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Abstract
In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become
comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal.
In this work, the resulting changes to neoclassical flow and current are examined both
analytically and numerically. Steep density gradients are considered, with scale lengths
comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient
to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature
gradients (but permitting arbitrary electron temperature gradients), since in this limit a δf

(small departures from a Maxwellian distribution) rather than full-f approach is justified. This
assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and
ion temperature profiles in many present experiments, and is expected to be increasingly valid
in future lower collisionality experiments. In the numerical analysis, the distribution function
and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in
the linearized Fokker–Planck–Landau collision operator. In the pedestal, the parallel and
poloidal flows are found to deviate strongly from the best available conventional neoclassical
prediction, with large poloidal variation of a different form than in the local theory. These
predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap
current formulae appear accurate at low collisionality, but they can overestimate the bootstrap
current in the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and
Pfirsch–Schlüter currents are also modified.

(Some figures may appear in colour only in the online journal)

1. Introduction

Neoclassical effects in a plasma—the flows, fluxes and currents
determined by collisions in a toroidal equilibrium in the
absence of turbulence—set a minimum level of radial transport
[1, 2]. In transport barriers—the pedestal at the edge of an H-
mode or internal transport barriers—neoclassical effects are
particularly important for several reasons. First, the pressure
gradient driven flows and bootstrap current (thought to be
determined or at least strongly influenced by neoclassical
physics even in the presence of turbulence) become large due
to the small radial scale lengths. Second, turbulent radial

transport is reduced, so neoclassical radial transport becomes
more relevant. Both the flows and bootstrap current will
affect the global stability of the transport barrier region. For
example, to predict whether given plasma profiles are stable
to edge localized modes (ELMs) and to predict the nature of
such ELMs [3], accurate calculation of the bootstrap current
is essential.

However, conventional neoclassical calculations are
not formally valid in the pedestal. The reason is that
in conventional neoclassical calculations, the main ion
distribution function fi is expanded in an asymptotic series
[1, 2] fi = fMi + f1 + · · · with f1/fMi ∼ ρθ/r⊥ � 1, where
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fMi is a Maxwellian, ρθ = (B/Bθ)vi/� is the poloidal ion
gyroradius, B = |B| is the magnitude of the magnetic field, Bθ

is the poloidal magnetic field, r⊥ ∼ |∇ ln pi|−1 ∼ |∇ ln Ti|−1

is the scale length of ion pressure pi or ion temperature Ti,
vi = √

2Ti/mi is the ion thermal speed, � = ZeB/(mic) is
the gyrofrequency, Z is the ion charge in units of the proton
charge e, mi is the ion mass and c is the speed of light. In
the pedestal, r⊥ is observed to be comparable to ρθ in present
experiments. In particular, the density gradient scale length is
generally comparable to ρθ . (For this discussion it does not
matter whether r⊥ actually scales with ρθ .) The first two terms
in the asymptotic series fMi and f1 are then of comparable
magnitude, so the asymptotic approach breaks down. In the
conventional case, the orbit width (∼ρθ ) is thin compared with
the equilibrium profiles, so neoclassical effects are radially
local: the flows on a given flux surface depend only on the
physical quantities and their radial gradients at that surface.
However, in a transport barrier where the ion orbit width is not
small relative to the equilibrium scales, the ions will sample
a range of densities and temperatures during their orbits.
Accordingly, ion flows on a given flux surface are influenced by
equilibrium parameters from neighboring flux surfaces that lie
roughly within a poloidal gyroradius. Thus a radially global
(i.e. nonlocal) calculation is required for the ion physics. A
nonlocal calculation is unnecessary for electrons since their
orbit widths are

√
me/mi times smaller than ion orbit widths,

but the electron distribution is nonetheless modified due to
collisions with the modified ion distribution [4].

In the conventional local theory, a natural scale separation
exists between flows within a flux surface, which are first order
in the ρθ/r⊥ � 1 expansion, and radial transport fluxes, which
are second order in this expansion. This scale separation at
least partially breaks down in the pedestal, and radial transport
fluxes compete with flux-surface flows, even within a purely
neoclassical framework. Our work includes this important
effect, which strongly impacts the resulting flux-surface flows.

It is harder experimentally to measure the local bootstrap
current density than to measure the plasma flow. Since
the current is just the difference in ion and electron flows,
validation of neoclassical flow calculations would give
confidence in bootstrap current predictions. Impurity and main
ion flows have been measured and compared with neoclassical
predictions in several experiments, with mixed results [5–12].
Neoclassical theory makes an absolute prediction for the
poloidal flow but not the toroidal or parallel flows, since the
latter are a function of d�0/dψ , and this radial electric field
cannot be determined within the lowest-order axisymmetric
theory [13]. (Here, 2πψ is the poloidal flux.) The poloidal
flows are largest in the steep-gradient transport barrier regions,
yet these are precisely the regions in which the theory
breaks down. For this reason as well, an improved nonlocal
calculation of flows is sought to compare with measurements.

Even in the limit of small collisionality, the form of the
collision operator is crucial for determining the neoclassical
flows, fluxes, and current. The collision operator rigorously
derived from first principles is the Fokker–Planck–Landau
operator [14]. In much analytic and numerical work,
however, simpler ‘model’ collision operators are used instead

[1, 2, 15–20]. Model operators generally yield somewhat
different results for all neoclassical quantities [21, 22], so in the
following work the exact linearized Fokker–Planck–Landau
operator is used. At the same time, it should be remembered
that even the exact Fokker–Planck operator is only correct to
O(1/ ln �) where ln � is the Coulomb logarithm.

Calculations of neoclassical quantities at realistic aspect
ratio and with a realistic treatment of collisions require a
numerical treatment. Local neoclassical computations with
complete Fokker–Planck–Landau collisions were described
by Sauter et al in [23–25] and later extended to
stellarator geometry in the code NEO described in [26, 27].
More recently, Fokker–Planck–Landau collisions have been
implemented in other codes [22], including a second code
called NEO [21] (unrelated to [26, 27]), and in [28]. All of
these codes are radially local.

In recent years, a number of numerical efforts have
been undertaken to compute nonlocal neoclassical effects in
transport barriers. Most of these efforts have used the particle-
in-cell (PIC) approach [29–37]. PIC and continuum codes have
differing treatments of collisions and boundary conditions, and
face different numerical resolution challenges, so it is good
practice to develop both approaches to verify they yield the
same physical results. Some investigations of neoclassical
effects have been begun in global continuum codes [38–40],
but these codes use approximate collision models and are
ultimately designed for turbulence studies, and very different
algorithms have been used than the ones we use here.

In this work, we present a new approach to computing
global neoclassical effects. A continuum (Eulerian)
framework is used, including the exact linearized Fokker–
Planck–Landau collision operator. Our approach includes a
general prescription for extending a local neoclassical code to
incorporate nonlocal effects in a numerically efficient manner,
by making such a local calculation the inner step of an iteration
loop. Several terms related to the electric field must first be
added to the local code, since in the pedestal these terms cannot
be neglected.

Our approach is not completely general, for while we
allow the ion density scale length rn to be ∼ρθ , we require
the ion temperature scale length rTi be >ρθ . The electron
temperature scale length rTe may be either ∼ ρθ or >ρθ .
The ordering rTi > rn is satisfied in the pedestal on many
present tokamaks, including DIII-D, JET, ASDEX-U, NSTX
and MAST [41–51], when inter-ELM or non-ELMy (without
RMP) profiles are carefully examined, though exceptions exist
such as I-mode and EDA H-Mode in Alcator C-Mod [52].
Both entropy considerations [53] and data [45, 47] suggest rTi

resists becoming as small as ρθ when collisionality is low,
while rn and rTe are not similarly constrained. This suggests
that future experiments with higher pedestal temperatures and
lower collisionalities may increasingly satisfy rTi > rn. The
entropy argument is based on a more careful version of the
asymptotic analysis above, showing that while rTi ∼ ρθ would
require fi to depart strongly from a Maxwellian flux function,
the same need not be true if rTe ∼ ρθ or rn ∼ ρθ . Collisionless
orbits radially average the ion temperature within a poloidal
gyroradius, preventing strong ion temperature variation, while
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the density is not similarly averaged due to electrostatic
confinement. The strong temperature gradient case for general
collisionality requires use of the full nonlinear Fokker–Planck–
Landau collision operator, giving rise to a kinetic equation that
is nonlinear in fi. In the weak-T ′

i case we consider, we will
show it is still appropriate to expand about a Maxwellian flux
function fMi and use the linearized collision operator. The
E × B-drift nonlinearity associated with the poloidal electric
field also becomes negligible, making the collisionless part
of the kinetic equation linear in δf = fi − fMi. The full-
f strong-T ′

i case will be considered in future work. Any
more general full-f nonlinear code must be able to accurately
reproduce the weak-T ′

i limit, and since expansion about a
Maxwellian is useful both numerically and analytically, it is
worth understanding this limit in detail.

Another simplification in this work is that we assume
Bθ � B, separating ρθ from the gyroradius ρ = vi/� scale.
Without this approximation, the desired ordering r⊥ ∼ ρθ

would then imply the equilibrium varies on the ρ scale, so
a drift-kinetic description would not be possible. This is not
a serious limitation and is well satisfied for the edge region,
which is characterized by large safety factors.

The primary finding in this work is that the ion flow is
significantly altered in magnitude and direction relative to the
prediction of local theory, and in particular, the flow’s poloidal
variation is qualitatively different. The poloidal variation of the
flow is effectively determined by the requirement that the total
flow be divergence free. In conventional theory, the total flow
is approximately given by a sum of parallel, diamagnetic and
leading-order E × B components, implying the poloidal flow
must vary on a flux surface as Bθ . However, in the pedestal,
two other contributions to the flow divergence grow to become
leading-order terms: the E × B flow of the poloidally varying
part of the density, and the radial variation in particle flux.
As a result, the coefficients that multiply the ion temperature
gradient in the parallel and poloidal flow are no longer equal,
the poloidal flow no longer varies as Bθ , and the flow may
change magnitude and sign relative to the local prediction.
These effects may be important to consider in any comparison
between experimental flow measurements in the pedestal and
neoclassical theory [11, 12]. We present the details of one
calculation of these effects at experimentally relevant aspect
ratio and collisionality, considering a single ion species.

