Modeling Epidemics: Introduction



First Models

e Preliminary goal: Model the spread of an infectious
(contagious) illness through a population.
e Simplifying assumptions:
o The total population N is constant in time.
« A newly infected person becomes infectious the
next day and remains infectious forever.
» Each infectious person is equally likely
(probability p) to infect each noninfectious person
on a given day.

e Let /(1) be the number of infectious people at the start
of day 1.



Stochastic Model

e Number the people from 1 to N.

o Let x,(f) be the infectious status (1 if infectious, O if
not) of person n at the start of day .

e We can simulate a possible spread of the illness with
the following program ("rand”= random number):
for t=1:T-1
for n=1:N
let x(n,t+1)=x(n,t)
for m=1:N
if x(m,t)=1 and rand<p, then let x(n,t+1)=1
end
end
end



Simulation Results

o Notice that /() = SN . x,(1).

e Here are the results of a simulation with p = 107,
N = 1000, and /(1) = 10:
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Simulation Results

e And here are the results of three different simulations
with p = 104, N = 1000, and /(1) = 10:
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Simulation Results

e Finally, here are the results of three different
simulations with p = 104, N = 1000, and /(1) = 1:
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Expected (Average) Daily Outcome

e Let’s determine the expected number of people
infected on a day f that starts with /(f) infectious
people and N — [(t) who are susceptible to infection.

e A susceptible person n has probability 1 — p of NOT
being infected on day t by a given infectious person
m. Therefore, person n has probability (1 — p)(! of
NOT being infected on day .

e The expected number of people who are infected on
day tis then [1 — (1 — p)'D][N — I(t)], so

E[(t+1)] = 1(t) + [1 = (1 = p) ][N — I(1)]



Deterministic Models

e If both /(t) and N — I(t) are large enough, it may be
reasonable to approximate /(f + 1) by its expected
value, resulting in a deterministic model:

(t+1)=I(t)+[1 = (1 =p)OIN—I(t)] (1)
o If pl(t) is small, we can approximate (1 — p)'(¥) by
1 — pl(t), yielding a simpler model:
I(t+ 1) = I(t) + pl(H)[N — ()] (2)

e For these models, given /(1) we can compute /(2),
1(3), ....



Deterministic versus Stochastic

e These deterministic models are much more efficient
to compute (1 calculation versus N? for the stochastic
model). Their predictions may be just as reasonable
as any particular simulation of the stochastic model.

e The stochastic model can give some idea of the
uncertainty of its predictions via multiple simulations;
the deterministic models we’ve written down say
nothing about their uncertainty.



Continuous-Time Model

e The models we have discussed so far are called
discrete-time models; time t takes on only integer
values.

o We can approximate these models by
continuous-time processes; approximating model (2),
we get

I(t) = pl(t)[N — I(1)] (3)

e We can write down an exact solution to this
differential equation:
NI
I(t) = ©
I(0) + [N — 1(0)]e—PM




Fitting the Model to Data

e The solution /() of model (3) has three parameters:
N, p, and /(0). Suppose we know N but not the other
two parameters. Given a set of data points [, /|, we
can ask which values of p and /(0) best fit the data.

¢ [A more fundamental (but more difficult) question is
whether the model can adequately fit the data at all;
are there ANY parameters of the model that fit the
data reasonably well?]

e We could try to minimize the sum of the squares of
the residuals /; — /(f;). However, this would be a
NONIlinear least squares problem, because /({) is not
a linear function of p or /(0).



Way 1 to use Linear Least Squares

e If the data is given at consecutive values of ¢, say
t; = J, then one approach is to use model (2) and
write

I(t+1)—I(t) = pl(t)[N — I(1)].

The right-hand side is a linear function of the
parameter p, and linear least squares yields the value
of p that minimizes the sum of the squares of the
residuals /i1 — I — pli(N — ;).

e This doesn’t resolve the question of which value of
/(0) to use. If we let {; = 0 for the first data point, then
we could let /(0) = /. However, this might not be the
best choice of /(0) in order to make the residuals
l; — I(t;) small.



Way 2 to use Linear Least Squares

e Going back to the solution of model (3), we can make
a transformation of variables so that the transformed
solution does depend linearly on its parameters. First
we divide both sides into N and simplify:

N/I(t) =1+ [N/I(0) — 1]e "M

e Next subtract 1 and take the logarithm:
log[N/I(t) — 1] = log[N/I(0) — 1] — pNt

e Let Z(t) = log[N/I(t) — 1]; then the model becomes
Z(t) = Z(0) — pNt. This is a linear function of the
parameters pN and Z(0). One can transform the data
to pairs (f;, Z;), use linear least squares to determine
values for pN and Z(0), and then solve for p and /(0).



Caveat

e Both ways of using linear least squares transform the
model or its solution into a linear relationship
between two quantities that can be computed from
the data points (1. /;); in the second way, the model
predicts that Z; is a linear function of .

e Rather than simply accept the result of the least
squares fit, one should graph the predicted
relationship (e.g., Z; versus ;) and see if it actually
looks linear. This gives some idea of how valid the
model is.

e Regardless of how one determines values for p and
1(0), one should also check directly how well the
resulting /(1) fits the data.



More Sophisticated Models

Let’s re-examine the assumptions behind our first
models and discuss how to make them more realistic.

We assumed a fixed population size N that was
isolated from other sources of the hypothetical illness
we modeled.

We assumed that a single number p represents the
probability of an infectious person infecting a
susceptible person on each day, for each such pair of
people.

A more realistic model would allow p to depend on a
number of factors.



Modeling the Infection Probability p

In real life, the infection probability p depends on the
pair of people. However, introducing an independent
probability p,,, for each pair of people m and n results
in way too many parameters.

Also, p depends on time; for example, day of week.

Perhaps most importantly, p depends on how long
the infectious person has had the illness. Typically it
peaks a certain amount of time after infection, then
decreases to 0.

To keep the number of parameters manageable, we
need to have a model for how p depends on these
factors.



Compartmental Models

Many models divide the population into a relatively
small number of categories (“compartments”) and
keep track of the number of people in each
compartment.

Our first deterministic models had two compartments:
“susceptible” and “infectuous”. We’ll call the
continuous time model (3) the SI model.

A widely studied model is the SIR model, which
introduces a third compartment: “recovered”. People
in this category are no longer infectious.

Other possible compartments can take into account
more stages in the progression of the iliness, different
behavior patterns, different biological characteristics,
etc.



Fitting to Data, Revisited

e In our earlier discussion, we assumed that the
number of infectious people at a given time could be
measured. But how would we ever know this
number?

e The number of infectious people is often inferred from
data on new diagnoses of the illness. However:

» Not all people who get the iliness see a doctor.

o Diagnosis may come well after a person
becomes infectious.

» Data is not always reported (e.g., to CDC)
promptly or reliably.

e A common problem in modeling is to relate the
quantities of interest to the available data.



