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Abstract

The US regulatory agencies predicted that the 2012-2016 passenger vehicle fuel

economy standards would substantially increase social welfare. We provide the first

comprehensive social welfare estimates of recent standards using a new equilibrium

model that includes fixed and variable costs of raising fuel economy, manufacturer

substitution between fuel economy and performance, and heterogeneous consumer

preferences and manufacturer costs. The standards have reduced greenhouse gas

emissions at a cost of $6 per tonne of carbon, implying that standards have raised social

welfare. Most fuel economy improvements have been achieved by trading off horsepower

for fuel economy, rather than adjusting prices or adding fuel-saving technology.
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1 Introduction

Passenger vehicles are the main source of greenhouse gas (GHG) emissions from the

transportation sector. Most countries that aim to reduce transportation sector emissions

rely primarily on passenger vehicle fuel economy and GHG standards, and about half of all

new passenger vehicles sold globally are subject to such standards.

The US standards, which have been tightening since 2005, have been particularly

controversial. Starting in 2011, the Environmental Protection Agency (EPA) and National

Highway Traffic Safety Administration (NHTSA) adopted standards that would have nearly

doubled fuel economy by 2025. The agencies predicted that the standards would yield

cumulative net social benefits of more than $700 billion (2015$; (EPA 2010; 2012)). However,

in 2018 and 2020, EPA and NHTSA updated their analysis and substantially weakened the

standards (EPA and NHTSA 2018).1 Many vehicle manufacturers have supported weakening

the standards, although not by as much as the agencies did; environmental groups have

opposed the proposal vigorously because of the higher fuel consumption and GHG emissions.

The literature on fuel economy and GHG standards has highlighted several inefficiencies of

the standards relative to a GHG emissions price: rebound (the increase in driving caused by

lower fuel costs when standards tighten), delayed scrappage caused by vintage-differentiated

regulation, and relying on tested rather than real-world emissions (Jacobsen 2013; Jacobsen

and van Benthem 2015; Reynaert 2019). However, the regulatory agencies set standards

based on welfare analysis of the standards that they make prior to setting the standards.

The literature has not addressed the questions relevant to the agencies’ decisions about

setting future standards: have the recently tightened standards increased social welfare, and

would weakening future standards increase social welfare? Among others, Klier and Linn

(2016) suggest that the agencies’ overstated the case for tighter standards by omitting certain

types of manufacturer and consumer responses to standards, but the literature provides only

rough estimates of the welfare effects of recent standards.

This paper reports the first retrospective welfare analysis of any fuel economy or GHG

standards, focusing on the first phase of the US standards, which covered model years

2012–2016. We estimate welfare effects of the standards using a new computational model

1In 2016, EPA and NHTSA reported analysis that largely supported their predictions from 2011 (EPA
et al. 2016). Compared with the 2016 analysis, the 2018 analysis assumed higher technology costs based
on updated modeling and data. The 2018 analysis concluded that tighter standards would increase traffic
accidents and fatalities, which further supported weakening the standards, a finding that Bento et al. (2018)
dispute.
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that incorporates advances in modeling both the supply and the demand sides of the new-

vehicles market.

In the supply component of the model, manufacturers choose the price, fuel economy,

and horsepower of each vehicle in the market. In fact, fuel economy is chosen jointly with

performance, and manufacturers can increase fuel economy by reducing performance. Most of

the literature has assumed that other vehicle attributes are exogenous, and all of the literature

has assumed that standards do not affect the rate of fuel-saving technology adoption. These

assumptions contradict Klier and Linn (2016), who show that standards have increased the

rate of technology adoption and reduced performance. We follow Knittel (2011) and Klier

and Linn (2012) to estimate the trade-off between fuel economy and horsepower, and we

allow for the possibility that standards affect the rate of technology adoption.

The supply component includes two main advances over the literature. First, we introduce

a cost of adding fuel-saving technology that arises from redesigning and testing the vehicle.

Blonigen et al. (2017) estimate that typical fixed costs of a redesign amount to around $1

billion, which includes costs of adopting fuel-saving technology as well as other elements

of a redesign, such as restyling the exterior. Adopting emissions-reducing technologies

likely introduces fixed costs, as discussed in National Research Council (2015) and EPA

and NHTSA rulemaking, such as EPA (2010).2 EPA and NHTSA approximate these fixed

costs by assuming a constant markup above marginal costs, but the economics literature has

ignored the possibility that firms incur fixed costs when adopting technology.3 We introduce

a redesign cost that increases with the amount of technology adoption but is fixed with

respect to sales.

The second novel feature of the supply side is that we use the first-order conditions

to a firm’s profit maximization to estimate all supply parameters using observed attribute

choices. Specifically, we estimate the fixed costs from observed efficiency improvements over

time, and we jointly estimate marginal costs of production and shadow costs of regulatory

constraint from observed price and attribute choices. In contrast, most previous studies, such

as Klier and Linn (2012), use National Academies of Sciences reports to estimate technology

costs. We find that average fixed costs (that is, total fixed costs divided by sales) are roughly

comparable to marginal costs of improving efficiency. Fixed costs rise quickly with efficiency

2By fixed costs, we mean technology costs that a manufacturer incurs that are independent of the number
of vehicles that it sells.

3More precisely, EPA and NHTSA distinguish between direct costs of an emissions-reducing or fuel-saving
technology, which include the increase in production costs caused by the adoption, and indirect costs, which
include all other costs. Indirect costs may include both fixed and variable costs. In this paper, we distinguish
between variable and fixed costs, rather than direct and indirect costs.
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improvement. Estimated shadow prices are larger but have the same order of magnitude as

the shadow price implied by observed credit prices (Leard and McConnell 2017).

The demand component of the model builds on Leard et al. (2019), allowing for additional

heterogeneity in consumer preferences. In the model, consumers choose among a highly

disaggregated choice set that roughly matches the vehicle definition in the agencies’ analysis

and increases by roughly an order of magnitude the number of choices compared with the

literature. The disaggregation allows us to estimate more realistic preference parameters

and substitution elasticities than models that include a more aggregated choice set, such as

Berry et al. (1995) and Jacobsen (2013). Preferences are estimated from data that cover

the study period. We find that consumers undervalue fuel economy; a typical consumer is

willing to pay just less than 50 cents for $1 of future fuel cost savings (i.e., a valuation ratio

just below 0.5), with substantial heterogeneity across demographic groups around that mean.

