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Non‐orthogonal 3D coordinate systems for dummies 

Non‐orthogonal	coordinates	are	used	all	the	time	in	tokamaks	and	other	toroidal	plasmas,	

typically	because	the	poloidal	angle	 	might	not	be	orthogonal	to	the	flux	surface	label	 .	

Let	 us	 assign	 three	 numbers	 to	 each	 point	 in	 space.	 To	make	 the	 connection	 to	 toroidal	

plasmas	clear,	I’ll	denote	these	numbers	(coordinates)	by	 ,	 ,	and	  .	However,	nothing	in	this	

analysis	 will	 be	 specific	 to	 tokamaks	 or	 stellarators:	 it	 applies	 to	 any	 coordinate	 system	 in	 3D		

Euclidean	space.	

Covariant vs. Contravariant 

	Associated	with	the	coordinates,	there	are	two	natural	triplets	of	basis	vectors.	The	first	is	

the	set	of	gradient	vectors	
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and	the	analogous	definition	holds	for	  	and	  .	Above,	 y 	and	 z 	are	held	fixed	in	the	 / x 
differentiation,	the	analogous	statements	hold	for	 / y  	and	 / z  ,	and	the	 ie 	are	Cartesian	unit	

vectors.	 The	 second	 triplet	 of	 basis	 vectors	 associated	with	 our	 coordinates	 is	 the	 set	 of	 tangent	

vectors:	
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where	 r 	 is	 the	 position	 vector,	  	 and	  	 are	 held	 fixed	 in	 the	 /   	 differentiation,	 and	 the	

analogous	statements	hold	for	 /   	and	 /   .	We	can	write	
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and	the	analogous	definitions	hold	for	 /  r 	and	 /  r .	Notice	that	(2)	and	(4)	are	different!	

Any	vector	can	be	decomposed	using	either	triplet	of	basis	vectors.	In	the	first	basis,	we	can	

write	any	vector	 B 	as	
	 B B B         B 	 (5)	

where	the	numbers	 B ,	 B ,	and	 B 	are	the	covariant	coefficients	of	B .	Or,	decomposing	the	exact	

same	vector	in	the	second	basis,	we	can	write	

	 B B B  

  
  

  
  

r r r
B 	 (6)	

where	 the	 numbers	 B ,	 B ,	 and	 B 	 are	 the	 contravariant	 coefficients.	 The	 form	 (5)	 is	 the	

covariant	representation	of	B 	and	the	form	(6)	is	the	contravariant	representation.			
	 	



	

	 We	can	relate	the	two	sets	of	basis	vectors	as	follows.	First,	the	vector	 /  r 	by	definition	

points	in	a	direction	along	which	 	and	 	do	not	increase.	Thus,	
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It	follows	that		
	 / J      r 	 (8)	

for	 some	 coefficient	 J .	 To	 determine	 this	 coefficient,	 consider	 a	 step	 dr 	 at	 fixed	  	 and	  :	

d d  r ,	so  / 1    r .	(This	same	result	can	also	be	seen	by	forming	the	dot	product	

of	 (2)	 with	 (4)	 and	 recognizing	 the	 result	 as	 the	 chain	 rule	 applied	 to	   / 1   x 	 where	

 , ,  x x ).	The	dot	product	of	(8)	with	  	therefore	tells	us	  1 /J       .	Thus,	
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where	 the	 last	 two	 equalities	 come	 from	 just	 cyclically	 permuting	 the	 coordinates	 in	 the	 same	

analysis.	The	expressions	(9)	make	it	clear	that	if	the	coordinates	are	orthogonal	(i.e.	if	  ,	  ,	

and	  	are	mutually	orthogonal),	then	  	and	 /  r 	will	be	parallel	(similarly	for	 	and	 ),	

but	in	a	nonorthogonal	system	  	and	 /  r 	represent	different	directions.	

	 Forming	 cross	 products	 of	 (9),	 and	 applying	 the	 vector	 identity	

               P Q R S P Q S R P Q S R ,	 we	 obtain	 another	 set	 of	 relations	 between	 the	

basis	vectors:	
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(again	 cyclic	 permutations).	 Also,	 the	 product	 of	 the	 first	 equations	 in	 (9)	 and	 (10)	 gives	 a	 new	

expression	for	 J :	
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	 As	 a	 final	 note,	 observe	 that	 we	 can	 compute	 the	 vector	 coefficients	 in	 (5)‐(6)	 using	

 /B    B r ,	 B  B ,	 and	 the	 analogous	 formulae	 for	  	 and	  .	 These	 results	 are	

obtained	 by	 forming	 the	 dot	 product	 of	 (5)	 with	 (9),	 or	 the	 dot	 product	 of	 (6)	 with	 (10),	

respectively.	

	

Other useful formulae 

For	any	scalar	quantity	 s ,	
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This	formula	is	just	the	chain	rule	applied	to	       , , ,  , , ,  , ,s x y z x y z x y z   .	

	 For	any	vector	X ,	the	divergence	is	
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where	   1
J        .	Formulae	also	exist	for	the	curl,	Laplacian,	etc.	

	 To	perform	a	surface	integral	of	any	vector	X 	over	a	constant‐ 	surface,	use	
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where	n 	denotes	the	normal	vector	to	the	surface.	To	perform	surface	integrals	over	constant‐ 	or	
constant‐ 	surfaces,	just	use	the	appropriate	cyclic	permutation	of	(14).	

	 As	 J 	is	the	Jacobian	determinant	for	the	transformation	between	Cartesian	coordinates	and	

the	  , ,   	coordinates,	then	the	volume	integral	of	any	scalar	quantity	 s 	is	computed	using	
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For	an	axisymmetric	magnetic	 field,	 I      B 	where	  	 is	 the	 toroidal	 angle.	

Then	notice	the	inverse	Jacobian	1 / J 	 is	        B .	Thus,	 in	other	books	or	papers	

you	may	encounter	the	formulae	from	these	notes	with	      	replaced	by	 B .	

	  



Abstract summary of key formulae 

For	 any	 coordinates	  1 2 3,  ,  q q q 	 which	 may	 or	 may	 not	 be	 orthogonal,	 any	 vector	 V 	 can	 be	

decomposed	in	the	“covariant	representation”	

	 1 2 3
1 2 3V q V q V q     V 	 (16)	

where	each	 coefficient	 iV 	 can	be	 computed	 from	  / i
iV q   V r 	 and	 r 	 is	 the	position	vector.	

The	same	vector	V 	can	also	be	decomposed	in	the	“contravariant	representation”	

	 1 2 3
1 2 3

V V V
q q q

  
  

  
r r r

V 	 (17)	

where	 the	 coefficients	 iV 	 can	be	 computed	 from	 i iV q V .	Here	and	 throughout	 this	 section,	
1/ q  	assumes	 2q 	and	 3q 	are	held	fixed,	etc.	The	two	sets	of	basis	vectors	can	be	related	using	the	

Jacobian,	often	written	as	 g 	instead	of	 J ,	given	by	
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Then	the	basis	vectors	are	related	by	
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and	
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i.e.	cyclic	permutations	in	each	case.	

The	divergence	of	a	vector	is	
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Volume	integrals	are	given	by	

	 3 1 2 3 d s dq dq dq gs   r 	 (22)	
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