images each of size 512 512. This includes around
50 classic benchmark images (such as Lena, Baboon, Pepper,
etc.), and a variety of scenery and human activity photos
taken by digital cameras. These camera photos were cropped,
converted to gray scale, and downsampled to 512 512. For
each original image in this set, we generate 130 similar ver-
sions by manipulating the original image according to a set of
content-preserving operations listed in Table I. We measure the
normalized Hamming distance between the hashes of the orig-
inal image and the manipulated images. The results obtained for

TABLE I
SET OF CONTENT-PRESERVING MANIPULATIONS

TABLE II
HASH LENGTHS FOR VARIOUS HASHING SCHEMES

the proposed schemes are compared with three representative
existing schemes by Fridrich [13], by Venkatesan et al. [4],
and by Mihçak [16]. These three schemes are chosen because
they adopt different ways to extract the robust image feature
as well as different methods to randomize these features. We
also consider the normalized Hamming distance between the
hashes of dissimilar images, which indicates the discriminative
capability of the hashing algorithm. We note that the computed
hashes of all these schemes are short in length. For a 512 512
image, the hash lengths are on the order of a few hundred bits,
as shown in Table II.

2) Experimental Results on Robustness of the Hash: To ex-
amine the robustness properties, we consider the performance
of various hashing schemes to different content-preserving ma-
nipulations such as moderate RST, filtering, and image com-
pression.1 We show the comparison results in terms of normal-
ized Hamming distance in Figs. 4–8. Our results indicate that
the proposed schemes perform well under desynchronization
distortions. The performance for rotation and shearing distor-
tions, averaged over the 1200 images, are shown in Fig. 4. In
the case of rotation distortions, we observe that the Hamming
distance between the quantized feature vectors of the proposed
schemes is smaller than those of the existing schemes, especially
for a large rotation angle. This is expected since the summation
along the -axis reduces the effects of rotation. We can also ob-
serve that scheme-2 gives better results than scheme-1, in terms
of the normalized Hamming distance. This is attributed to the

1In all of the experiments, we use our implementation of the hashing methods
[4], [13], [16] for the comparison study. Whenever possible, we verified the per-
formance results with the ones reported in this paper. In all cases, the parameters
of the hashing algorithms were chosen so as to maintain similar values for the
security metric in order to facilitate a fair comparison. Refer to Section IV for
details on the security metric.
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Fig. 4. Performance of various hashing schemes under desynchronization attacks. To generate a point on the curve, the input image was first rotated (or sheared)
to give a larger image padded appropriately with zeros. This image was then cropped to exclude the zeros and resized to a predetermined canonical size. The hash
of the resulting image was computed and the normalized Hamming distance from the hash of original image is shown in the Y -axis.

Fig. 5. Performance of various hashing schemes under (a) bending and (b) cropping. Cropped images were obtained by retaining the central portion of the image
and removing the boundaries. The cropped image is resized to a predetermined canonical size before computing the hash.

Fig. 6. Performance of various hashing schemes under additive noise. The noisy images were artificially generated by adding uniform/Gaussian distributed noise
of different variances to the original image.

fact that performing a weighted sum along the -axis as in the
proposed scheme-1 no longer preserves rotation invariance. The
proposed algorithms also achieve comparable performance with
most existing algorithms under shearing distortions. The perfor-
mance results for random bending [39] and cropping are shown
in Fig. 5(a) and (b), respectively. We observe that the proposed

schemes perform very well for both of these distortions. This is
because the magnitude of the low-frequency coefficients of the
Fourier transform that contribute to the hash does not change
much under moderate bending and cropping.

We show the performance of the hash algorithms under ad-
ditive noise in Fig. 6. We observe from the figure that the pro-
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Fig. 7. Performance of various hashing schemes under filtering.