The typical consumer prefers horsepower to fuel economy.

Our welfare analysis allows for the possibility that consumers undervalue the fuel costs

of vehicles they consider purchasing.4 Although Busse et al. (2013) conclude that consumer

choices are consistent with rational behavior, Allcott and Wozny (2014) find some evidence

of undervaluation, and Leard et al. (2017; 2019) and Gillingham et al. (2019) find substantial

evidence of undervaluation, meaning that consumers are willing to pay less than $1 for $1 of

future fuel cost savings. Thus, at a minimum, the recent literature leaves open the possibility

that consumers systematically undervalue fuel economy. The regulatory agencies assume

consumers undervalue fuel costs, but except for Allcott (2013), the literature has reported

welfare estimates based on the assumption, either implicit or explicit, that consumers fully

value fuel costs.5

We use the model to perform a static analysis of the standards by comparing steady

states with different levels of the standards. The start year is model year 2011, which is

prior to the first phase of the standards. The steady state is represented by the equilibrium

five years later, which allows manufacturers time to redesign vehicles to meet the standards.

We compare two levels of standards: maintaining the 2012 standards through model year

4If consumers systematically undervalue fuel costs, manufacturers would have insufficient incentive to
adopt fuel-saving technology. Fuel economy or GHG standards could increase private welfare, and could be
more cost effective than a carbon tax (Allcott and Greenstone 2012).

5NHTSA and EPA do not explicitly state their assumption that consumers undervalue fuel costs. The
agencies implicitly assume consumer undervaluation, given their assumption about baseline technology
adoption. The agencies assume that technologies that have a certain payback are adopted by manufacturers
in the absence of fuel economy and GHG regulation. Other technologies are only adopted if it is cost-effective
to do so because of regulation. The assumed payback period implies a substantial degree of undervaluation
(Bento et al. 2018).
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2016, versus tightening standards through 2016; the latter scenario requires 13 percent

higher fuel economy than the former. The model relaxes all four assumptions mentioned

above: horsepower is endogenous, standards can affect the amount of fuel-saving technology

adoption, manufacturers incur fixed costs of technology adoption, and consumers may

undervalue fuel cost savings.

We find that standards cost between $6 and $188 per tonne of carbon abated, where the

range arises from the method used to compute consumer welfare. Net societal benefits range

from –$11 billion to $4 billion per year. At one extreme, undervaluation could reflect hidden

costs. For example, many consumers do not like stop-start ignitions, and undervaluation

could reflect that disutility. At the other extreme, consumers could mistakenly undervalue

fuel cost savings, causing them to be willing to pay just 50 cents for $1 of future fuel cost

savings. For a lower bound of consumer benefits, we use estimated preference parameters,

and for the upper bound, we follow Allcott (2013) and Train (2015). The wide range of

welfare estimates underscores the importance of allowing for the possibility that consumers

mistakenly undervalue fuel cost savings.

We make two general points about the welfare results. First, the extensive amount of

heterogeneity in the model yields accurate estimates of manufacturers’ compliance behavior

as well as overall benefits and costs of the standards. Not only do consumers have

heterogeneous preference parameters, but also manufacturers have heterogeneous technology

adoption costs and costs of trading off performance for fuel economy. That is, the cost to

manufacturers of trading off the attributes depends partly on consumer valuation of the

attributes. For example, Fiat-Chrysler buyers typically have higher willingness to pay for

performance than do Toyota buyers, making it more costly (in terms of forgone profits) for

Fiat-Chrysler to trade off performance for fuel economy and comply with the standards.

Second, as we noted above, we relax several assumptions made in the literature, all

of which have large welfare implications. Most of the literature has ignored changes in

attributes other than fuel economy, has assumed zero fixed costs of technology adoption,

and has ignored consumer internalities. Failing to account for attribute changes and fuel

cost undervaluation would understate net welfare benefits, but failing to account for fixed

costs would overstate net welfare benefits. Moreover, the analysis of the agencies shares

the first two deficiencies (assuming horsepower is exogenous and failing to allow standards

to affect the rate of technology adoption).6 An additional problem is that the agencies

6Agencies do include some technology adoption in simulations of scenarios that maintain constant
standards. However, because the agencies assume performance does not change over time, their simulated
adoption rates are far lower than rates reported in the literature (e.g., (MacKenzie and Heywood 2015)).
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do not use an internally consistent model of consumers’ and manufacturers’ behavior, in

which consumer vehicle choices respond to vehicle fuel economy and price changes, and

manufacturers anticipate those responses when choosing prices and technology. For example,

Toyota buyers typically have higher willingness to pay for fuel economy than Chrysler buyers

(Leard et al. 2019), which can affect the manufacturers’ choices of technology, performance,

and attributes. Thus, existing estimates of the welfare effects of fuel economy and GHG

standards include four main assumptions that are inconsistent with manufacturers’ and

consumers’ behavior.

We find that the majority of fuel economy improvements are made by trading off

horsepower for fuel economy, rather than by adding fuel-saving technology. Fixed costs

of technology adoption amount to $3 billion per year and thus account for a substantial

portion of overall welfare changes. Finally, failing to account for technology adoption and

performance improvements in the absence of tighter standards would increase net benefits

by about $11 billion per year. Thus, relaxing each of the assumptions has large welfare

implications. Section 5 reports additional scenarios, such as assuming higher fuel prices and

replacing footprint-based standards with uniform standards.

Returning to the critiques of the agencies’ ex ante analysis of the standards, we note that

our estimates account for the decrease in gasoline prices that occurred in 2014, the possibility

that the agencies underestimated technology costs, and trade-offs between performance

and fuel economy. Our results demonstrate that, assuming consumer internalities for fuel

economy choices, the first phase of the standards has positive net benefits, even accounting

for these factors.