In the following section we review the relevant aspects of
local neoclassical theory. At the core of our global solver is a
local solver, so in the next section we discuss in detail the local
solver used. New comparisons to reduced analytic models
are presented. Section 4 then discusses a δf formulation for
the global neoclassical problem in a transport barrier with a
strong radial density gradient. Changes to the structure of the
flow are discussed in section 5, and changes to the Pfirsch–
Schlüter and bootstrap currents are calculated in section 6.
Even in the δf formulation, the kinetic equation is challenging
to solve by direct numerical methods, so section 7 introduces
the operator-splitting initial-value-problem approach which
reduces the dimension of the numerical problem to solve.
Section 8 discusses the need for a sink term in the model and
describes the sinks used. Results are presented in section 9,
and we conclude in section 10.

2. Definitions and local theory

In the local case, the ion distribution function fi is
approximately a Maxwellian with constant density ni(ψ)

and temperature Ti(ψ) on each flux surface: fMi =
ni[mi/(2πTi)]3/2 exp(−miv

2/[2Ti]). To next order, fi =
fMi − Ze�1fMi/Ti + f1 where �1(ψ, θ) = � − �0, � is
the electrostatic potential, �0(ψ) is the flux-surface average
of �, and it can be shown |�1| � |�0|. The distribution f1 is
found by solving the following drift-kinetic equation:

v‖∇‖f1 + (vd · ∇ψ)∂fMi/∂ψ = Ci{f1}. (1)

Here, vd · ∇ψ = (v2
‖ + v2

⊥/2)/(�B2)B × ∇B · ∇ψ is the
radial magnetic drift, and Ci is the linearized ion–ion Fokker–
Planck–Landau collision operator. The derivatives in (1)
are performed at fixed µ = miv

2
⊥/(2B) and total energy

W0 = miv
2/2 + Ze�0, so

∂fMi

∂ψ
=

[
1

pi

dpi

dψ
+

Ze

Ti

d�0

dψ
+

(
x2 − 5

2

)
1

Ti

dTi

dψ

]
fMi, (2)

where x = v/vi. We ignore the O(
√

me/mi) correction
introduced by ion–electron collisions.

It is sometimes convenient to apply the identity vd ·∇ψ =
(Iv‖/�)∇‖(v‖/B), where I equals the toroidal field Bζ times
the major radius R, to rewrite (1) as

v‖∇‖g = Ci {g + F } = Ci{g} + Ci {F } . (3)

Here, F = −(Iv‖/�)∂fMi/∂ψ , and

g = f1 − F = f − fMi + Ze�1fMi/Ti − F. (4)

Only a Ti gradient can drive g, not gradients in ni or �0. This
result follows fromCi{v‖fMi} = 0, so the dpi/dψ and d�0/dψ

terms in (2) disappear entirely from Ci{F } and from (3).
Once fi is found, the two moments of greatest interest are

the radial heat flux

〈qi · ∇ψ〉 =
〈∫

d3v fi

(
miv

2

2
− 5

2

)
vd · ∇ψ

〉

= −kq

√
ε

2
niνii

v2
i I

2〈
�2

〉 dTi

dψ
(5)

and the parallel flow

V‖ = 1

ni

∫
d3v v‖fi

= − cI

ZeB

(
1

ni

dpi

dψ
+ Ze

d�0

dψ
− k‖

B2〈
B2

〉 dTi

dψ

)
. (6)

Here, kq and k‖ are dimensionless coefficients defined by the
right equalities in (5)–(6), ε is the inverse aspect ratio, and
brackets denote a flux-surface average:

〈A〉 = (V ′)−1
∫ 2π

0
dθ A/B · ∇θ (7)

for any quantity A where

V ′ =
∫ 2π

0
dθ/B · ∇θ =

∮
d
θ/Bθ , (8)
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d
θ is the poloidal length element, V ′ = dV/dψ , and
2πV (ψ) is the volume enclosed by the flux surface. Also,
νii = 4

√
2πZ4e4ni ln �/(3

√
miT

3/2
i ) = √

2νi is the ion–
ion collision frequency with νi the Braginskii ion collision
frequency. The definition for kq in (5) turns out to be
convenient as kq then has a finite limit as ε → 0 and
collisionality → 0.

It can be shown using the following argument that the
parallel flow must have the form (6) with k‖ constant on
a flux surface. First, apply the operation

∫
d3v( · ) =

2πBm−1
i

∑
σ σ

∫ ∞
0 dv

∫ miv
2/(2B)

0 dµ(v/v‖)( · ) to (3). (Here,
σ = sgn(v‖).) This operation annihilates the linearized
collision operator terms by particle conservation. Pulling ∇‖
in front of the velocity integrals, the boundary term from the
upper limit of the dµ integral vanishes in the σ sum, leaving
B∇‖(

∫
d3v v‖g/B) = 0, and so

∫
d3v v‖g = niXB where X

is constant on a flux surface. Then applying n−1
i

∫
d3v v‖( · )

to (4), and noting the last term in (2) vanishes in the v integral,
the flow must have the form

V‖ = − cI

ZeB

(
1

ni

dpi

dψ
+ Ze

d�0

dψ

)
+ XB. (9)

Recalling g ∝ dTi/dψ , and normalizing X by convenient
constants, then the form (6) results with k‖ constant on a flux
surface. The form (9) can also be understood from a fluid
perspective, as follows. First, the leading-order perpendicular
flow is V⊥ = cB−2(d�0/dψ + [Zeni]−1dpi/dψ)B × ∇ψ .
Together with the mass continuity relation ∇ · (niV ) = 0 +
O(niviρ

2
θ /r2

⊥) and B × ∇ψ = IB − R2B2∇ζ for toroidal
angle ζ (which follows from B = ∇ζ × ∇ψ + I∇ζ ), this
implies (9). The constancy of k‖ on a flux surface may be used
as a test for any numerical scheme.

The constant k‖ may also be understood as the magnitude
of the poloidal flow Vθ = V · êθ = V⊥ · êθ + V||B · êθ /B =
k‖cIBθ(Ze〈B2〉)−1dTi/dψ where êθ = (∇ζ × ∇ψ)/|∇ζ ×
∇ψ |. This result arises because the E × B and diamagnetic
perpendicular flows cancel the dpi/dψ and d�0/dψ terms
in (6) when the poloidal component is formed, leaving only
dTi/dψ to drive poloidal flow. The coefficient k‖ arises again
in the dTi/dψ contribution to the parallel current, as will be
shown in section 6:〈
j‖B

〉 = σneo
〈
E||B

〉 − cIpe

×
[
L31

1

pe

(
dpe

dψ
+

dpi

dψ

)
+

L32

Te

dTe

dψ
− L34k‖

ZTe

dTi

dψ

]
. (10)

Here, σneo, L31, L32 and L34 (defined in section 6) are
coefficients determined by the magnetic geometry and electron
collisionality, affected by the ions only through the ion
charge Z.

The linearized Fokker–Planck–Landau operator for ion–
ion collisions, needed to solve (1) or (3), may be written as

Ci{g}/νii = νDL{g} +
3
√

π

4x2

∂

∂x

[
xe−x2

�(x)
∂

∂x

g

e−x2

]

+ 3e−x2

(
g − H

2πv2
i

+
x2

2πv4
i

∂2G

∂x2

)
, (11)

Figure 1. Block structure of the linear system for the local solver. A
few rows are also reserved for boundary conditions.

where νD = (3
√

π/4)[erf(x) − �(x)]/x3, � = [erf(x) −
2π−1/2xe−x2

]/(2x2), erf(x) = 2π−1/2
∫ x

0 e−y2
dy is the error

function,

L = 1

2

∂

∂ξ
(1 − ξ 2)

∂

∂ξ
(12)

is the Lorentz operator, and ξ = v‖/v. Also, H and G are
the non-Maxwellian corrections to the Rosenbluth potentials,
defined by ∇2

vH = −4πg and ∇2
vG = 2H , with the velocity-

space Laplacian ∇2
v = v−2[(∂/∂x)x2(∂/∂x) + 2L]. The last

three terms in (11) (those following 3e−x2
) together form the

‘field part’ of the operator. While historically this part of the
operator is often replaced with ad-hoc models, here we retain
the exact field terms. The concise form (11) of the field opera-
tor is derived in equation (7) of [54], and it is exactly equivalent
to the full linearized Fokker–Planck–Landau field operator.

3. Local solver

The basic approach to solving the kinetic equation (1) with the
full field operator is to treat H and G as unknown fields along
with the distribution function g, and to solve a block linear
system for three simultaneous equations: the kinetic equation
and the two Poisson equations that define the potentials.
Figure 1 illustrates the structure of this linear system. The
approach is similar to the innovative method described in [28]
but was developed independently. Reference [28] (a radially
local code) is focused on the banana regime in which g =
g(µ, v) is a function of two phase-space variables, whereas in
the analysis here we wish to keep the collisionality general,
which means g depends on three or four phase-space variables
(in the local and global cases, respectively.)