Fig. 8. Performance of various hashing schemes under JPEG compression.

posed scheme-2 does well compared to the proposed scheme-1
and other existing schemes. We further note that the normalized
Hamming distance between the hashes of the noisy image and
the original image is very small and on the order of 0.02. This
performance is attributed to the low-pass filtering in the prepro-
cessing step of the hash generation. The results for filtering and
JPEG compression are shown in Figs. 7 and 8. We observe that
the performance of the proposed schemes under these distor-
tions is comparable to the existing schemes.

3) Discriminative Capability of Hash: Since image hash
should be able to distinguish malicious manipulations from con-
tent-preserving ones, its performance in differentiating images
with different contents is an important performance aspect. For
images with different contents, an ideal hash algorithm should
produce two statistically independent binary hash vectors,
where half of the hash bits are expected to be the distinct and
the other half are the same. This would result in a normalized
Hamming distance of around 0.5. Our experiments with a set
of 1200 different images indicate that the mean of normalized
Hamming distance of the resulting 719 400 combinations was
around 0.48. To further demonstrate the performance of the
proposed scheme to inauthentic modifications, we consider
the following cut-and-paste image editing as shown in Fig. 9,

where a new image (c) is created by combining approximately
equal parts from image (a) and (b). An ideal image hashing
scheme should classify (c) as inauthentic. We perform this
test on 500 images and list the normalized Hamming distance
between the obtained hash vectors for different algorithms in
Table III. We can see from the table that the proposed schemes
find the image (c) to have large distances from (a) and (b) and,
thus, correctly declare it inauthentic; on the other hand, the
existing algorithms suggest a smaller distance and have lower
reliability to distinguish (c) from (a) and (b).

4) Image Authentication as a Hypothesis Testing Problem:
Generally speaking, the problem of image authentication can be
considered as a hypothesis testing problem with the following
two hypotheses

• : image is not authentic;
• : image is authentic.

Now, we examine the robustness and discriminative capabili-
ties of various hashing schemes in terms of the receiver oper-
ating characteristics (ROC) [40], [41]. The ROC curve charac-
terizes the receiver’s performance by classifying the received
signal into one of the hypothesis states. For each original image,
we compute and store the hash values, which we denote as .
Given the received image, we find its hash value and de-
clare it to be authentic if the normalized Hamming distance be-
tween the hashes satisfies where is a decision
threshold. Based on ground truth, we record the number that
are correctly classified as authentic to give us an estimate of the
probability of correct detection . For a given , we also
record the number of processed versions of other images that
are falsely classified as original image and obtain an estimate
of the probability of false alarm . We repeat this process
for different decision thresholds , and arrive at the ROC. The
ROC obtained from the experiments using 1200 different im-
ages is shown in Fig. 10. We can observe from the ROC curves
that the proposed schemes attain a when the is
0.05, while the other schemes attain the same when is
close to 0.15. Hence, the proposed scheme has a higher proba-
bility of correct detection for a given probability of false alarm
and therefore achieves better performance. This further demon-
strates the advantages of the proposed hashing schemes over the
existing schemes.
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Fig. 9 Example of inauthentic manipulations obtained by combining parts of multiple images. (a) and (b) are two original 512� 512 images. Image (c) is obtained
by combining parts of images (a) and (b).

TABLE III
PERFORMANCE OF THE ALGORITHM FOR DISSIMILAR IMAGES UNDER

THE TYPE OF MANIPULATION SHOWN IN FIG. 10. HERE, d DENOTES

THE DISTANCE BETWEEN IMAGES (A) AND (B)

IV. SECURITY ANALYSIS

In addition to robustness, another important performance as-
pect of image hashing is security (i.e., the hash values should
not be easily forged or estimated without the knowledge of the
secret key. In this section, we introduce a framework to eval-
uate and compare the security of image hashing schemes. We
propose to use differential entropy as a metric to study the secu-
rity of randomized image features and derive analytical expres-
sions of the proposed metric for some representative classes of
image hashing algorithms. Further extensions of the proposed
framework and other possible approaches to study security are
described later in Section V-C.