Our modeling focuses on the new-vehicles market to address deficiencies in the existing

models used to evaluate fuel economy standards. As noted above, the literature has identified

three inefficiencies of standards compared with a carbon tax: rebound, vintage-differentiated

regulation, and the use of tested rather than on-road emissions to assess compliance. Our

welfare estimates account for rebound and on-road emissions using the same approach that

the EPA and NHTSA use in their welfare analysis, which facilitates comparison between our

results and theirs. Like their analysis, we do not include the effects of vintage-differentiated

regulation. Moreover, we do not include certain benefits of higher fuel economy, such as

reduced refueling time, because of the numerous additional assumptions that would be

necessary. The results in Jacobsen and van Benthem (2015) and the agencies’ analysis

suggest that including these margins would likely strengthen our finding that the standards

have increased social welfare.
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The three papers most closely related to ours are Leard et al. (2019), Klier and Linn

(2012), and Whitefoot et al. (2017). The demand model builds on Leard et al. (2019), but

their analysis is restricted to the short run, meaning that fuel economy and horsepower

are exogenous. They do not consider the technology adoption that occurs over time when

standards do not tighten, and they do not include fixed costs. Klier and Linn (2012) and

Whitefoot et al. (2017) allow for trade-offs between fuel economy and horsepower, but they

do not include fixed costs or technology adoption when standards do not tighten. Moreover,

their consumer preferences are estimated using data from the mid-2000s, and we find evidence

that consumer preferences have changed substantially over time.

More broadly, our estimation of supply parameters can be adapted for analyzing other

product markets in which producers design and test their products, choosing multiple

attributes that consumer value. For example, regulating the energy efficiency of home

appliances could induce research and development in energy efficiency and affect multiple

attributes of the products (Houde and Spurlock 2015).

2 Policy Context, Data, and Market Trends

2.1 Policy Context

The 2008 Energy Independence and Security Act requires NHTSA to set fuel economy

standards through 2030. The 2009 Supreme Court ruling in Massachusetts v. EPA granted

EPA the authority to regulate passenger vehicle’s GHG emissions under the Clean Air Act.

In 2009, the Obama administration set requirements for the first phase of new joint fuel

economy and greenhouse gas standards for passenger vehicles, requiring manufacturers to

increase the fuel economy (and reduce tailpipe GHG emissions) of their vehicles sold during

2012–2016. Compared to standards in prior years, the new standards required a sharp

increase in average fleetwide fuel economy of new vehicles sold, mandating an increase of

about 10 miles per gallon above 2009 levels by 2016, or about 5 percent per year.7 In 2020,

the Trump administration substantially weakened standards for the years 2021 through 2026.

Figure 1 shows how the fuel economy standards (expressed in gallons of fuel consumption per

100 miles) evolved over time, with the dashed lines showing the recently weakened standards.

Along with setting the new federal standards, the federal agencies were required by law

to perform a regulatory impact analysis (RIA). The RIA included an ex ante cost-benefit

analysis of the 2012–2016 proposed standards. The RIA predicted that the standards would

7This increase of 10 mpg refers to the fuel economy used to assess compliance with the standards, which
is based on a specified laboratory testing procedure. This procedure yields fuel economy ratings that are
roughly 20–25 percent higher than the fuel economy ratings that appear on new vehicles’ window stickers.
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raise private and social welfare, with fuel cost savings accounting for most of the overall

welfare gains.

2.2 Data

The primary data source for our analysis is the MaritzCX New Vehicle Customer Survey.

MaritzCX conducts a monthly survey of households that recently purchased or leased a new

vehicle, with a response rate of about 9 percent. Our data include about 1.1 million new-

vehicle transactions between 2010 and 2015, which represents about a 1 percent sample of

new-vehicle buyers over this time period.

The MaritzCX survey asks detailed questions about the new vehicle and the demographics

of the household. Survey respondents report sales or lease prices of their recently

obtained vehicle, which include sale taxes but exclude any credit received from trade-ins.8

These transaction prices may be substantially different from the manufacturer’s suggested

retail price (MSRP) frequently used by previous studies, reflecting the outcome of price

negotiations between the survey respondent and salesperson or unobserved promotions

offered by the dealer or the manufacturer. The advantage of using transaction prices rather

than MSRP in our empirical analysis is that it reduces concerns about price measurement

error, and the greater price variation helps identify the preference parameters. Demographic

information for the survey includes the respondent’s age and years of schooling, household

income (defined as total annual household income from all sources, including wage and

investment, before taxes), state of residence, and urbanization (defined by population

density).

The MaritzCX survey data also include the vehicle identification number (VIN) for each

observation. This allows us to define vehicles at a highly disaggregated level that yields

about 800 unique vehicle choices for consumers each year. Specifically, a vehicle is defined

by a unique model year, make, model, trim or series, drive type, fuel type, body style,

and number of cylinders.9 This level of aggregation better reflects the choice set available

to consumers when they make their vehicle purchase or lease decision, compared with the

approach that is commonly taken in the literature, which defines a vehicle at the model

level. Furthermore, EPA and NHTSA define a unique vehicle in a similar fashion, which

8For about 10 percent of the transactions, we do not observe prices. We impute prices for these missing
observations based on observed transaction prices of the most closely related vehicles in the data.

9Each model year is defined as September of the previous calendar year to August of the current calendar
year. For example, MY 2015 is defined as September 2014 to August 2015. This definition of model year
aligns closely with the typical vehicle production cycles observed in practice—that is, vehicle characteristics
remain the same during each model year but may change across model years.
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eases the comparison between the results of their welfare analysis of the fuel economy and

GHG standards and ours. This highly differentiated choice set improves the identification of

the preference parameters compared with prior work that relied on more aggregated choice

sets. The level of disaggregation also helps us alleviate concerns regarding measurement

error and the resulting bias in the estimated preference parameters.