We may solve either (1) for f1 or (3) for g. The operator
and matrix are the same for the two approaches, but the
right-hand side vector (the inhomogeneity) is different. The
equivalence of the distribution functions obtained by the two
approaches is another useful test of convergence. For the
second approach, the inhomogeneous term in (3) may be
evaluated explicitly:

Ci {F } = νiiniI

�v2
i Tiπ3/2

dTi

dψ

3ξ

2x2

×
[
10xe−2x2

+ e−x2√
π

(
2x2 − 5

)
erf(x)

]
. (13)

Deriving this result amounts to evaluating Ci{v‖v2fMi}, which
is done in e.g. equation (C19) of [55].
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We discretize the Rosenbluth potentials by retaining a
finite number of Legendre polynomial modes P
(ξ). There
are several motivations for this choice. First, the Legendre
amplitudes of H and G fall off rapidly with 
 since ∇2

v ∼ 
2.
Therefore only 2–4 modes are sufficient for convergence,
although the code allows for the retention of an arbitrary
number of modes. Secondly, the Legendre representation
allows a convenient and efficient treatment of the boundary at
large v, which can be understood as follows. The distribution
function will be within machine precision of zero for v > 6vi,
so it is wasteful to store g for this v region. However,
H and G scale as powers of v rather than as e−(v/vi)

2
, so

they remain nonnegligible even for v > 6vi. (In fact, for
general g, G increases with v.) However, with a Legendre
representation H = ∑∞


=0 H
(v)P
(ξ), we may exploit the
fact that for v > vMax = 4–6 vi, the defining equation for
H becomes ∇2

vH = 0, and so H
 = A
v
−(
+1) + B
v


. The
physical solutions have B
 = 0, and so the Robin boundary
condition v dH
/dv + (
 + 1)H
 = 0 may be applied at
vMax to ensure H
 ∝ v−(
+1). In the case of ∇2

vG = 2H ,
there are four linearly independent solutions for G. Two
are homogeneous solutions to ∇2

vG = 0 as for H above,
and two are particular solutions, which vary as v2 times the
homogeneous solutions. Thus G = ∑∞


=0 G
(v)P
(ξ) where
G
 = C
v

−(
+1) + D
v

 + E
v

1−
 + F
v

+2. The physical

solutions have D
 = F
 = 0 (see e.g. (45) of [14]), leaving one
homogeneous and one particular solution. To accommodate
both solutions requires a second order equation as a boundary
condition. Writing v2 d2G
/dv2 +av dG
/dv +b G
 = 0, and
inserting G
 ∝ v−(
+1), then G
 ∝ v1−
, yields two equations
for (a, b), giving the boundary condition v2 d2G
/dv2 + (2
 +
1)v dG
/dv + (
2 − 1)G
 = 0.

The other boundary conditions applied are as follows:
H
 = 0 and G
 = 0 at v = 0 for 
 > 0, dH
/dv = 0
and dG
/dv = 0 at v = 0 for 
 = 0, g = 0 at v = vMax,
∂g/∂ξ = 0 at v = 0, and ∂g/∂v = 0 at (v, ξ) = (0, 0). No
boundary conditions are applied to g at ξ = ±1 (i.e. the kinetic
equation is applied there with one-sided derivatives.)

While it seems essential to represent the pitch-angle
dependence of the potentials using Legendre polynomials,
the distribution function itself need not be discretized in
the same way, and there are many options available for
the other coordinates, so a range of different discretization
schemes were investigated. A choice of piecewise Chebyshev
spectral colocation and finite-difference methods of various
orders were implemented for both the x and ξ grids. The
spectral colocation approach is highly accurate for given grid
resolution. However, as the matrix is denser in the associated
coordinate for these approaches, the solver slows more rapidly
compared with finite differencing as the grid resolution
increases. Thus, for satisfactory numerical convergence, high-
order finite-difference methods are often preferable in practice.
For discretization in θ , finite-difference methods of various
orders and spectral colocation as well as a sine/cosine modal
representation have been implemented. The modal approach
is extremely efficient for the simple concentric circular flux-
surface model, in which case the matrix is sparse in θ .
However, for shaped geometry, the matrix becomes dense in
θ for the modal approach, so the colocation approach is both

10
–3

10
– 2

10
– 1

10
0

10
1

10
2

– 2.5

 –2

– 1.5

– 1

– 0.5

0

0.5

1

1.5

k
||

ν
*

ε = 0.001
ε = 0.01
ε = 0.1

ε = 0.3

Figure 2. The flow coefficient k‖ defined in (6) for concentric
circular flux-surface geometry, as computed by the local code
(solid) and the Sauter et al formula (15) (dashed). Squares show
the Helander–Sigmar formula (17), an approximate analytical
treatment of the ν∗ → 0 limit, for the same four values of ε. The
arrow indicates the known analytic ν∗ → 0, ε → 0 limit 1.17.

more convenient and similarly accurate. In shaped geometry,
despite the accuracy of the spectral approaches, finite-
difference differentiation again typically gives satisfactory
convergence in less time due to the sparsity of the matrix.

The linear system may be solved using a sparse direct
algorithm; a Krylov-space iterative solver may be much
faster, but convergence of the algorithm then requires an
effective preconditioner. One successful preconditioner is
obtained by eliminating the off-diagonal blocks in figure 1 as
well as the off-diagonal-in-x terms in the energy scattering
operator and boundary conditions. If high-order finite-
difference derivatives are used in x, convergence typically
also requires that a constant ∼νii be added to the diagonal
of the kinetic equation. We find the generalized minimum
residual method (GMRES) does not converge consistently,
while the stabilized biconjugate gradient and transpose-free
quasi-minimal residual methods are more reliable.

Several issues regarding null solutions and symmetry
properties of the distribution function are discussed in
appendix A.

Figures 2 and 3 show typical results of the local code,
plotting the flow and thermal conductivity coefficients k‖ and
kq as functions of aspect ratio and collisionality. Although
the code can use general shaped geometry, for all plots in
this paper we use the standard concentric circular flux-surface
model B ∝ 1/(1 + ε cos θ) and b · ∇θ = constant, to facilitate
comparison with previous literature on neoclassical theory.
We may then take the definition of the ion collisionality to
be ν∗ = νii/(ε

3/2vi∇‖θ).
Several approximate analytic formulae are also plotted.

The Chang–Hinton formula for the heat flux [56]

kq = 0.66 + 1.88ε1/2 − 1.54ε

1 + 1.03ν
1/2
∗ + 0.31ν∗

〈
B2

〉 〈 1

B2

〉

+
0.58ν∗ε

1 + 0.74ν∗ε3/2

(〈
B2

〉 〈 1

B2

〉
− 1

)
(14)
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Figure 3. The thermal conductivity coefficient kq defined in (5) for
concentric circular flux-surface geometry. Solid curves are
computed by the local code. Dashed lines indicate the
Chang–Hinton formula (14) for the same four values of ε. Squares
show the Taguchi formula (16), an approximate analytical treatment
of the ν∗ → 0 limit, again for the same four ε. The arrow indicates
the known analytic ν∗ → 0, ε → 0 limit 0.66.

and the formula of Sauter et al [25]

k‖ = −
[

1

1 + 0.5
√

ν∗

(
−1.17fc

1 − 0.22ft − 0.19f 2
t

+ 0.25(1 − f 2
t )

√
ν∗

)
+ 0.315ν2

∗f
6
t

]
1

1 + 0.15ν2∗f
6
t

(15)

apply to arbitrary aspect ratio, plasma shaping, and
collisionality. (Note α in [25] equals −k‖ in our notation.)
Taguchi’s formula for the heat flux [57]

kq = 1√
ε

[〈
B2

〉 〈 1

B2

〉
− fc

fc + 0.462ft

]
, (16)

and a formula for the flow coefficient derived on p 216 of [2]

k‖ = 1.17fc/ (fc + 0.462ft) . (17)

are applicable at arbitrary aspect ratio and shaping in the limit
of small ν∗. An expression equivalent to the latter result
was also given previously in equation (28) of [7]. (There,
α2 = 0.6562

√
ε and α1 = 1.173. Taking ft = 1.46

√
ε for

circular flux surfaces yields the same result as (17).) Here,
ft = 1 − fc and

fc = 3

4

〈
B2

〉 ∫ 1/Bmax

0

λ dλ√
1 − λB

. (18)

As figure 2 shows, (17) does a reasonable job of predicting the
low-collisionality limit of k‖. The analytic result k‖ = 1.17
obtained using a momentum-conserving pitch-angle scattering
model collision operator is indeed the limiting value for ν∗ →
0 and ε → 0 as expected, but ε must be < 0.01 for this value to
be a good approximation. Figure 3 shows Taguchi’s formula
(16) is extremely accurate. The Chang–Hinton formula (14) is
less accurate but it correctly captures the trends with ε and ν∗.
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Figure 4. The local code agrees to high precision with the
Fokker–Planck code of [22] for both the flow (a) and heat flux (b)
coefficients. Calculations are shown for ε = 0.1. Data reproduced
with permission.

The local code was also compared with published
results from the Fokker–Planck code of [22]; the remarkable
agreement of the codes is shown in figure 4.

Another set of transport coefficients arise in the analysis of
the electrons. The radial particle and electron heat diffusivity
are ∼√

me/mi smaller than the ion heat transport and are
always dominated by turbulent transport in practice, so we
will not discuss them further. Of greater interest are the
electrical conductivity and bootstrap current; these quantities
are discussed in section 6.

The distribution function obtained by the local solver has
several noteworthy features. In the ν∗ � 1 limit, analysis
shows the g piece of the distribution function should vanish
in the trapped region of phase space [1, 2], and a boundary
layer exists between the trapped and passing regions [58].
These properties are reproduced in the code, as illustrated
in figure 5. The thickness of this boundary layer increases
with collisionality. Although the collisionality ν∗ is typically
defined in terms of the thermal speed vi, each value of v in
phase space effectively has its own collisionality given by
νD/(vε3/2b·∇θ), with faster particles being less collisional. As
shown in the figure, the boundary layer indeed grows narrower
with v. In figure 5(c), g at each v is scaled to go to 1 at ξ = 1
for clarity. Also notice in figures 5(a) and (b) that g is nearly
constant along particle trajectories, as it should be.

4. Global kinetic equation

Under what circumstances does the ion distribution remain
close to a Maxwellian flux function, i.e. is the approximation
fi ≈ fMi(ψ) of section 2 valid? The magnitude of the
correction to the flux-function Maxwellian may be estimated

6



Plasma Phys. Control. Fusion 54 (2012) 115006 M Landreman and D R Ernst

Figure 5. (a) Particle orbits, i.e. contours of magnetic moment µ, for ε = 0.3. (b) The ‘collisional response’ distribution g at v = vi for
ν∗ = 0.01, showing g ≈ 0 for the trapped region as predicted by banana-regime analytic theory. (c) A slice of g at θ = 0 shows the
boundary layer, which is narrower at larger v due to the lower effective collisionality.

from the local theory roughly as f1 ∼ F ∼ (ρθ/r⊥)fMi where
r⊥ is the scale length of variation in density and/or temperature.
In a pedestal, since ρθ/r⊥ ∼ 1, then f1 ∼ fMi and the
neoclassical expansion breaks down.