A. Proposed Security Evaluation Framework

We propose to evaluate the security of image hashing schemes
from an adversary viewpoint. The adversary knows the hashing
algorithm and the image , and tries to estimate the hash
values without the knowledge of the secret key. The degree
of success that can be attained by the adversary depends on
the amount of randomness in the hash values. The higher the
amount of randomness in the hash values, the tougher it would
be to estimate or duplicate the hash without knowing the key.
In the subsequent discussions, we shall focus on the security of
the output of the feature extraction stage. Since the quantization
and the compression stages are chained with the feature extrac-
tion stage, once the entropy of this stage is obtained, the entropy
measure for the following stages can be obtained subsequently.

We start the discussion by reviewing the definition of dif-
ferential entropy [42]. The differential entropy of a continuous
random variable is denoted by and given by

(8)

where is the probability density function of , and is
the range of support of . In most image hashing schemes,
the output of the feature extraction stage consists of two compo-
nents—a deterministic part and a random part. The deterministic
part is contributed by the image content, which we will consider
to be known or can be well approximated from the test version
of the image that the attacker can acquire. The random part is
contributed by the pseudorandom numbers generated using the
secret key. In our analysis, we model the output of the feature
extraction stage as random variables and find the degree of un-
certainty in terms of the differential entropy to arrive at the se-
curity metric [15]. In the following sections, we present the se-
curity analysis for our proposed scheme, and compare it with
the results obtained for a number of representative prior works
on image hashing [4], [13], [16].

B. Analytic Expressions of the Security Metric for the
Proposed Schemes

In this part, we derive analytic expressions of the security
metric for the proposed schemes. In the proposed scheme-1, the
randomness in the hash is introduced by the variables ,
which are key-dependent pseudorandom numbers, normally
distributed with mean and variance . The final hash can
be considered as a weighted summation of these Gaussian dis-
tributed random variables as shown in (5), where the weights of
the summation are determined by the image content and known
to the users. Since the sum of Gaussian random variables is
also Gaussian, the hash value will be Gaussian distributed
with mean and variance given by

(9)

(10)

Therefore, the differential entropy of the feature extraction stage
for the proposed scheme-1 can be written as

(11)
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Fig. 10 Receiver operating characteristics of the hypothesis testing problem. The plots display the probability of correct decision (P ) with respect to the proba-
bility of false alarm (P ). A greater the value of P for the same P indicates more robustness. The original curve is shown on the left and the magnified version
is shown on the right.

We observe that the differential entropy increases as the vari-
ance becomes large and the scheme becomes more secure
as expected. Additionally, we note that the differential entropy
rises as the number of sample points is increased. This
is also expected since a higher value of implies that we
involve more random numbers for generating each hash value
as shown in (5), and hence the hash would be more difficult
to forge.

Next, we derive the security metric for the proposed
scheme-2. In this scheme, we use the secret key to generate
random sets of radii , and the weights for the sum-
mation in (6). To facilitate discussions, we define as the
summation of the polar Fourier transform coefficients at the
radius given by

(12)

The values chosen for generating the hash are from
. Let be Bernoulli distributed random vari-

ables such that . We rewrite
(6) in terms of and to obtain

(13)

We observe that each hash value obtained is a weighted sum-
mation of terms and each of these terms is a product of a
Bernoulli and a Gaussian distributed random variable. There-
fore, the hash value is not Gaussian. To find the differential
entropy of , we first find the probability density function (pdf)
of using (13) and then use the pdf to find the entropy. To de-
rive the pdf, we compute the characteristic function of and
apply its inverse Fourier transform [43]. It can be shown that the

pdf has a rather complicated form with terms and is
given by

(14)

where denotes the dirac delta function. We observe that the
pdf of is a sum of many Gaussian pdfs and finding the exact
expression for the differential entropy by integrating (8) would
not be feasible. We instead find the lower and upper bounds
of the differential entropy. Using the concavity property of the
entropy, we arrive at a lower bound for the differential entropy

(15)
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Fig. 11. Entropy of the hash values for the proposed scheme-2 plotted with respect to the number of sampling points N . The plots show the lower bound, the
upper bound, and the actual value. The actual plot is shown on the left and the magnified version is shown on the right.