We complement the survey data with a variety of other data. We use fuel economy

ratings (miles per gallon) and energy efficiency technology data from EPA.10 For each

vehicle’s fuel economy, we use combined city and highway fuel economy ratings. The fuel-

saving technologies include engine technologies such as cylinder deactivation, turbochargers,

gasoline direct injection, and valve timing and lift, as well as transmission technologies such

as additional gears, continuously variable transmissions, and dual-clutch transmissions. For

each vehicle, we merge vehicle characteristics data from Wards Automotive, which include

MSRP, horsepower, size-related measures (such as width, height, and length), curb weight,

and wheelbase.11

We further supplement the main data set by adding new vehicle registration data obtained

from IHS Automotive and new- and used-vehicle sales from the Consumer Expenditure

Survey (CEX).12 The IHS data include quarterly vehicle registrations for all US households,

providing us with market-level information on vehicle demand. We obtain a count of used-

vehicle purchases by year and demographic group from the CEX data to use in our consumer

demand model, in which we define the outside option as the decision to purchase a used

vehicle. We use the IHS Automotive and CEX data to correct for nonrandom sampling

of the MaritzCX survey. In particular, we construct weights for the observations in the

MaritzCX data to match the distribution of sales across vehicles in the IHS data and across

demographic groups in the CEX data.13

We define 20 demographic groups: 5 income groups (constructed to approximately

represent the income quintiles of the distribution of households that purchased a vehicle

in the CEX data), 2 age groups (defined as the respondent being younger than the median

age of 45 years in the data, or 45 and older), and an urbanization indicator (equal to one if the

10We link the EPA data to the MaritzCX survey data by vehicle with the exception of body style, which
is not reported in the EPA data set. Nevertheless, this is unlikely to substantially reduce the available
variation in fuel economy. Based on the Wards Automotive data, we find that our definition of a unique
vehicle (excluding differentiation by body type) preserves 99 percent of variation in the EPA estimated fuel
economy rating across all new vehicles.

11For a small number of vehicle transactions with missing observations, we impute car attributes using
data from Cars.com.

12We merge the IHS data to the MaritzCX survey data by vehicle and the CEX data by model year, make
and vehicle class, which is an indicator equal to one if the vehicle is a light truck.

13See Leard et al. (2019) for more details on the weighting procedure.

9



household is located in an area with a population density above the median). Additionally,

the demographic groups are defined to roughly match the count of households in the CEX

data for each group. The detailed demographic information obtained from the MaritzCX

survey allows us to differentiate vehicle purchases made across different demographic groups

and estimate heterogeneous preferences for each vehicle attribute. Our choice of demographic

groups is motivated by the fact that observed vehicle purchase patterns vary substantially

within income groups and across age groups and urbanization rather than just across income

groups.

Finally, fuel prices come from the US Energy Information Administration (EIA). We

deflate all transaction and fuel prices using the Bureau of Labor Statistics Consumer Price

Index and adjust them to 2015 US dollars.

2.3 Market Trends and Stringency of the Standards

In this section, we plot trends in the new-vehicle market during our sample period of

2010–2015. In Panel A of Figure 2, we plot sales-weighted average fuel economy of all new

cars and light trucks sold in the United States. Fuel economy of cars and light trucks increases

gradually, by about 4 and 3 miles per gallon, respectively (about a 15 percent increase

relative to 2010 levels). In Panel B of Figure 2, we plot the sales-weighted performance for

cars and light trucks as measured by the log of the ratio of horsepower to weight, which is a

commonly used measure of performance because it is directly proportional to the time needed

to accelerate the vehicle from rest to 60 miles per hour. The data show that performance

changed by just a few percentage points during the sample period. Vehicle sales-weighted

purchase prices denoted in 2015$ are plotted separately for cars and light trucks in Panel C

of Figure 2. Real purchase prices remained flat for both vehicle categories, with the average

purchase price of cars and light trucks being about $28,000 and $36,000, respectively.

In Figure A.1, for every vehicle in the 2011 sample, we plot the vehicle’s fuel economy

and its calculated requirement for 2012 and 2016, along with the vehicle’s footprint. Panel

A shows the scatter plot for cars, and, Panel B, light trucks. In both panels, many 2011

vehicles already exceed their 2012 requirements. But by 2016, the standard is sufficiently

stringent that most 2011 vehicles have fuel economy well below their requirements. Most of

the vehicles exceeding their 2012 requirement have small footprints.
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3 The Equilibrium Model

We model the equilibrium of the US market for new light-duty vehicles. This section

presents the demand and supply sides of the market separately.

3.1 Demand

The general structure of our vehicle demand model follows Leard et al. (2019). We define

each market as a model year, indicated by t. We assume that households decide to purchase

a single new or used vehicle to maximize their private utility. Vehicle alternatives are indexed

by j = 1, 2, ..., J , and we denote the outside option to purchase a composite used vehicle

as j = 0. We denote vehicle attributes by k and demographics of household by d. We also

partition households into 20 mutually exclusive and collectively exhaustive groups, indexed

by g, based on their demographics as defined in Section 2: 5 income groups, 2 age groups, and

an indicator for urbanization. We define the base demographic group as young and urban

households that are in the lowest income category. The indirect utility uijt of household i

from choosing vehicle j in market t is

uijt = vijt + εijt =
∑

k

∑
g

xjkthigtβkg +
∑

k

xjktβ̄k + ξjt + νgjt + εijt. (1)

The term xjkt stands for the value of characteristic k for vehicle j and model year t.

We include six vehicle attributes: the transaction price, fuel economy, performance (defined

as the logarithm of the ratio of horsepower to weight), footprint (defined as the product

of the vehicle’s wheelbase and width), fuel type, and drive type (the latter two extend

the demand model in Leard et al. (2019) by allowing for additional heterogeneity). We

add these interactions to address possible endogeneity concerns at the household group

level. In particular, observed attributes such as fuel economy could be correlated with

unobserved attributes, which would bias our estimates of willingness to pay (WTP) for fuel

economy. Controlling for additional vehicle attributes, such as fuel type and drive type,

reduces this bias. The term higt represents an indicator variable that equals one if household

i is in demographic group g. The coefficient βkg denotes the difference in the marginal

utility of vehicle attribute k for households in demographic group g relative to households in

the base demographic group, and the parameter β̄k denotes the marginal utility of vehicle

characteristic k for households in the base group. The term ξjt represents the national mean

valuation of the unobserved vehicle attributes (such as vehicle color or cargo space) for vehicle

j in market t, which is constant across demographic groups. The term νgjt represents group

g unobserved mean utility for vehicle j in market t. We assume that the error term εijt has a
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type 1 extreme value distribution, such that the probability that household i chooses vehicle

j in market t is

Prijt = evijt∑
l
evilt

. (2)

For each household demographic group, we normalize the outside good utility to zero. This

yields a linear estimation equation relating market shares, household demographics, and

vehicle characteristics:

ln(sgjt)− ln(sg0t) =
∑

k

∑
g

xjkthigtβkg +
∑

k

xjktβ̄k + ξjt + νgjt (3)

where sgjt and sg0t are market shares for vehicle j and the outside option (defined as a used

car purchase) for demographic group g in market t.