However, a more careful estimate reveals there is a regime
in which the near-Maxwellian assumption is still valid [59]. To
define this regime, first write fMi in an equivalent form:

fMi = η(ψ)

[
mi

2πTi(ψ)

]3/2

exp

(
− W0

Ti(ψ)

)
, (19)

where
η(ψ) = ni(ψ) exp (Ze�0(ψ)/Ti(ψ)) (20)

and again W0 = miv
2/2 + Ze�0 is the leading-order total

energy. Then the derivative ∂fMi/∂ψ (at fixed W0) that
determines the magnitude of f1 is

∂fMi

∂ψ
=

[
1

η

dη

dψ
+

(
W0 − 3

2

)
1

Ti

dTi

dψ

]
fMi (21)

(equivalent to (2).) In this form, it is apparent that the
magnitude of ∂fMi/∂ψ is determined by rT and rη, the scale
lengths of Ti and η, but not directly by rn, the scale length of
density. Therefore f1/fMi may be small compared with unity
even when rn ∼ ρθ as long as rT and rη are � ρθ .

This ‘weak-T ′
i pedestal’ regime is the ordering [53, 59]

we shall consider for the rest of the analysis: δ � 1 where
δ = ρθ/rT , ρθ/rη ∼ δ, and ρθ/rn ∼ 1. This regime is useful
for two reasons: the collision operator may be linearized, and,
as we will show, the poloidal electric field may be decoupled
from the kinetic equation, eliminating the E ×B nonlinearity.
Therefore the kinetic equation is linear in f1. For rT ∼ ρθ

and/or rη ∼ ρθ , a full-f nonlinear kinetic equation must be
solved, retaining both the collisional and E×B nonlinearities.
Notice rη � 1 implies the ions are electrostatically confined
(d�0/dψ ≈ −[Zeni]−1dpi/dψ) with (Ze/Ti)d�0/dψ ∼
1/(RBθρθ ), so Ze�0/Ti ∼ 1. Due to this ordering for
the electric field, the vE · ∇fi term in the kinetic equation,
neglected in conventional neoclassical calculations, becomes
comparable to the v‖∇‖fi streaming term. Therefore, although
f1 � fMi in the weak-T ′

i pedestal, conventional neoclassical
results must still be modified.

Now, consider the full-f drift-kinetic equation [60]

v‖∇‖fi + vd · ∇fi = Cnl{fi} + S, (22)

where S represents any sources/sinks and Cnl is the nonlinear
Fokker–Planck–Landau operator. As pointed out by Hazeltine
[60], (22) may be derived recursively, and so its validity does
not require |v‖∇‖fi| � |vd · ∇fi|. Since fi ≈ fMi to leading
order, Cnl may be approximated with Ci, the operator linearized
about fMi. For the drift velocity vd it will be convenient to
use vd = (v‖/�)∇ × (v‖b) (discussed in appendix B) where
the gradient acts at fixed µ and W . We make the ansatz
�1 ∼ δ �0 and ∂�1/∂ψ ∼ δ d�0/dψ , and we will show
shortly that these assumptions are self-consistent. We define f1

by fi = fMi −(Ze�1/Ti)fMi +f1, and change the independent
variable from W to W0. Neglecting several �1 terms that are
small in δ,

(
v‖b + vd

) · ∇f1 − Ci{f1} = −vd · ∇ψ
∂fMi

∂ψ
+ S. (23)

The contribution from �1 to vd · ∇θ is O(δ) smaller than the
�0 contribution, and (vE · ∇ψ)/(vm · ∇ψ) ∼ Ze�1/Ti ∼ δ

where vm = vd − vE is the magnetic drift, so �1 may be
entirely neglected in vd and (23). We therefore approximate
vd in (23) with vd0 = vm+vE0 where vE0 = cB−2B×∇�0. To
evaluate �1 we may use the adiabatic electron density response
ne + (e�1/Te)ne, where ne(ψ) = Zni(ψ) is the leading-order
electron density, with quasineutrality to obtain

e�1/Ti = (Ti/Te + Z)−1 n−1
i

∫
d3v f1. (24)

Hence, as f1 ∼ δfMi, the ordering ansatz for �1 above is self-
consistent. As both the collisional and E × B nonlinearities
are thus formally negligible, (23) is completely linear.

Just as in the local case, it is convenient to define
the collisional response part of the distribution function g

using (4). Eliminating f1 in (23) in favor of g, a pair of terms
cancels. We also drop the resulting vd0 · ∇[(Iv‖/�)∂fMi/∂ψ]
term because vd0·∇(Iv‖/B) ∝ ∇×[(v‖/B)B]·∇(Iv‖/B) = 0
exactly and vd0 · ∇(∂fMi/∂ψ) is small in δ. Thus, we obtain(

v‖b + vd0
) · ∇g − Ci{g} = Ci{F } + S. (25)

7
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The advantage of this second form is that it makes clear that
gradients in ni, �0, and/or η cannot affect the g part of the
distribution function—only a Ti gradient can drive g. The logic
is the same as in the local case: Ci{v‖fMi} = 0, so the only
gradient surviving in the inhomogeneous drive term (13) is
dTi/dψ . This property is obscured in the form (23). While the
independence of g from dni/dψ and d�0/dψ was well known
previously for the local case, it is noteworthy that this property
persists in the weak-T ′

i pedestal case considered here [59].

5. Changes to flow structure

Two noteworthy differences between the local and global
analyses are that the parallel flow coefficient k‖, as defined
in (6), no longer needs to be constant on a flux surface, and it
no longer also describes the poloidal flow. To see the first of
these points, we may apply the operation

∫
d3v to the kinetic

equation (25), as detailed in appendix B. The resulting mass
conservation equation (ignoring sources) is

∇ ·
(∫

d3v(v‖b + vE0 + vm)g

)
= 0. (26)

Recall from section 2 that in the local case, the v‖ term in (26)
dominates the others, implying

∫
d3v v‖g ∝ B. This result

was crucial for proving the constancy of k‖ on a flux surface,
for the dTi/dψ term in the parallel flow is precisely

∫
d3v v‖g.

However, in the global case, (26) indicates that
∫

d3v v‖g need
not vary on a flux surface in proportion to B, so the proof for
the constancy of k‖ breaks down.

These same results can be derived from a fluid perspective,
making no reference to the drift-kinetic equation, starting
instead from the fluid mass flow

Γ =
∫

d3v
(
v‖b + vE + vm

)
fi − ∇ × M , (27)

where M = b
∫

d3vfiv
2
⊥/�. Equivalently,

Γ = �||b + ΓE + Γdia, (28)

where ΓE = ∫
d3v fivE , Γdia = c(ZeB2)−1B × ∇ · ↔

�

is the diamagnetic flow,
↔
� = p⊥(

↔
I − bb) + p||bb, p⊥ =

mi
∫

d3v fiv
2
⊥/2, and p|| = mi

∫
d3v fiv

2
‖ . The equivalence of

(27) and (28) follows from∫
d3v fivm − ∇ × M = Γdia, (29)

which may be derived [1] using the more accurate drift vm =
v2

||�
−1b × κ + v2

⊥(2�B)−1b × ∇B + v2
⊥(2�B)−1bb · ∇ × b.

(This drift is identical to our earlier expression to leading order
in β � 1.) Notice b· (28) with (4) and V|| = Γ · b/ni gives (6)
with k‖ = Ze〈B2〉(cIniB dTi/dψ)−1

∫
d3v v‖v as before.

We now impose mass conservation ∇ ·Γ = 0, substituting
(4) into (27), applying B × ∇ψ = IB − R2B2∇ζ ,
and noting

∫
d3v vmfMi = c(ZeB2)−1(dpi/dψ)B ×

∇ψ + ∇ × [cpib/(ZeB)]. Cancellations occur to leave
T1 + T2 + T3 + T4 = 0 where T1 = ∇ · ∫

d3v(v‖b +
vE0 + vm)g, T2 = −∇ · ∫

d3v(vE0 + vm)Ze�1fMi/Ti,

T3 = ∇ · ∫
d3v vE1fMi = ∇ · (cniB

−2B × ∇�1), and T4 =
∇ ·∫ d3v vE1(−ZeT −1

i fMi�1 +F +g) where vE1 = cB−2B×
∇�1. As ∇ni = −(Zeni/Ti)∇�0 + O(δ) in our ordering, T2

and T3 cancel to leading order in δ. It can be verified that
the terms in T4 are O(δ) smaller than the terms in T1, so to
leading order, T1 = 0, which is precisely (26), but re-derived
from a fluid rather than drift-kinetic perspective. The fluid
analysis thereby confirms k‖ is no longer constant on each flux
surface. Compared with the fluid analysis in the conventional
ordering, reviewed following (9), it can be seen that two
new contributions to mass conservation become important:
E ×B convection of the poloidally varying density, and radial
variation of the particle flux or (equivalently) diamagnetic flow.
Even though |vE0| � vi, E × B convection of the density
carried by g matters for mass conservation (26) because the
parallel flow only enters multiplied by the small factor Bθ/B.

And although
↔
� ≈ pi

↔
I , the radial derivative in ∇ · Γ means

the next-order correction to
↔
� in the diamagnetic flow (or

equivalently the radial neoclassical flux) must be retained to
accurately compute ∇ · Γ.

The poloidal fluid flow Vθ is found by computing Vθ =
Γ ·eθ /ni, using (27) or (28). Plugging (4) into eθ ·(27), several
cancelations occur, leaving

Vθ = Bθ

Bni

∫
d3v v‖g︸ ︷︷ ︸

V1

+
cIBθ

B2ni

d�0

dψ

∫
d3v g︸ ︷︷ ︸

V2

− eθ

ni
· ∇ ×

∫
d3v

v2
⊥

2�
gb︸ ︷︷ ︸

V3

+
eθ

ni
·
∫

d3v vmg (30)

−Ze�1

Ti

cIBθ

B2

[
d�0

dψ
+

Ti

Zeni

dni

dψ

]

+B × ∇�1 · eθ

c

B

(
−Ze�1

Ti
+

1

ni

∫
d3v g

)
.