This lower bound can be simplified using the following energy
compaction property of the Fourier transform. Without any loss
of generality, we assume that the radii are ordered as

. Now, since is the summation of the absolute
values of the Fourier transform coefficients along the circumfer-
ence of the circle of radius , we have

(16)

for most natural images. Using this inequality, (15) can be sim-
plified to give a compact lower bound

(17)
Next, to derive the upper bound, we use the fact that the

Gaussian distribution has the maximum differential entropy
among all distributions with the same variance. Moreover, the
differential entropy of a Gaussian distributed random variable
depends only on its variance. Therefore, we obtain an upper
bound on by finding variance of the hash values , from
the pdf in (14) to arrive at

(18)

In Fig. 11, we show the derived lower and upper bounds along
with the actual value for a different number of sampling points

. The true values were obtained by numerically computing
the differential entropy from the pdf of the hash values. We ob-
serve that the upper bound plotted using (18) is very tight and
is almost equal to the actual value. This is because the true pdf
of the hash values is close to Gaussian with the same mean and
variance as those used in the upper bound calculation.

C. Extending the Security Evaluation to Other Image
Hashing Schemes

In this subsection, we show that the proposed security metric
can be extended to study the security of various classes of image

hashing schemes and is thus generally applicable. For our study,
we consider two representative methods, namely, the scheme
by Fridrich [13] and the hashing algorithm by Venkatesan et
al. [4]. These schemes were chosen as they have very different
approaches to introduce randomness in the feature extraction
stage. For instance, the Fridrich’s scheme [13] secures the hash
by projecting the image onto random low-pass images; and
the Venkatesan’s scheme [4] introduces security by extracting
image features from randomly chosen regions of the image.

1) Security of Fridrich’s Scheme [13]: This scheme is based
on the observation that any significant change made in the trans-
form domain would be reflected as visible changes in the image
domain. Key-dependent pseudorandom patterns of the
same size of the image are initially generated. These patterns
are then spatially averaged with a low-pass filter to
generate zero-mean smoothened random patterns . The
th hash value is obtained by projecting the input image on

to , as given by

(19)

To analyze the security of this scheme, we consider the hash
values as random variables and find their distributions.
Using this estimated pdf, we compute the differential entropy
as

(20)

Here, is the image obtained by filtering twice with the
filter . The details of the analysis are presented in Ap-
pendix A.

Fig. 12 shows the plot of the differential entropy of the
Fridrich’s scheme for different orders of the averaging filter.
We observe from the plot that the differential entropy decreases
as the order of the filter is increased. This result is expected be-
cause on increasing the order of the averaging filter, the degree
of uncertainty in the smoothened patterns decreases,
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Fig. 12. Differential entropy of the hash for different orders of averaging filters
in Fridrich’s scheme [13].

as the original random images are low-pass filtered to
a greater extent. Thus, the amount of randomness of the final
hash values is reduced as a consequence.

2) Security of Venkatesan’s Scheme [4]: In this scheme, the
authors first perform a three-level DWT of the image and then a
random tiling of each DWT sub-band of the image is generated.
The mean (or variance) of the pixel values in the random rec-
tangle is used to form the feature vectors [4]. These features are
then randomly quantized and compressed to generate the hash.

There are two aspects of security in this scheme. To estimate
the hash values, the adversary has to first find the locations and
sizes of the random partitions and compute the image statistics
in these partitions. Then, the adversary needs to arrange the esti-
mated hash values in the correct order to obtain the hash vector.
In our analysis, we consider these two aspects separately and
obtain the differential entropy in each case.

