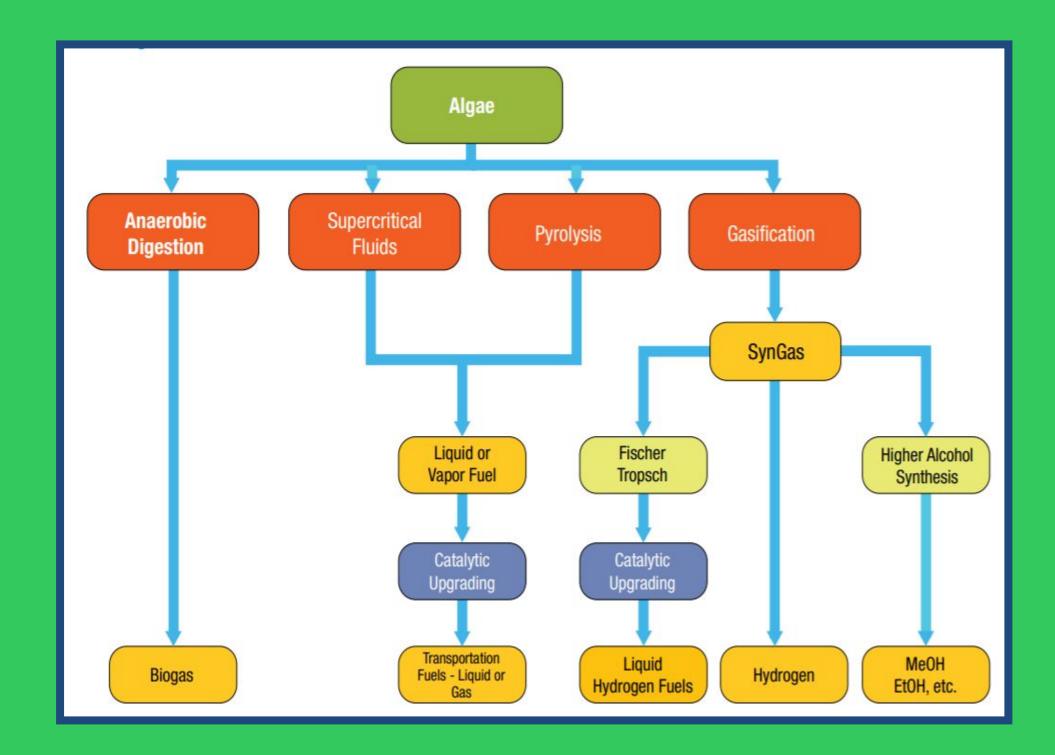

Search For Solutions: Algal Biofuels

Riley Donnelly, Jada-Mercy Ayebae, Luz Villanueva CPSG200 Science & Global Change Sophomore Colloquium November 18, 2019

Introduction


There are over 100,000 diverse strains of algae whose ability to convert sunlight to energy by photosynthesis can be harnessed to produce agal biofuels¹. Certain microalgae accumulate large amounts of lipids which are a high density energy source². The fat/lipid of the algae is then extracted and can be harvested to power cars, truck, planes, and trains. Algae are a renewable resource and carbon neutral.

Graph showing estimated algae production now verse in 2030⁴.

Criticisms⁴

- Water use will increase especially for arid lands
- 30 million acres of land will be needed
- Fertilizer will be needed for algae nutrients-additional 50 million tons of phosphate will be needed
- US\$300–2600 per barrel compared to \$60-200 per barrel of gasoline

This diagram shows how algae can be converted from algae into various energy sources²

Benefits²

- High per-acre productivity
- Non-food based feedstock resources reduces competion with agriculture
- Use of otherwise non-productive, non-arable land
- Utilization of a wide variety of water sources: wastewater, salt water, ect.
- Production of biofuels and co-products
- Potential recycling of CO₂ from power plants and industrial sites
- Oil yields from certain algae are 60 times higher than soybeans

Ideally how the nutrients should be recycled to produce maximum algae production⁴.

Readability

- Can be used today but it is more expensive than fossil fuels³
- Improvements in strain identification and production⁴
- Was being farmed but was too expensive³

Bibliography:

1 Agal Biofuels. U.S. Department of Energy. https://www.energy.gov/eere/bioenergy/algal-biofuels

2 U.S. DOE 2010. National Algal Biofuels Technology Roadmap. *U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program*. https://permanent.access.gpo.gov/gpo4802/algal_biofuels_roadmap.pdf

3.Lo Chris. Agal biofuel: the long road tot commercial viability. 2019. https://www.power-technology.com/features/algal-biofuels-challenges-opportunities/

4 Hannon M, Gimpel J, Tran M, et. al. BIofuels from algae: challenges and potential. 2010; 1(5). Biofuels. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152439/