So far no terms have been dropped. We now order the
terms using the orderings developed in section 4. Using
(Ze/Ti)d�0/dψ ∼ 1/(RBθρθ ) it can be verified that V1 ∼ V2.
It can also be verified that each term following V3 is O(δ)

smaller than V1 ∼ V2 using
∫

d3v g ∼ δni, Ze�1/Ti ∼ δ,
∇�1 · B × eθ ≈ −IBθ∂�1/∂ψ ∼ δIBθd�0/dψ , and noting
the quantities in square brackets cancel to leading order.

It remains to evaluate V3. The leading-order contribution
comes from the radial gradient of the integral of g, since only
this derivative has the short scale length ρθ . Thus, we obtain

Vθ ≈ Bθ

niB

[∫
d3v

(
v‖ +

cI

B

d�0

dψ

)
g +

I

�

∂

∂ψ

∫
d3v

v2
⊥
2

g

]
.

(31)

In the local case, only thev‖ term arose in the analogous integral
for Vθ . In the pedestal we may define a normalized poloidal
flow

kθ = VθZe
〈
B2

〉
/(cIBθ dTi/dψ) (32)

so kθ → k‖ in the local limit. The property Vθ ∝ dTi/dψ

from conventional theory persists in the pedestal, due to (31)
and g ∝ dTi/dψ .

8
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6. Electron kinetics and parallel current

The orbit width for electrons is ∼√
me/mi thinner than that

of the ions, so direct finite-orbit-width effects for electrons
may be neglected. However, the electrons are affected by
modifications to the main ion flow. To demonstrate this point,
and to show applications of the local Fokker–Planck code
to electron quantities, we now analyze the electron kinetics.
Since the particle and electron heat transport are essentially
always dominated by turbulent transport, we focus here instead
on the neoclassical conductivity and bootstrap current. Though
the analysis below uses the pedestal ordering, conventional
results for the parallel current are exactly recovered in the
appropriate limit of the expressions derived here.

Using the gauge of appendix C, the electron kinetic
equation may be written

(v‖b + vme + vE) · (∇fe)w − ev‖〈E||B〉B〈B2〉−1∂fe/∂w = Ce,

(33)

where vme is the electron magnetic drift, w = mev
2/2 − e� is

an independent variable, and Ce is the total electron collision
operator. We assume fe ≈ fMe where

fMe = ne(ψ)

[
me

2πTe(ψ)

]3/2

exp

(
mev

2

2Te(ψ)

)
. (34)

Then Ce = Cee + Cei where Cee is equivalent to (11) but
with ion quantities replaced by electron quantities, Cei{fe1} ≈
νeiL{fe1}+fMeνeimev‖Vi‖/Te, νei = 3

√
π/(4τeix

3), x = v/ve,
ve = √

2Te/me and τei = 3
√

meT
3/2

e /(4
√

2πneZe4 ln �). We
write fe = fMe exp(e�1/Te) + mev‖V‖fMe/Te + h and solve
for h. We also make a change of independent variables in the
kinetic equation to w0 = mev

2/2−e�0. Using (6), the leading
terms in δ and

√
me/mi are

v‖∇‖h0 + fMe

(
1

pe

dpi

dψ
+

e

Te

d�0

dψ

)
v‖∇‖

(
Iv‖
�e

)
+ vme ·∇fMe

= Cee{h0} + νeiL{h0}, (35)

where �e = −eB/(mec), h0 is the first term in a series
h = h0 + h1 + · · ·, and the inductive term has been taken
as higher order. The solution to (35) may be written h0 =
cIe−1(hp dp/dψ + hTenedTe/dψ) where p = pe + pi, and hp

and hTe are the solutions to

Dehp = − fMen
−1
e x2(1 + ξ 2)B−2∇‖B, (36)

DehTe = − fMen
−1
e x2(x2 − 5/2)(1 + ξ 2)B−2∇‖B, (37)

with De = v‖∇‖ − Cee − νeiL. Recalling e�1/Ti ∼ δ, the
O(δ) terms in the kinetic equation are

Dh1 − fMeI

ZTe
〈
B2

〉 dTi

dψ
v‖∇‖

(
k‖v‖B2

�e

)
+ vE1 · ∇fMe

+e�1vme · ∇(fMe/Te)

+ev‖(∇‖�1)
∂h0

∂w0
+

ev‖
〈
E‖B

〉
B

Te
〈
B2

〉 fMe = 0, (38)

where vE1 = cB−2B × ∇�1, and we have assumed√
me/mi � δ. The solution may be written

h1 = −hEe−1〈E||B〉 − cIe−1nihTi dTi/dψ − ρ0cI
2(dne/dψ)

(dTi/dψ)h�/e where ρ0 = vimic/(ZeBav), and B2
av = 〈B2〉.

Here, hE , hTi , and h� are the solutions of

DehE = fMee
2T −1

e

〈
B2

〉−1
Bv‖, (39)

DehTi = fMeme(neTe)
−1

〈
B2

〉−1
v‖∇‖

(
v‖Bk‖

)
= fMen

−1
e x2

〈
B2

〉−1 [
k‖(3ξ 2 − 1)∇‖B − 2ξ 2B∇‖k‖

]
,

(40)

ρ0cI
2

e

dne

dψ

dTi

dψ
Dh� = vE1 · ∇fMe + e�1vme · ∇

(
fMe

Te

)

+ ev‖(∇‖�1)
∂h0

∂w0
. (41)

Note in the local case, ∇‖k‖ = 0 so the last term in (40) vanishes
and hTi ∝ k‖. The De operator, which is radially local in that
ψ is merely a parameter, may be inverted numerically for the
right-hand sides (36)–(37) and (39)–(41) just as described in
section 3 for the similar ion operator v‖∇‖ − Cii. Then the
parallel current is

j‖ = ZeniVi‖ − e

∫
d3v fe = −e

∫
d3v v‖h. (42)

Now consider the result of applying
∫

d3v =
2πm−1

i

∑
σ σ

∫ ∞
0 dv

∫ v2/(2B)

0 dµ Bv/v‖ to (39). This oper-
ation annihilates both the right-hand side and the collision
operators in De, leaving (∂/∂θ)

∫
d3v v‖hE/B = 0. There-

fore the flow carried by hE is
∫

d3v v‖hE = αEB for
some flux function αE . The same logic applies to (37), so∫

d3v v‖hTe = αTeB for some flux function αTe . Applying∫
d3v to (36), the right-hand side is not annihilated this time,

and we instead find
∫

d3v v‖hp = B−1 + αpB for some flux
function αp. Lastly applying

∫
d3v to the first equation in (40)

and to (41), we obtain
∫

d3v v‖hTi = αTiB + k‖B/〈B2〉 and∫
d3v v‖h� = α�B − ng/(ZB) where αTi and α� are flux

functions, ng = Ti(ρ0Ini dTi/dψ)−1
∫

d3v g is the O(1) nor-
malized density carried by g, and we have invoked (24). Thus,
the dTi/dψ term in the parallel current varies poloidally ∝ B

in the local case where k‖ is constant, but not in the global case
where k‖ varies.

Putting the pieces together, the total parallel current is

j‖ = −cI

B

dp

dψ
+

cIneBk‖
Z

〈
B2

〉 dTi

dψ
− ρ0cI

2ng

ZB

dne

dψ

dTi

dψ
+ αB, (43)

where α is another flux function. Multiplying this equation by
B, flux-surface averaging, and substituting the result back into
(43), we obtain

j‖ = cI

B

dp

dψ

(
B2〈
B2

〉 − 1

)
+

cIneB

Z
〈
B2

〉 dTi

dψ

(
k‖ −

〈
B2k‖

〉〈
B2

〉
)

+
ρ0cI

2

Z

dne

dψ

dTi

dψ

(〈
ng

〉
B〈

B2
〉 − ng

B

)
+

〈
j‖B

〉
B〈

B2
〉 . (44)

The dp/dψ term is the standard Pfirsch–Schlüter current,
and the 〈j‖B〉 term is the ohmic and bootstrap contribution.
However, the k‖ and ng terms are new in the global
case, vanishing in the local case where k‖ is constant and

9
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|∇ne|ρθ � 1. We may write the ohmic and bootstrap
contribution as〈
j‖B

〉 = σneo
〈
E||B

〉 − cIpe

×
(
L31

pe

dp

dψ
+

L32

Te

dTe

dψ
− LTi

ZTe

dTi

dψ
− LnT ρ0I

neTe

dne

dψ

dTi

dψ

)
(45)

where σneo = 〈B ∫
d3v v‖hE〉, L31 = 〈B ∫

d3v v‖hp〉,
L32 = 〈B ∫

d3v v‖hTe〉, LTi = 〈B ∫
d3v v‖hTi〉, and LnT =

〈B ∫
d3v v‖h�〉. The LnT term in (45) is new, becoming

negligible in the conventional case. For the local case of
constant k‖, where LTi ∝ k‖, it is useful to define L34 = LTi/k‖
so L34 is completely independent of all ion quantities except
Z. The definitions of σneo, L31, L32 and L34 here are consistent
with [25]. Interestingly, the new ng terms in (44) and (43) and
the new LnT term in (45) are quadratic in the gradients.

Figure 6 shows these coefficients of the bootstrap current
and the conductivity as calculated by our code for the local
limit k‖ = constant, using the circular flux-surface model
and Z = 1. The conductivity has been normalized by
the parallel Spitzer value. The analytic fits to numerical
calculations of the coefficients by Sauter et al are plotted for
comparison [25]. The horizontal coordinate in these plots
is ν∗e = νee/(ε

3/2√2Te/meb · ∇θ), which is 1/
√

2 smaller
than the ν∗e defined in [25]. We find the Sauter expressions
give an excellent fit to the coefficients in the banana regime,
though there is some discrepancy at higher collisionality when
ε > 0.1, the same pattern observed in figure 2. The reason
for the discrepancy is unclear, since the fundamental kinetic
equations and collision operators we use to generate figures 2
and 6 are identical to those solved by CQLP, the code to which
the Sauter expressions are fit. (CQLP uses an adjoint method
whereas our results do not, though this difference should not
affect the physical results.) We have verified the difference
persists when D-shaped Miller equilibrium is used, and the
code of [22] produces identical coefficients to ours. As shown
in figure 7, the difference between our coefficients and those
of [25] can lead us to predict a reduced total bootstrap current
density in the pedestal for experimentally relevant plasma
parameters when ν∗e > 1. This difference is primarily due to
our lower L31, which multiplies the large dp/dψ term. When
ν∗e < 1, our prediction for the total bootstrap current density
becomes indistinguishable from that of [25].