We first show that the exact size and location of the random
partitions is not required to estimate the hash. The attacker can
instead make an intelligent guess of the image statistics by re-
placing the random partitions with uniformly spaced, equal-
sized partitions. In [4], the width of the random partition is
uniform in , where and are the min-
imum and maximum widths of the random block. Therefore,
a good estimate of the partition width would be its expected
value . Similarly, the height is uni-
form in the range and its expected value is

. The attacker can calculate the image sta-
tistics using uniform size partitions of the size to ob-
tain an estimate for the hash values. In Fig. 13(a), we plot the
actual hash values, our estimates, and the corresponding differ-
ence (i.e., the estimation error). Here, the estimates are obtained
by computing the statistics from the closest uniform-spaced par-
tition. We note that the error has a much lower dynamic range
than the actual value even though the location and size of the
estimated partitions are not exactly the same as those used in
hash generation. The amount of randomness in the hash values
can be characterized by the degree of uncertainty in our esti-
mation. Therefore, the differential entropy of the first aspect of
security can be numerically obtained by first finding the pdf

of the estimation error and then computing the entropy from the
pdf. For the Lena image, can be numerically computed to
be around 5.74. We also note that only characterizes one
aspect of randomness in the hash values. Therefore, the actual
differential entropy of the hash values would be greater
than .

The second aspect of the hash security that we consider here is
the randomness associated with the order in which the individual
hash values are concatenated together while creating the hash
vector. Here, we compare the true hash vectors generated using
the randomized block partitions and the ones estimated using
uniform partitions and assume that both these hash vectors are
obtained using a raster-scan order of the partitioning blocks.
It is to be noted that any further permutation of the hash can
be factored into the postprocessing stage which we shall not
consider here as indicated before. A good uniform partition that
emulates the randomized partition can be obtained as follows.
We model the 2-D randomized partitioning as a combination
of first partitioning the input image along the vertical direction
into rows and then further partitioning each row into blocks. Let

denote the number of rows and denote the number of
partitions in the th row. We can show that the expected value
of and is

(21)

The derivation is presented in Appendix B.
Since we use a uniform partition to approximate the random-

ized partition, there will be synchronization errors in each row
of the estimated partition. Let us now denote the number of syn-
chronization errors in the th row by . The synchronization
error is cumulative and can be written as

(22)

To obtain an upper bound of the amount of uncertainty in , we
use the fact that of all random variables with the same variance,
the Gaussian distribution has the maximum differential entropy.
Further, the differential entropy of Gaussian distributed random
variables is completely specified by the determinant of its cor-
relation matrix. Therefore, we construct a correlation
matrix for the set of random variables

(23)

Here, denotes the variance of and can be computed from
its pdf given in (38) of Appendix B. It can be shown that

. Therefore, using the Gaussian upper bound, the differen-
tial entropy of the stage considering the synchronization
errors alone is given by

(24)
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Fig. 13. Security analysis results for Venkatesan’s scheme. (a) The plot of the actual and the estimated image statistics vector in the first stage of the hashing
scheme along with their differences; for the Lena image withw = 10,w = 40, andW = 512. (b) The entropy obtained by modeling the synchronization
errors plotted for different parameter values of w and w with W = H = 512, w = h , and w = h .

TABLE IV
COMPARISON OF DIFFERENTIAL ENTROPY OF VARIOUS HASHING

SCHEMES SHOWN FOR THREE DIFFERENT IMAGES

In Fig. 13(b), we show the plot of the upper bound as given
by the right-hand side (RHS) of (24) for different values of

and . We observe that the upper bound heavily de-
pends on the value of the variance . For very small ,
we have and, therefore, , suggesting that
the hashing algorithm becomes insecure for low . This result
is expected because when , the window widths
and locations become approximately deterministic and the er-
rors caused by synchronization are small.

Overall, when an attacker replaces the random partitions by
uniformly spaced partitions to estimate the hash values, the two
aspects of security will both contribute to the uncertainty of the
hash algorithm. Thus, the final differential entropy can be ap-
proximated by .