The demand model allows for extensive preference heterogeneity across demographic

groups. For each of the 20 demographic groups we estimate preference parameters for each

of the six vehicle attributes. The demand model implies more plausible substitution patterns

across vehicles relative to the simple logit demand model that restricts substitution between

vehicles to being proportional to the vehicles’ market shares, regardless of differences in

attributes. We model consumer heterogeneity based on observed demographics. According

to the model, for each demographic group, market shares drive substitution between vehicles.

A benefit of this approach is that the model provides a direct link between the estimated

demand parameters and the variation in welfare effects across households.14

3.2 Supply

Before describing the supply side of the model, we discuss briefly the three main supply-

side assumptions that we relax. First, most of the literature has ignored the possibility that

standards can affect other vehicle attributes besides fuel economy. Goldberg (1998) and

Jacobsen (2013), among others, hold fixed other attributes, such as horsepower. However,

as in Knittel (2011), one can conceive of a frontier defined by a level of fuel-saving

technology. For a given size engine (such as one with four cylinders), the manufacturer

14Our approach avoids drawbacks of the random coefficients demand models explained in recent literature
(e.g., (Knittel and Metaxoglou 2014)), such as multiple local optima that can produce a range of potential
elasticities and welfare effects. The model produces a unique set of preference parameters for each
demographic group and can be estimated quickly. Furthermore, many papers in the literature include
demand models in which changes in choice sets across markets identify heterogeneity parameters. This
makes it difficult to determine whether the implied heterogeneity reflects the preference heterogeneity or
something else (Ackerberg and Rysman 2005). In contrast, in our demand model, heterogeneity parameters
are identified by variation across demographic groups in response to variation in vehicle attributes across
vehicles and markets.
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can retune the engine or make small technology changes to reduce horsepower and raise fuel

economy, moving along a frontier. Klier and Linn (2016) show that standards have affected

performance (using horsepower as a proxy for performance), and Ito and Sallee (2018) suggest

that standards could affect an even broader range of attributes. To our knowledge, only Klier

and Linn (2012) and Whitefoot et al. (2017) allow performance to be endogenous in their

models.

Second, the literature has not properly accounted for the industry dynamics of technology

adoption. Knittel (2011) and Klier and Linn (2016) show that historically, during periods

when standards were not tightening, such as the 1990s and early 2000s, manufacturers have

adopted fuel-saving technologies and used the efficiency improvements to increase vehicle

size and performance (i.e., horsepower or torque), while maintaining a constant level of

fuel economy. In contrast, during periods when standards tighten, manufacturers adopt

more technology and also shift along the frontier, trading off performance for fuel economy.

This situation implies that tightening standards over time could increase fuel economy but

decrease performance, relative to the equilibrium if standards remain fixed. Studies that

assume exogenous horsepower cannot handle this possibility, and the two studies cited

above that endogenize horsepower do not account for performance improvements if standards

remain fixed.

Third, the literature does not include the fixed costs of technology adoption. Vehicle

manufacturers redesign each vehicle every five to seven years, and as discussed above, the

economics literature has largely ignored the possibility that firms incur fixed costs when

adopting technology.

Following Klier and Linn (2012), we model the supply side in two periods. There is a set

of vehicles in the market that have endowments of the same attributes that are included in

the demand model. Each manufacturer maximizes profits of selling its vehicles.

In the first period, the manufacturer designs the vehicle and chooses a level of technology,

Td(j), where the subscript indicates that the manufacturer chooses the same level of

technology for each model, d. The firm has the opportunity to add technology for each

of the models it sells.

The second period represents the five years that follow the design period, reflecting

the typical cycle length. In the second period, the manufacturer chooses fuel economy,

horsepower, and price. The level of technology corresponds directly to the energy efficiency

of the vehicle, such that a higher level of technology allows the manufacturer to increase fuel

economy without sacrificing horsepower. Technology is scaled such that increasing Td(j) by
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0.01 units allows the manufacturer to increase fuel economy by 1 percent. Subsequently,

having chosen a level of technology, the manufacturer can trade off fuel economy for

performance. Thus, the representation of technology corresponds to a production possibilities

frontier in horsepower–fuel economy space. Increasing the level of Td(j) causes the frontier

to shift away from the origin, and after choosing Td(j) the manufacturer can move along the

frontier as it trades off horsepower for fuel economy.

Thus, increasing technology from the endowed value allows the firm to provide higher

fuel economy or horsepower (or both). Higher technology causes marginal costs to increase

according to the function cj(Td(j)). Technology adoption also requires a fixed cost F (Td(j)) to

redesign and test the vehicle, where the fixed costs are incurred once for each model. Thus,

when deciding whether to adopt technology, the firm faces a trade-off between higher revenue,

which the technology enables, and the additional fixed and variable costs. The existence of

the fixed costs implies that manufacturers adopt more technology for higher-selling vehicles,

all else equal. This is consistent with the empirical evidence in Klier and Linn (2016).

We model the two periods of the manufacturer problem as static. The profit maximization

problem is

max
{pj ,mj ,hj ,Tk(j)}j∈Jf

∑
j∈Jf

[pj − cj(Td(j))]qj(pj,mj, hj)− F (Td(j)) (4)

subject to

∑
j∈Jf

(
1
mj

− 1
Mj

)
qj = 0 (5)

and

ln(mj) = ln(m0j) + δh ln(hj) + δw ln(wj) + Td(j), (6)

where marginal costs are given by

ln(cj) = ln(c0j) + γTd(j). (7)

Profits are the sum over vehicles of quantity multiplied by the difference between price

and marginal costs (cj(Td(j))), less fixed costs (F (Td(j))). Equation (5) is the regulatory

constraint, which requires that the firm’s sales-weighted fuel consumption rate (the reciprocal
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of its fuel economy) equals the sales-weighted fuel consumption rate required by the

standards. Note that the requirement is indexed by j because it depends on the vehicle’s

class (car or truck) and footprint.15 The technology is chosen for each model, indexed by

m(j), during the design period. The fixed costs are incurred in the first period and must be

recovered during the subsequent five years. Therefore, the sales qj correspond to the sales

over a five-year time period.