As with the flow, the total current vector j remains
divergence free in the pedestal ordering:

0 = ∇ · j = ∇ · (j‖b + cB−2B × ∇ · ↔
��), (46)

where
↔
�� = m

∫
d3v vv(fi + fe) is the total diagonal

anisotropic stress, including O(p) and O(δp) terms. Equation
(46) can be proved from (44) and (26) using (24), fe ≈
fMe + e�1fMe/Te, and (29).) Equation (46) indicates the
new k‖ and ng terms in (44) arise for the same fundamental
reason as the conventional Pfirsch–Schlüter current: a parallel
current must flow to maintain ∇·j = 0 given the perpendicular
diamagnetic current. In the pedestal, the diamagnetic current
associated with the poloidally varying pressure becomes large
enough to modify the parallel current on the level of the dTi/dψ

terms.

Figure 6. Parallel current coefficients defined in (45) computed by
our local code (dots, connected by solid curves). Dashed curves
show the semi-analytic formulae of Sauter et al [25].
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Figure 7. (a) Model profiles resembling the DIII-D measurements
in figure (8) of [44] and a plausible q profile yield the collisionality
profiles in (b). (c) The local code described here predicts identical
total bootstrap current density to the formulae of [25] for lower
collisionality. (d) We predict somewhat lower current density at the
real collisionality, due primarily to the discrepancy in L31 shown in
figure 6(b). (e) At higher collisionalities, the differences become
significant.

7. Global numerical scheme

It is equally valid and equally numerically challenging to solve
either (23) or (25). For the rest of the analysis here we discuss
the case of (25) for definiteness.

As we are interested in a narrow radial domain around
the pedestal, we assume I , B, and ∇‖θ are independent of ψ

for simplicity. These approximations are also convenient as
they make vm · ∇θ = 0 exactly for our form of the drifts.
For simplicity, we also take η and Ti to be constant over
the simulation domain. The one place where dTi/dψ must
be retained is in the inhomogeneous term, since the drive
is ∝ dTi/dψ . As the kinetic equation is linear, g may be
normalized by dTi/dψ , while every other appearance of Ti is
treated as a constant.

Both versions of the global kinetic equation (23) and
(25) resemble their local counterparts (1) and (3), but with
the additional vd0 · ∇ term in the unknown. Due to the
radial derivative in this term, the radial coordinate no longer
enters the kinetic equation as a mere parameter, meaning the
problem is now four-dimensional: g = g(ψ, θ, µ,W0). In
these original variables, the allowed range of each coordinate
depends on the other coordinates in a complicated manner.

For numerical work it is therefore convenient to change the
independent variables from (µ, W0) to (v, ξ) so the coordinate
ranges become coordinate-independent. In these variables, the
kinetic terms in (23) and (25) become

(v‖b+vd0) · (∇g)µ,W0 = K0{g}+KE{g}+vm ·∇ψ
∂g

∂ψ
, (47)

where

K0 = v‖(∇‖θ)
∂

∂θ
− v

(1 − ξ 2)

2B
(∇‖B)

∂

∂ξ
(48)

is the drift-kinetic operator implemented in conventional
neoclassical codes [16, 22], and

KE = vE0 · ∇θ
∂

∂θ
+ ξcI

d�0

dψ

(1 − ξ 2)

2B2
(∇‖B)

∂

∂ξ

−vm · ∇ψ
e

miv

d�0

dψ

∂

∂v
(49)

consists of new terms proportional to the radial electric field.
In a pedestal, not only is the ∂g/∂ψ term in (47) important,
but the terms in KE also become equally important. The
aforementioned ordering for d�0/dψ implies each term in
KE comparable in magnitude to K0. Physically, the latter two
terms in (49) are essential for maintaining conservation of µ

and total energy as a particle’s kinetic energy changes during
an orbit. This kinetic energy changes because the electrostatic
potential seen by the particle varies over an orbit width.

We choose ni(ψ), which determines �0 = (Ze)−1Ti

ln(η/ni). On either end of the radial domain, we take ni(ψ)

and �0(ψ) to be uniform for a distance of several ρθ , as
illustrated in figures 8(a) and (b). In this way, the distribution
function will approximate the local neoclassical solution at
the radial boundaries, so local solutions can be used there as
inhomogeneous Dirichlet boundary conditions.

As the kinetic equation (25) is linear, it may in principle
be solved numerically using a single matrix inversion. Indeed,
this is the approach traditionally adopted by local neoclassical
codes [16–18, 22], including the one described in section 3.
However, this approach is already somewhat numerically
challenging for the local problem due to the three-dimensional
phase space, as the matrix has dimension (Nθ Nv Nξ) ×
(Nθ Nv Nξ), where Nθ , Nv and Nξ are the number of modes
or grid points in the respective coordinates. In the nonlocal
case, the additional spatial dimension means the matrix size
must increase to (Nψ Nθ Nv Nξ) × (Nψ Nθ Nv Nξ)

for Nψ radial grid points, making the solution much more
time- and memory-intensive. Therefore we seek an alternative
method.

In the new approach proposed here, a derivative with
respect to a fictitious time ∂g/∂t is first added to the left-hand
side of (25). For reasonable initial conditions and boundary
conditions, g should evolve towards an equilibrium since the
equation (25) is dissipative. However, an explicit time advance
requires very small time steps for stability due to the many
derivatives in the kinetic equation, and an implicit time advance
would require the inversion of a matrix just as large as for a
direct solution of the original time-independent equation.
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Figure 8. (a) Equilibrium density profile for the global calculation,
normalized to its value at the left boundary. (b) Normalized radial
electric field −cI (viB0)

−1d�0/dψ . (c) Profile of ν∗. (d) Parallel
flow coefficient k‖, evaluated at the outboard midplane (θ = 0).
Black dashed curve indicates the result of the local neoclassical
code. The other curves (nearly indistinguishable) demonstrate the
convergence of the global code to the various numerical resolution
parameters. (e) Radial heat flux, with the same legend as (d). (f )
Normalized poloidal flow kθ and k‖ evaluated at the outboard and
inboard (θ = π ) midplanes.

An effective solution is to employ the following operator-
splitting technique. Consider the following series of two
backwards-Euler time steps:

gt+(1/2) − gt

�t
+ KNL{gt+(1/2)} = 0, (50)

gt+1 − gt+(1/2)

�t
+ KL{gt+1} = Ci{F } + S. (51)

where KL = K0 + KE − Ci is the ‘local operator’ and
KNL = (vm · ∇ψ)∂/∂ψ is the ‘nonlocal operator’. When
summed together, gt+(1/2) cancels, leaving an equation that
is equivalent to first order in �t to a backwards-Euler time
step with the complete operator KNL + KL. However, each of
the steps (50)–(51) are much easier than a step with the total
operator because the dimensionality is reduced: e.g. ψ is only
a parameter in (50), so this step requires the inversion of Nψ

matrices, each of size (Nθ Nv Nξ) × (Nθ Nv Nξ). Also
note that the local operator at each radial grid point need only
be LU -factorized once, with the L and U factors reused at

each time step for rapid implicit solves. The same is true of
the nonlocal operator at each v and ξ .

Several higher order operator-splitting schemes were
explored, but none were found to be stable for the equation
here.

The procedure outlined here provides a general recipe
for extending a conventional neoclassical code into a pedestal
code. A conventional neoclassical code inverts an operator
K0 − Ci, i.e. many of the terms in KL, so minor modifications
would allow such a code to carry out the local part of the time
advance. The modifications necessary are adding the electric
field terms KE and adding the diagonal associated with the
time derivative. The resulting operator is then iterated with
the nonlocal operator.

For the results shown here we employ a piecewise-
Chebyshev grid in ψ with spectral colocation differentiation.
A tiny artificial viscosity is required at the endpoints for
numerical stability; the magnitude of this viscosity may be
varied by many orders of magnitude with no perceptible change
to the results. Inhomogeneous Dirichlet radial boundary
conditions are imposed, with the distribution function at these
points taken from the local code. For completeness, we
have also tried upwinded high-order finite differences for
radial differentiation, with the upwinding direction opposite
above and below the midplane, corresponding to whether
drift trajectories in the region move towards increasing or
decreasing ψ . For our sign convention, the magnetic drifts are
downward, so the inhomogeneous Dirichlet radial boundary
condition must be specified above the midplane at large
minor radius and below the midplane at small minor radius.
This radial discretization scheme gives equivalent results to
the Chebyshev method, but it requires more grid points for
convergence, and a numerical instability tends to arise at large
times.

8. Need for a sink

In order to reach equilibrium, it is essential to include a
heat sink. This requirement may be understood physically
as follows. As we take the scale lengths at each radial
boundary to be large compared with ρθ , the heat flux into
the volume at small minor radius and the heat flux out of
the volume at large minor radius are determined by the
local neoclassical result (5). These fluxes are different due
to the different densities at the two boundaries, and so net
heat will constantly leave (or enter) the simulation domain.
More rigorously, as shown in appendix B, the 〈∫ d3v( · )〉
and

∫ ψmax

ψmin
dψ V ′〈∫ d3v(miv

2/2)( · )〉 moments of the kinetic
equation in steady state give
1

V ′
d

dψ
V ′

〈∫
d3v gvm · ∇ψ

〉
=

〈∫
d3v S

〉
, (52)

[
V ′

〈∫
d3v g

miv
2

2
vm · ∇ψ

〉]ψmax

ψmin

+Ze

∫ ψmax

ψmin

dψ V ′ d�0

dψ

〈∫
d3v gvm · ∇ψ

〉

=
∫ ψmax

ψmin

dψ V ′
〈∫

d3v
miv

2

2
S

〉
. (53)
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The first equation represents local mass conservation, and
the quantity following V ′ is the particle flux. The particle
flux is exactly zero in the local limit, so it vanishes at the
radial boundaries, and so in the absence of a source/sink,
it must vanish everywhere in the domain. In the second
equation, representing global energy conservation, the first
term is the difference between the heat into and out of the
domain, and the second term represents change in electrostatic
energy associated with particle flux. If S = 0, then the latter
two of the three terms in (53) vanish, but the first term is
nonzero because the heat fluxes at the two radial boundaries
are generally unequal. This contradiction proves the kinetic
equation has no steady-state solution without a sink S.