The above analysis method can be generalized and extended
to other hashing schemes alike. For example, analysis can be
applied to the hashing scheme by Mihçak [16], which also in-
troduces security by the choice of random regions in the image.

D. Comparison Results

In this subsection, we compare the security of image hashing
schemes in terms of the differential entropy as a metric. We
compute the differential entropy of the hash values on the Lena
image for various schemes and present the results in Table IV.

The differential entropy of the proposed scheme-1 lies in the
range 8.2–15.6. This is due to the fact that each hash value in the
scheme-1 has a different amount of randomness based on the
radius on which the summation in (5) is performed. If the cor-
responding Fourier transform coefficients have a higher magni-
tude, then the variance of the hash values would be larger. Thus,
some of the hash values can be estimated easily, while it might
be difficult to estimate some others. This can be considered as
one of the disadvantages of the proposed scheme-1. The disad-
vantage is overcome in the proposed scheme-2 because the sum-
mation is done over randomly chosen subsets and, thus, all of
the hash values would have a similar amount of randomness. We
note that the differential entropy of the feature extraction stage
of the proposed scheme-2 is higher than that of the scheme-1.
This is expected because in the proposed scheme-2, the random
weights are scaled by larger factors and, thus, the overall vari-
ance of the hash values would be higher.

Next, we observe that the differential entropy of the proposed
scheme-2 is greater than that of Fridrich’s scheme. This can
be attributed to the low-pass filtering operations in Fridrich’s
scheme that reduces the variance of the random variables and,
hence, its entropy. The differential entropy of Venkatesan’s
scheme is lower than those of the proposed schemes. This
is because, even without the knowledge of the exact block
partitions, the image statistics in Venkatesan’s scheme can be
estimated to be of reasonable accuracy. On the other hand, in
the proposed schemes, the attackers need to guess the random
variables in computing features (such as ).

Notice that we only consider the security of the feature ex-
traction stage in this work. It should be noted that while random
permutation or other techniques alike can be applied to any
scheme to bring further randomness, such postprocessing does
not change the relative security results obtained in this work.
This justifies our focus on evaluating the security of the feature
extraction stage.
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Fig. 14. Robustness and security tradeoff for (a) Fridrich’s scheme and (b) proposed scheme-2.

V. DISCUSSIONS

A. Tradeoff Between Robustness and Security

In this section, we jointly consider the two main performance
criteria for image hashing, namely, robustness and security. We
observe a tradeoff between the two criteria for each hashing
scheme and illustrate this phenomenon with some examples.

In Fig. 14(a), we show the tradeoff between robustness and
security for the Fridrich’s scheme [13]. The scheme was sim-
ulated for different orders of averaging filter; and the ROC and
the differential entropy was obtained in each case. The ROC was
sampled to obtain the probabilities of correct decisions for
three different probabilities of false alarm , and plotted with
respect to the differential entropy. We observe that as the robust-
ness increases, the scheme becomes less secure and vice-versa.
This trend is expected because on increasing the order of the av-
eraging filters, the patterns become more smooth, making
the scheme more robust to content-preserving manipulations
like the ones in Table I. However, the scheme becomes less se-
cure because the smooth patterns would be less random.

Similar behavior can also be observed for the proposed
scheme-2. The performance of the scheme was studied for
different parameter values; and the ROC and the differential
entropy were obtained in each case. As shown in Fig. 14(b),
we observe that for a fixed , as we increase the variance of
the random weights , the differential entropy increases and
the robustness decreases. However, it is to be noted that pro-
posed scheme exhibits a better tradeoff compared to Fridrich’s
scheme. This is evident by comparing the -axis of Fig. 14(a)
and (b). We observe that proposed scheme-2 is more secure
than the Fridrich’s scheme for the same amount of robustness.
This demonstrates the advantages of the proposed scheme.