Equation (6) governs the trade-off between horsepower and fuel economy, given the

vehicle’s exogenous weight and endogenous technology. This equation has the same form

as that in Klier and Linn (2012), and is consistent with empirical analysis of the trade-off,

such as in Knittel (2011).

The final equation links marginal costs to technology. Increasing technology by 0.01,

which enables a 1 percent fuel economy increase according to Equation (6), increases marginal

costs by γ percent.

In contrast to Leard et al. (2019), we do not model credit trading across manufacturers.

During the first phase of the standards, few credits were traded (Leard and McConnell 2017),

and only a handful of trades have been made. Credit trading likely has had modest effects on

manufacturers’ decisions and compliance costs. Nonetheless, by leaving out this flexibility

mechanism from our model, we expect our compliance cost estimates to be higher than those

actually realized under the program.

3.3 Used Vehicle Market

The model includes the market for used vehicles in a reduced-form manner. Because

new-vehicle fuel economy standards affect new-vehicle attributes and new and used vehicles

are substitutes for one another, new-vehicle standards could affect demand for used vehicles

(Jacobsen 2013; Bento et al. 2018; Linn and Dou 2018; Leard 2019).

To account for this effect, we assume that used-vehicle supply is perfectly price-inelastic

and that used-vehicle prices respond to used-vehicle demand changes caused by altering

the standards. Therefore, if tighter standards reduce demand for new vehicles and increase

demand for used vehicles, used-vehicle prices increase to restore equilibrium in the used-

vehicle market. We assume an endogenous used-vehicle supply response and that used supply

is completely inelastic. In practice, this involves adjusting the utility to the outside option

to compute counterfactual equilibria.

15Other papers, such as Jacobsen (2013), include regulatory constraints that are nonlinear in vehicle sales,
qj . The linear constraint in this paper is a transformation of the constraint used in those papers.
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The assumption of perfectly inelastic supply is broadly consistent with Busse et al.

(2013), who report small effects of gasoline prices on equilibrium used-vehicle sales. Because

households are both buyers and sellers of used vehicles, assuming perfectly inelastic

supply likely has small welfare implications, despite the fact that the used-vehicle market

includes several times more sales than does the new-vehicle market. Jacobsen (2013) finds

that accounting for interactions between new and used vehicle markets has important

implications for the distribution of welfare effects across demographic groups, since high-

income households are more likely to buy new vehicles than are low-income households.

For that reason, we are careful to interpret the estimated distributional effects of standards

across demographic groups as pertaining only to new-vehicle buyers; the structure of the

used-vehicle market likely has small effects on aggregate welfare estimates.

4 Estimation

Demand estimation follows the estimation strategy in Leard et al. (2019), with the

exception that we add further heterogeneity in preferences for drive type and fuel type.

The supply side uses observed attribute choices and first-order conditions to estimate the

shadow costs of the regulation, marginal costs, and fixed costs.

4.1 Demand Estimation Strategy

We estimate household preference parameters using Equation (3) by following the

estimation strategy in Leard et al. (2019). This strategy estimates the parameters in two

stages. In the first stage, we regress the left-hand side of Equation (3) on interactions of

vehicle characteristics with fixed effects for each of the 20 demographic groups, and we

include vehicle by model year–specific fixed effects to absorb all mean utility terms. This

yields estimates for the βkg terms as well as mean utility fixed effects.

Assuming that the demographic-group specific utility from unobserved vehicle attributes

is uncorrelated with utility from observed vehicle attributes allows us to estimate Equation

(3) by including a fixed effect for each vehicle and market, δjt. This assumption is

analogous to the assumption made in Berry et al. (1995) that consumer-specific utilities for

unobserved product attributes are uncorrelated with utilities for observed product attributes.

The fixed effects δjt control for unobserved vehicle attributes that vary across trims or

engine configurations, such as seating material or the presence of a sunroof. Consequently,
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the interaction terms are identified by preference variation across demographic groups,

controlling for unobserved attribute variation across trims.16

In the second stage, we use the generalized method of moments (GMM) estimator from

Leard et al. (2019) to estimate the mean utility preference parameters, β̄k. This approach

is analogous to the standard approach in the literature (see Goolsbee and Petrin (2004)

and Train and Winston (2007)) of recovering the mean marginal utilities for the vehicle

characteristics in a second stage, in which the vehicle-market fixed effect is regressed on these

attributes. Unlike most of the literature, the GMM estimation accounts for the endogeneity

of vehicle prices, fuel economy, and horsepower by exploiting two main sources of variation.

First, we instrument for vehicle prices using attributes that are adjusted only during major

vehicle redesigns; specifically, the mean width, length, and height of vehicles sold by other

manufacturers that belong to the same market segment, as well as the means of the same

attributes of other vehicles sold by the same manufacturer but belonging to a different market

segment. The use of these instruments is consistent with the supply side of the model, in

which all vehicle attributes aside from prices, fuel economy, and horsepower are exogenous.

The second source of variation arises from the fact that we observe many pairs of vehicles

that are identical in all aspects with the exception that one has a higher performance engine

than the other. That is, two such twins share a market, make, model, trim/series, fuel

type, drive type, and body style but have different engine configurations. Consequently,

twins typically have the same seating material and other features as one another, reducing

concerns of omitted variables bias. See Leard et al. (2019) for additional details on the

demand estimation.