In a real pedestal, there will be a divergence of the
turbulent fluxes, which would act as a sink term in the
long-wavelength (drift-kinetic) equation we simulate here.
Determining the phase-space structure of this turbulent sink
term from first principles is an extremely challenging task,
beyond the scope of this work. We therefore use a variety of
ad hoc sink terms, and we find the simulation results are only
mildly sensitive to the particular choice of sink.

The standard sink we use is

S = −γ 〈g(ξ) + g(−ξ)〉 , (54)

where γ is a constant. The sum over signs of ξ ensures that S

vanishes exactly for an up-down symmetric magnetic field in
the local limit, due to the parity of the local solution discussed
in appendix A. This sink is quite similar to the one described
in [61] for global δf gyrokinetic codes. The constant γ may be
varied by several orders of magnitude without major qualitative
changes to the results.

Another option we consider for the sink is

S = −γm 〈n1〉 fMi − γp 〈p1〉
(

miv
2

2Ti
− 3

2

)
fMi, (55)

where γm and γp are constants, n1 = ∫
d3v g, and p1 =∫

d3v (miv
2/3)g. The first term in (55) dissipates any mass

in g, while the second term dissipates any energy in g.

9. Results

Figures 8–10 show results of the global calculation for a
pedestal with ε = 0.3. The simulation domain consists of
an annular region in space, i.e. an interval in ψ . The density
varies by roughly a factor of 3 from the top of the pedestal to the
bottom, with the profile of dimensionless n = ni/ni(r = −∞)

shown in figure 8(a). This density profile implies the electric
field profile shown in figure 8(b), which reaches a minimum
of ≈ − 0.5viBθ/c in the pedestal center. The collisionality
ν∗ ranges from 0.5 to 0.15 over the domain. (We choose this
arbitrary range close to one just to emphasize that ν∗ is not
formally large or small in this formulation.) In these plots, the
radial coordinate r/ρθ is defined by r/ρθ = ZeB0(micviI )−1ψ

where B0 is the toroidal field on axis. The radial location r = 0
is an arbitrary minor radius, (here the middle of the pedestal),
not the magnetic axis. The sink used is (54) with γ = 0.1ωt ,
where ωt = vi∇‖θ is the transit frequency. The simulation

is nearly converged by t = 30/ωt , but very small changes
in the results continue until t = 200/ωt . We plot results for
t = 200/ωt since doubling this duration produces no visible
change to the results. By t = 200/ωt , the residual, which we
define as a sum over all phase-space grid points of |∂g/∂t |, has
been reduced to 0.05% of its initial value.

It is also important to verify that the code has converged
with respect to the many other numerical parameters.
Figure 8(d) shows the parallel flow coefficient k‖ at the
outboard midplane for 11 global runs, all with the same
physics parameters, but varying each numerical parameter by
a factor of two: simulation duration (tmax), time step (dt),
artificial radial viscosity, number of poloidal modes (Nθ ),
number of Legendre polynomials in the Rosenbluth potentials
(NL), number of grid points in v, ξ and ψ (Nv, Nξ and
Nψ), and domain size in speed (vmax) and radius (ψmax).
The changes are barely perceptible, demonstrating very good
convergence. For comparison, the profile computed by the
local code is also plotted, calculated by solving (3) (i.e. a
single linear system solve) at each radial grid point. The
local coefficient varies across the pedestal due to the change
in collisionality. Resolution parameters were, unless doubled,
Nθ = 6, Nψ = 29, Nξ = 25, Nv = 16, rmax = 4ρθ ,
vmax = 5vi, NL = 2 and dt = 0.01ωt . Running in Matlab on
a single Dell Precision laptop with Intel Core i7-2860 2.50 GHz
CPU and 16 GB memory, the base case global simulation
took roughly 3 hours to reach t = 200ωt , though runs could
undoubtedly be greatly expedited if the code were parallelized
and rewritten in fortran. Work to this end is underway. The
local solver for these parameters took 0.5 seconds per radial
grid point.

Figures 8(d)–(f ) show the heat flux kqn
2 and the flow

coefficients k‖ and kθ at the outboard and inboard midplanes.
(It is radial variation in the heat flux kqn

2 and not kq itself that
determines local heating, as shown by (5) and (53)). Outside of
the pedestal, as expected, these coefficients agree with the local
prediction, and k‖ and kθ are equal and poloidally invariant. In
the pedestal, however, all coefficients are substantially altered
from the local prediction; k‖ and kθ differ and vary poloidally.
The radial heat flux profile is flattened relative to the local
prediction.

For the parameters used here, k‖ and kθ change sign in
the simulation within the pedestal. These coefficients may
have either sign in conventional theory, as shown in figure 2,
depending on collisionality and magnetic geometry. In both
the local and global cases, the integrand v‖g that determines
k‖ ∝ ∫

d3v v‖g is positive in part of phase space and negative
elsewhere, and the balance between these regions determines
the overall sign.

Structure with a radial scale comparable to ρθ is observed
in the flow coefficients. Ions ‘communicate’ over distances
comparable to the orbit width ∼√

ερθ , and so the effects of
the driving electric field well are felt outside of the well itself,
with influence decaying on the orbit width scale. The behavior
of the flow coefficients on either side of the well need not be
monotonic, as the mean flow adjacent to the well arises from
a complicated interplay of particles entering from regions of
differing collisionality, some particles directly affected by the
electric field and some not.
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Figure 9. Poloidal variation of the parallel flow coefficient k‖ and
normalized poloidal flow kθ at two radial locations straddling the
pedestal.

The flow coefficients are also observed to be nonmono-
tonic functions of r . This behavior is not unreasonable given
the radial localization of the electric field well: even the local
distribution function is a nonmonotonic function of r , since it is
a complicated function of the radially varying collisionality, so
in the global case the flow coefficients need not be monotonic
in r .

Figure 9 shows the poloidal variation of the flow
coefficients near the pedestal top and bottom. As discussed
in the appendix, the drift terms in the kinetic equation break
the symmetry which the distribution function possesses in the
local case, and so the flow coefficients need not be even or odd
in θ .

The various components of the mass conservation
equation (26) were each independently computed from g: ∇ ·∫

d3v v‖gb, ∇·∫ d3v vE0g, ∇·∫ d3v vmg and
∫

d3v S. The first
three of these integrals summed to nearly zero everywhere in
space, with the sink integral negligible in magnitude compared
with the others. Thus, the sink has little effect on the mass
conservation relation that effectively determines the flows. The
vm integral was intermediate in magnitude, leaving a dominant
balance between the ∇ · ∫ d3v v‖gb and ∇ · ∫ d3v vE0g terms.
The density

∫
d3v g has a ∝ cos(θ) behavior in the pedestal,

resulting in ∇ · ∫
d3v vE0g ∝ (∂/∂θ)

∫
d3v g ∝ − sin(θ). To

balance this term in the mass conservation law, k‖ must develop
a − cos(θ) structure, which can be seen in figure 9. Outside
of the pedestal, the vE0 term becomes negligible due to the
reduced |d�0/dψ |, so this drive for poloidal variation in k‖ is
absent.

Figure 10 shows how the results are altered when different
choices are made for the sink. For the sink (54), we show
results for γ = 0.1ωt (the value used for all other plots) and
for γ = ωt . We also show results for the alternative sink (55).
For comparison, results are also shown for a run in which no
sink was included. For this run the code did not converge in
time, due to the constant loss of heat described in section 8, so
it was stopped at t = 30ωt (a time before the heat loss becomes
excessive, but after the runs with sinks have nearly converged.)
The various options yield results that show the same qualitative
modification of the coefficients: a well develops in k‖ and kθ

at the outboard midplane, and the heat flux profile is flattened
relative to the local prediction.

As a further test of the code, we repeated the numerical
calculation, treating f1 as the unknown quantity instead of
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Figure 10. Using the same equilibrium density profile (a) and Er

profile (b) as in figure 8, the parallel flow coefficients (c)–(d) and
heat flux (e) show some minor dependence on the the choice of sink.
However, qualitative features such as the well in k‖ and kθ at the
outboard midplane are robust.

g, in which case the inhomogeneous term in the equation is
−vD ·∇fMi instead of Ci(F ). Despite the very different phase-
space structure of these two source terms, the numerical results
from the two approaches agreed, as they should.

10. Discussion

In this work we have demonstrated a method to extend
neoclassical calculations to incorporate finite-orbit-width
effects in a transport barrier for the case of Bθ � B (which is
a good approximation in standard tokamaks) and a relatively
weak ion temperature gradient. The method is implemented
in a new continuum δf code. Operator splitting is used to
improve numerical efficiency, and we have demonstrated that
excellent convergence is feasible for experimentally relevant
parameters. By construction, the method exactly reproduces
conventional (local) results in the appropriate limit of weak
radial gradients. The Rosenbluth potentials are solved for
along with the distribution function at each step, allowing
use of the full linearized Fokker–Planck–Landau collision
operator.

A principal finding of this work is that the parallel and
poloidal flows may differ significantly from the conventional
predictions. While the coefficients of the poloidal flow and
dTi/dψ-driven parallel flow are equal in conventional theory,
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in the pedestal these two coefficients (k‖ and kθ ) differ. And,
while the poloidal variation of the poloidal flow is ∝ Bθ in the
core, the same is not necessarily true in the pedestal. The
poloidal variation of the flow is effectively determined by
mass conservation, and in the pedestal, two new terms become
important which are normally neglected: E × B convection
of the poloidally varying density, and radial variation of
the particle flux (which can be related to diamagnetic flow
from the correction to the pressure). These effects cause
the parallel flow coefficient k‖ to take a well-shaped radial
profile, with different magnitude and (for some parameters)
opposite sign, relative to the conventional local neoclassical
result. In addition, the flow coefficients exhibit a strong
poloidal variation not previously found. While this poloidal
variation resembles cos(θ), it contains other harmonics and is
asymmetric about the midplane due to the magnetic drift.