The robustness results in Fig. 9 and the differential entropy
values in Table IV show that the proposed scheme-2 provides
better tradeoff between robustness and security against guessing
than the proposed scheme-1. This is attributed to the fact that
the circular summation along the -axis in proposed scheme-2
can generate more robust features. In the mean time, we also
remark that the circular summation is a double-edged sword and
may reduce the resilience against collision and forgery attacks.

It is possible for malicious attackers to perform meaningful
changes by altering individual values of the Fourier transform
coefficients while preserving the overall sum. In contrast, the
proposed scheme-1 is more resilient to such collision attacks,
as the weights of the summation are random and depend on a
secret key unknown to adversaries. A possible improvement is to
employ a weighted circular summation with gradually changing
weights, where the varying trend of the weights is specified by a
secret key. This hybrid scheme can combine the advantages of
the two proposed schemes, improving the collision resistance
compared to scheme-2 and also the robustness compared to
scheme-1.

B. Extending the Security Analysis to Quantization Algorithms

We have shown that the differential entropy can be used as
a metric to study the security of the feature extraction stage in
image hashing. In this section, we extend the security analysis
beyond the feature extraction stage and show that entropy can
be used as a metric to study the degree of security of the quan-
tization stage that follows feature extraction.

As an example, we consider the randomized quantization
algorithm proposed in [5], which is an adaptive quantization
algorithm that takes into account the distribution of the input
data. The quantization bins are designed so that

, where is the number of quantization
levels and is the pdf of the input data . The central
points are defined so as to make

, and the randomization interval

are chosen such that
, where is a randomization parameter. The

overall quantization method can be expressed as

if

if

if

if
(25)
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We again use the conditional entropy as a security
metric. Based on the detailed derivation in Appendix C, we can
show that

(26)

which quantifies the amount of randomness introduced by the
randomized quantization. We note that the conditional entropy
is directly proportional on the randomization parameter , and
is independent of the source distribution. Other quantization al-
gorithms can be analyzed similarly using conditional entropy as
a metric.

C. Further Discussions on Hash Security

In this paper, we have considered the conditional entropy of
the hash values as a metric to study security. Our analysis is
based on the premise that the adversary knows the image and the
hashing algorithm being used and does not know the key used
in generating the hash. Therefore, in our analysis, the adversary
does not have access to the actual hash values and tries to esti-
mate them based on his or her knowledge. Alternatively, we can
evaluate the security of a hashing scheme by measuring the con-
ditional entropy of the hashing key when the image, the hashing
algorithm, and output hash values are known. This conditional
entropy can be written as , where denotes the key,

the image, and is the corresponding hash value. In reality,
if more information is available to the adversary, he or she may
be able to come up with more sophisticated attacks to break the
hashing algorithm. In such a case, the conditional entropy of
the key will reduce with the increase in the number of observed
image/hash pairs. Thus, is
a monotonically decreasing function with . When is large
enough, it would be possible to uniquely identify the key
with very high probability. This is analogous to Shannon’s dis-
cussion on the secrecy system and the definition of unicity dis-
tance [44]. Along these lines, we may define another notion
of hashing security by requiring that the conditional entropy

is not negligible as long as
the number of observed image/hash pairs is upper bounded by
a polynomial in key length. We note that for image hashing and
other types of multimedia hashing, an adversary may not need
to exactly recover the key in order to estimate a hash. The esti-
mation type of attack introduced in [30] is clearly an example.

VI. CONCLUSION

Robustness and security are two important requirements for
image hashing algorithms in applications involving authenti-
cation, watermarking, and image databases. In this paper, we
have developed new image hashing schemes that have improved
robustness and security features. We show that the proposed
schemes is resilient to moderate filtering, and compression oper-
ations, and common geometric operations up to 10 of rotation
and 20% of cropping. The proposed hashing scheme also has
good discriminative capabilities and can identify malicious ma-
nipulations, such as a cut-and-paste type of editing, that do not

preserve the content of the image. In addition to the study on ro-
bustness, we have introduced a general framework for analyzing
the security in image hashing. We derive analytical expressions
using differential entropy as a metric to study the security of
the feature extraction stage for both the proposed schemes and
several existing representative schemes. Our studies have shown
that the proposed image hashing algorithm is highly secure in
terms of this metric. The analysis can also be extended to incor-
porate other stages of the hashing operation, such as randomized
quantization.