4.2 Demand Estimation Results

We present the demand estimation results in a series of figures. In Figure 3, we show

the implied own-price elasticity of demand for each of the 20 demographic groups. The

average own-price elasticity of demand is –4.02 and varies from about –5 to –2 across

demographic groups. Lower-income households are much more price sensitive than higher-

income households, a finding that is consistent with prior literature (Leard et al. 2019;

16In the first stage, we allow for heterogeneity in preferences for four vehicle attributes: price, fuel economy,
performance and footprint. We assume no heterogeneity in preferences for unobserved vehicle characteristics
such as seating material. In the second stage, we address the endogeneity of vehicle price, fuel economy and
performance, caused by the potential correlation between these characteristics and the unobserved attributes.
This approach is consistent with exogeneity assumptions made in mixed logit specifications (Berry et al. 1995;
2004; Goolsbee and Petrin 2004; Train and Winston 2007). Moreover, because fixed effects control for mean
sales by vehicle and year, first-stage preference parameters are identified by within-vehicle market shares and
particularly low selling vehicles such as luxury sports cars do not affect the first-stage parameter estimates
excessively.
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Train and Winston 2007). In Panel A of Figure 4, we show the implied willingness to pay

(WTP) for a 1 percent increase in fuel economy. This is computed based on the ratio of

each demographic group’s fuel economy coefficient and its price coefficient. Lower-income

households tend to have a lower WTP for fuel economy than higher-income households. This

finding is consistent with Leard et al. (2019), although the figure shows a few exceptions,

since lower-income rural groups tend to have a higher WTP than some higher-income urban

groups.

In Panel B of Figure 4, we show WTP for horsepower. Household preferences

for horsepower vary considerably across demographic groups, with some groups valuing

horsepower gains very little and others valuing it considerably. The average WTP for a

1 percent increase in horsepower is $41. This is lower than the estimates reported in Leard

et al. (2017) and Leard et al. (2019), but it is within the range reported in Greene et al.

(2018).

In Table 1, we show implied valuation ratios for fuel cost savings. The ratio equals the

WTP for a 1 percent fuel economy increase divided by the present discounted value of the fuel

cost savings caused by the fuel economy increase. The ratio represents how much households

are willing to pay for a $1 reduction in lifetime fuel costs. We use the same assumptions

from Leard et al. (2019) on lifetime miles driven, private discount rates, and expectations

of gasoline prices to compute the ratios. Full valuation that is consistent with a neoclassical

model of decision-making predicts a valuation ratio of 1. Our estimates imply that most

demographic groups undervalue fuel costs, with a mean ratio of 0.45. This value is similar

to that reported in Leard et al. (2019), who estimate valuation ratios using similar data but

a different identification strategy. The ratios vary from a low of about 0.20 to a high of 1.01,

where lower-income households tend to value fuel costs less than higher-income households.

In Table 2, we show average WTP for fuel economy, valuation ratios, and WTP for

horsepower, by manufacturer. These calculations are weighted averages, using purchase

probabilities as weights, which vary by vehicle and manufacturer because of the heterogeneity

in household preferences. WTP for fuel economy varies considerably across manufacturers.

Daimler has a consumer base that has relatively high valuation of fuel economy, whereas

Subaru sells vehicles to consumers that have relatively low valuation.

Figures A.2 and A.3 report a similar set of demand model validation exercises as those

reported in Leard et al. (2019). Figure A.2 shows the predicted attribute means, by

demographic group, against the observed sales-weighted averages. The predicted values fall
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close to a 45-degree line, indicating that the model predicts accurately the attribute means

by demographic group.

Next, we assess the model’s ability to predict market shares out of sample. Panel A of

Figure A.3 is a no-change forecast, which uses the observed brand-class market shares from

the first market of our sample (t = 2010) to predict market shares from the final market of

our sample (t = 2015; we aggregate market shares across vehicles to brand-class to account

for vehicle entry and exit, which is exogenous in our model). Panel A plots the predicted

market shares against the observed market shares in t = 2015. There is considerably less

scatter if we use the demand model to predict 2015 market shares as in Panel B of Figure

A.3, compared with the amount of scatter in Panel A. Thus, the demand model in Panel B

outperforms the no-change forecast in Panel A.

4.3 Supply Estimation Strategy

We estimate the parameters of the supply model using first-order conditions of the

manufacturer problem stated in Equation (4). The shadow price, trade-off between

horsepower and fuel economy, and marginal costs are estimated via manufacturer pricing

decisions and movement along the production possibility frontier in Equation (6). The fixed

costs are identified by outward shifts of the frontier over time, and the assumption that the

fixed costs rationalize observed technology choices.

Given the trade-off between horsepower and fuel economy in Equation (6), we have three

sets of first-order conditions: price, fuel economy, and fuel-saving technology. For each

vehicle j, these conditions are

∑
k∈Jf

[
pk − ck − λf

( 1
mk

− 1
Mk

)]
∂qk

∂pj

+ qj = 0, (8)

∑
k∈Jf

[
pk − ck − λf

( 1
mk

− 1
Mk

)](
∂qk

∂mj

+ ∂qk

∂hj

∂hj

∂mj

)
+ λf

1
(mj)2 qj = 0, (9)

∑
k∈Jf

[
pk − ck − λf

( 1
mk

− 1
Mk

)](
∂qk

∂mj

∂mj

∂Td(j)
+ ∂qk

∂hj

∂hj

∂Td(j)

)
− qj

∂cj

∂Td(j)
− ∂F

∂Td(j)
= 0. (10)

The unknown parameters that we estimate are the J vehicle-specific marginal costs, ck,

the trade-off coefficient for horsepower and fuel economy in Equation (6) denoted by δh,
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manufacturer-specific shadow costs, λf , and the derivative of fixed costs with respect to

technology. We estimate the parameters in a series of steps. In the first step, we initialize a

guess for the marginal costs ck. In the second step, given this guess, we rearrange first-order

condition (9) such that the equation is linear in the manufacturer’s shadow costs, λf . We

then estimate a regression to fit a value for λf that minimizes the squared distance of the

linear equation. We do this separately for each set of manufacturer equations to obtain a

manufacturer-specific shadow cost. In the third step, with these estimated shadow costs, we

solve for marginal costs ck in the first-order condition (8). These estimated marginal costs

become our new guess of the marginal costs. We then repeat the second and third steps until

the change in marginal costs across iterations is sufficiently small (within 0.01 percent).