These issues may be important for comparisons of
experimental pedestal flows to theory [11, 12]. In general,
the flow coefficients may differ in both magnitude and sign
relative to local theory, as shown in figure 8. The fluid flow
exhibits strong shear, with radial variation on the ρθ scale.

Associated with the modification to the flow, the parallel
current is also modified. Due to the additional terms which
must be included in the mass conservation equation, the
usual division of the parallel current into Pfirsch–Schlüter
and ohmic-bootstrap components is modified, as shown in
equation (44). In addition, the dTi/dψ contribution to the
bootstrap current is altered, as shown in (45). In the δf

formulation, the ion temperature scale length cannot be as
small as the density scale length in the pedestal, so these
modifications to the parallel current are modest. However,
similar changes to the current would presumably occur in a
full-f calculation when rT ∼ ρθ , giving order-unity changes
to the Pfirsch–Schlüter and bootstrap currents in that case. This
issue needs to be examined in future studies.

In the development of this work, the local code was
also used to test several analytic expressions for conventional
neoclassical theory. The flow and heat flux coefficients
k‖ = kθ = 1.17, kq = 0.66 derived using the momentum-
conserving pitch-angle scattering model for collisions are a
poor approximation unless ε is � 0.1. Expressions (16)–
(17) are a much better approximation at realistic aspect ratio.
The Chang–Hinton heat flux captures the trends at finite ε and
ν∗ well and gives results correct to within 20%, at least for
the circular concentric flux-surface model. The semi-analytic
local formulae of Sauter et al [25] for the flow and bootstrap
current coefficients were found to be in excellent agreement
with our local code when ν∗ < 0.3, but some disagreement
was found for 0.3 < ν∗ < 100. For pedestal profiles typical
of DIII-D, the Sauter bootstrap current formula closely agreed
with our code at low collisionality, ν∗e < 1, but the Sauter
formula can give a bootstrap current more than twice ours
when ν∗e � 10. The Sauter formulae are intended to reproduce
results from a code based on the same physical model as our
conventional local code.

There are many ways in which the global calculations can
be extended. First, it would be useful to include impurities, for
it is typically the impurity flow that is measured rather than that

of the main ions, and the flows of different ion species may be
significantly different [7]. Also, the presence of impurities
can introduce a direct density gradient dependence [7] to
g. Second, the method should be extended to allow strong
temperature gradients (rT ∼ ρθ ). Doing so will require the full
bilinear collision operator and a full-f treatment. However,
as the weak-T ′

i case is less complicated to analyze, due to the
linearity of the kinetic equation, thorough understanding of this
limit using the present approach is important for benchmarking
future more sophisticated full-f codes. Finally, studies of the
velocity-space structure responsible for fluxes in turbulence
codes may yield more accurate forms of the sink term needed
in our approach.
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Appendix A. Null space and symmetry of the
distribution

The local drift-kinetic equations (1) and (3) have two null
solutions fMi and v2fMi, meaning that the discretized matrix
for the local code should be nearly singular. In practice,
the matrix is still sufficiently well conditioned that the
linear system may be solved without a problem, yielding
a distribution function that contains a small amount of the
two null solutions. For many applications this may not be
a concern, because these null solutions do not contribute to the
heat flux and flow.

For an up–down symmetric tokamak (i.e. if B and ∇‖θ
are both unchanged under θ → −θ ), then a symmetry exists
in the local kinetic equations: if f1(θ, ξ, v) is a solution, then
so is −f1(−θ, −ξ, v) (and similarly for g). This property
can be exploited to simultaneously eliminate the null space
from the matrix and to reduce its size [22]. This is carried
out by forcing f1 to have the above symmetry by representing
it as a sum of two types of modes: those that are even in
θ and odd in ξ , and those that are odd in θ and even in ξ .
The two null solutions do not possess this symmetry, so they
are automatically excluded. Furthermore, the matrix size is
reduced without loss of resolution. For example, the ξ grid can
be reduced to only cover the interval [0, 1] instead of [−1, 1] if
all sin(Mθ) and cos(Mθ) modes are retained. The odd-θ (i.e.
sin(Mθ)) modes are forced to be even in ξ by application of
the boundary condition ∂f1/∂ξ = 0 at ξ = 0, and the even-θ
(i.e. cos(Mθ)) modes are forced to be odd in ξ by application
of the boundary condition f1 = 0 at ξ = 0.

Even if the parity of the solution is not enforced
automatically by the discretization in this manner, the
null solutions can still be excluded by enforcing parity as
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follows. Given a numerical solution f1(θ, ξ, v) that contains
some of the null solutions, the combination [f1(θ, ξ, v) −
f1(−θ, −ξ, v)]/2 can be formed; the result will also satisfy
the kinetic equation but have the desired parity.

In the global case, the symmetry of the kinetic equation
is broken by the drift terms. However, the local operator has
no null space in the initial-value-problem formulation due to
the extra contribution on the matrix diagonal from the time
derivative.

Appendix B. Conservation laws for the global
drift-kinetic equation

Here we sketch the derivation of general conservation
equations, from which (26), (52) and (53) can be obtained.
For most of this appendix we do not assume axisymmetry,
we retain radial variation of magnetic quantities, and we do
not require B · ∇� = 0. We do require the electric field
to be electrostatic and we assume ∂�/∂t and ∂B/∂t can be
neglected. The derivation applies both to the full-f and δf

contexts, since the necessary integrals of both the bilinear and
linearized ion–ion collision operators vanish.

We begin with the ion drift-kinetic equation

∂fi/∂t + v‖∇‖fi + vd · ∇fi = C{fi} + S, (B1)

where vd = (v‖/�)∇ × (v‖b) and C is either the bilinear or
linearized Fokker–Planck–Landau operator. Gradients are all
performed at fixed µ and total energy W = miv

2/2 + Ze�

(including the total potential �, not just �0), so vd includes
both the magnetic drift vm and E × B drift vE . This form
of vd is convenient because it makes the kinetic equation
conservative without cumbersome higher order terms. This
vd includes an incorrect O(β) � 1 parallel magnetic drift, but
this component of the magnetic drift is typically unimportant
compared with parallel streaming motion, and in fact vm · ∇θ

is precisely zero in the model magnetic geometry we use in the
code. It is convenient to first rewrite

v‖∇‖fi + vd · ∇fi = v‖
B

∇ ·
(
fiB +

mic

Ze

v‖
B

B × ∇fi

)
. (B2)

Then
∫

d3v is applied to (B1), annihilating C. Notice∫
d3v = 2π

m2
i

∑
σ

σ

∫ ∞

Ze�

dW

∫ (W−Ze�)/B

0
dµ

B

v‖
, (B3)

where σ = sgn(v‖). The divergence in (B2) may be pulled
in front of the integrals in (B3), as the contributions from
differentiating the integration limits all vanish either due to the
σ sum or because v‖ = 0 at the lower limit of W . Application
of several vector identities to the B × ∇fi term then yields a
mass conservation equation:

∂

∂t

(∫
d3v fi

)
+ ∇ ·

(∫
d3v[v‖b + vd]fi

)
=

∫
d3v S.

(B4)

Flux-surface averaging and neglect of �1 then gives (52).
An energy conservation equation may be obtained by

observing that the above derivation of the mass conservation

equation is essentially unchanged if
∫

d3v W is applied to (B1)
in place of

∫
d3v. Subtracting Ze�× (B4) from the result, one

obtains

∂

∂t

(∫
d3v

miv
2

2
fi

)
+ ∇ ·

(∫
d3v[v‖b + vd]

miv
2

2
fi

)

+

(∫
d3v[v‖b + vd]fi

)
· Ze∇� =

∫
d3v

miv
2

2
S. (B5)

In the special case of axisymmetry and ∇‖� = 0, flux-surface
averaging and integration in ψ then gives (53).

To obtain the momentum conservation equation, it is
convenient to specialize to axisymmetry at the start, taking the∫

d3v(Iv‖/B) moment of (B1), and using vd ·∇fi = (v‖/B)∇·
[fi(mic/Ze)∇ × (v‖b)] instead of (B2). The divergence may
be brought in front of the W and µ integrals as before. Noting
vd · ∇(Iv‖/B) = 0 and v‖∇‖(Iv‖/�) = vd · ∇ψ , the result
may be written

∂

∂t

(∫
d3v

Iv‖
B

fi

)
+ ∇ ·

(∫
d3v

Iv‖
B

[v‖b + vd]fi

)

− Ze

mic

∫
d3v fivd · ∇ψ =

∫
d3v

Iv‖
B

S. (B6)

This result holds in axisymmetry even if ∇‖� and/or ∇‖I are
nonzero.

Appendix C. Convenient gauge

Here we prove that the gauge may always be chosen so

E|| = B〈
B2

〉 〈
E||B

〉 − ∇‖�. (C1)

Axisymmetry is not required, and the loop voltage need not be
uniform. The utility of (C1) is that the inductive part of E|| has
simple spatial variation ∝B.

Suppose we begin in a different gauge, denoted by tildes,
in which

Ẽ = −c−1∂Ã/∂t − ∇‖�̃. (C2)

We may transform to a new gauge using � = �̃ − ∂χ/∂t and
A = Ã − ∇χ for a generator χ . We choose

χ =
∫ t

0
dt ′

∫ θ

0
dθ ′ 1

B · ∇θ

[
B2〈
B2

〉 〈
E||B

〉
+

1

c
B · ∂Ã

∂t

]
(C3)

where the integrand is evaluated at t ′ and θ ′ rather than t and
θ . We must verify (C3) is single-valued in θ so � is single-
valued. To this end, notice 〈B · ( )〉 applied to (C2) gives
〈E||B〉 = −c−1〈B · ∂Ã/∂t〉. Therefore χ(θ = 2π) = 0 =
χ(0), so χ is indeed periodic. Applying ∇‖ to � = �̃−∂χ/∂t

with B· (C2) and (C3) then gives (C1) as desired.
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