Overall, we developed a new image hashing algorithm. It is
more robust compared to existing image hashing schemes and,
at the same time, it is also secure against estimation and forgery
attacks. Thus, it can provide a robust and secure representation
of images for numerous applications.

APPENDIX A
DERIVING THE SECURITY METRIC

FOR FRIDRICH’S SCHEME [13]

In Fridrich’s scheme, key-dependent pseudorandom patterns
of the same size of the input image are

first generated. These pseudorandom patterns have uniform dis-
tributed pixel values. These patterns are then spatially averaged
with a low-pass filter to obtain zero-mean random
images

(27)

The input image is projected on the smooth patterns
to obtain the intermediate hash values as given by

(28)

These intermediate hash values are then quantized to generate
the final hash. In our analysis, we model the intermediate hash
values as random variables and find its differential entropy
to generate the security metric. The hash values in (28) can
be rewritten as

(29)

where the random variables are defined as

(30)

We observe that is a weighted sum of uniformly dis-

tributed random variables with the weights determined
by the image pixel values . According to the Central Limit
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theorem, we approximate to be Gaussian distributed, with

mean and variance that can be shown to be

(31)

We also note that all are identically distributed, but are not

independent since the same random variables are used

to generate various . The dependence among the variables

can be expressed in terms of their correlation given by

(32)

Now, from (29), we see that is a weighted sum of
Gaussian distributed random variables. So is also Gaussian
and its differential entropy is completely specified by its vari-
ance. The variance of can be computed as

(33)

where

(34)

Note that is the image obtained by filtering the image
twice with the filter . Using the result in (33), we obtain
the differential entropy of as

(35)

APPENDIX B
MODEL FOR BLOCK PARTITIONING IN

VENKATESAN’S SCHEME [4]

As indicated in Section IV-C2, we approximate the 2-D
block partitioning as a combination of two one-dimensional

Fig. 15. Simplified model of the block partitioning algorithm in Venkatesan’s
scheme [4].

(1-D) problems, namely, partitioning along the horizontal di-
rection and then along the vertical direction. To model the
partition along the width of the image, we divide the space

into several regions by successively generating random
numbers as shown in Fig. 15, uniformly distributed in

, and and are the minimum and the
maximum widths of the random blocks. The location of the th
partition is then given by a set of random variables , where

. Since is the sum of uniformly dis-
tributed random variables, we approximate with a Gaussian
distribution. Its mean and variance can be shown to
be

(36)

Let denote the number of partitions in the th row. Using the
distribution of and noting that is also the index for the
last partition in the row, we can write the pdf of as

(37)

where is the pdf of . Using the Gaussian assumption
on , the above expression can be simplified as

(38)
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Fig. 16. Plot of the pdf of N —the number of blocks in ith row, where the
parameters are w = 10, w = 40, andW = 512. Note that the random
variable N has a very small variance and hence the mean would be a good
estimate.

where is the cumulative distribution function (cdf) of
and is given by

(39)

The plot of the pdf of is shown in Fig. 16. From this pdf, we
can derive the expected value of as

.

APPENDIX C
DERIVING THE SECURITY METRIC FOR

RANDOMIZED QUANTIZATION [5]

In this appendix, we provide the detailed derivations of the
conditional entropy for the randomized quantization algorithm
[5]. The conditional entropy can be written as

(40)

where denotes the pdf of the input data . The last step
follows from (25) since the quantizer is random only in the
interval . Now, we note that in this interval,
takes a value with probability ,
and a value with probability . Therefore, (40)
can be calculated and simplified as

(41)
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