The final steps involve substituting estimates for the marginal costs ck and shadow costs

λf in Equation (10) and estimating technology costs and fixed costs. We assume that each

vehicle model has a unique fixed cost that varies linearly with the level of technology.

We estimate these fixed-cost coefficients and the marginal-cost coefficient γ with a linear

regression of Equation (10).

Finally, we estimate the function governing technology costs, F (Td(j)). To simplify the

estimation, we normalize each model’s technology endowment to zero and assume that fixed

costs are a quadratic function of the technology change, Td(j). Under these assumptions,
∂F
∂Tj

= 2σTk(j), where σ is a parameter to be estimated. Having estimated marginal costs ck

and shadow costs λf , Equation (10) is linear in technology and includes just the one unknown

parameter σ. Similar to the procedure for estimating λf , we estimate a regression to fit a

value for σ that minimizes the squared distance of the linear equation.

4.4 Supply Estimation Results

Tables 3 through 5 summarize the estimation results of the supply-side parameters. The

first row of Table 3 reports each firm’s mean marginal costs. The variation across firms

is intuitive; for example, Hyundai, which primarily sells low-price cars and crossovers, has

lower marginal costs than Daimler, which sells luxury vehicles. The remaining rows in this

table summarize the incentives that the standards create for the firms to raise fuel economy.

The average feebate is the sales-weighted mean of the quantity λf

(
1

mk
− 1

Mk

)
across each

firm’s vehicles using observations from 2011 and the 2016 standards. Each vehicle’s feebate

represents the incentives that the 2016 standards create to adjust prices of vehicles sold in

2011, and the average feebate is the incentive to increase the fuel economy of those vehicles

(see Equations (8) through (10)). The feebate varies substantially across manufacturers. For
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example, the average feebate is about 20 percent lower for Honda than for Fiat-Chrysler.

Note that the cross-firm variation accounts for the footprint-based standards. Compared to

uniform standards that do not depend on vehicle attributes, the footprint-based standards

reduce cross-firm variation in the average feebate because firms selling larger vehicles are

subject to lower fuel economy standards.

The final column of the table shows the fuel economy shadow cost, which is computed by

applying the envelope theorem to the firm’s profit maximization problem; the shadow cost

is equal to the derivative of the firm’s profits with respect to its fuel economy requirement.

The shadow cost exhibits similar variation as the average feebate across firms.

The top panel of Table 4 shows the estimated trade-off between fuel economy and

horsepower for cars and light trucks (i.e., the coefficient δh in Equation (6)). The coefficients

are interpreted as elasticities and are larger in magnitude than those estimated in Klier and

Linn (2016). We are using more recent data but otherwise the same methodology, which

indicates that the trade-off between horsepower and fuel economy has become less severe

over time.

The bottom panel of Table 4 reports the estimate of the efficiency coefficient in Equation

(7). The coefficients are interpreted as elasticities, so the estimate in the first column means

that increasing a car’s efficiency by 1 percent causes marginal costs to increase by 0.332

percent. The elasticity is about half as large for light trucks as it is for cars.

We obtain similar estimates using data from NHTSA’s technology model, which the

agency uses to estimate benefits and costs of the regulations. In its model, firms minimize

the cost of meeting the fuel economy regulations by choosing fuel-saving technologies for

their individual vehicles. The model includes extensive detail on the costs and performance

of the technologies, accounting for positive and negative interactions among technologies.

The model output includes an estimate of each vehicle’s price and fuel economy. Because

the agencies assume a constant markup over marginal costs, we can use their data to recover

the efficiency coefficient. Doing so yields point estimates that lie within the range of the two

estimates in the table. This similarity supports the validity of our approach to estimating

the cost coefficient.

Table 5 provides context for the estimated fixed costs of technology adoption. Each

column shows the costs of increasing fuel economy by the percentage indicated in the column

heading. We compare the increase in marginal costs with the increase in average fixed

costs—the ratio of the change in fixed costs to the vehicle’s sales. The marginal costs

increase roughly linearly with the fuel economy improvement. However, average fixed costs

21



increase rapidly; they are typically lower than marginal cost increases for a 1 percent fuel

economy increase, but are typically higher for 5 or 10 percent increases. This is reasonable

because raising fuel economy by more than a few percentage points usually involves the

simultaneous adoption of multiple fuel-saving technologies, which complicates the redesign

process. Because the first phase of the standards required a 13 percent average fuel economy

increase, the numbers in this table indicate that fixed costs play an important role in the

overall welfare analysis.

5 Welfare Analysis

This section describes the two central scenarios that are simulated, reports results from

those two scenarios, and presents results from additional scenarios.

5.1 Definition of Baseline and Central Policy Scenarios

In the baseline scenario, the standards are maintained at their 2012 levels for model

years 2012–2016. Figure A.1 shows that the standards tightened by about 13 percent over

these four years. We use 2012 rather than 2011, because 2011 was a transitional year and

manufacturers had the option of complying with uniform or footprint-based standards.

The simulations are performed using the set of vehicles available in the market in 2015.

We assume that the standards do not affect vehicle entry, exit, or any attributes other than

price, fuel economy, and horsepower (all existing welfare analyses of the standards have

made these assumptions implicitly).17 Under these assumptions, the baseline scenario and

any other scenario include the same set of vehicles. Moreover, vehicle weight and the mean

utility (ξjt) of each vehicle do not vary across scenarios. Therefore, if we define the set

of vehicles in the simulations to include vehicles that were sold in 2011, we would have to

impute weight and ξjt for each vehicle that enters the market after 2011. Because about 30

percent of models and 70 percent of vehicles that were sold in 2015 enter after 2011, this

would require a substantial amount of imputation. We avoid having to impute ξjt by using

data from the last year, 2015. For these vehicles, we use the observed fuel prices, vehicle

characteristics, fuel economy requirements, and estimated marginal costs, fixed costs, and

technology parameters estimated using the methodology described in the previous section.

17Wollmann (2018) argues that bankruptcy policy could affect product entry. In principle, fuel economy
standards could also affect entry and exit, but for computational reasons we assume that entry and exit
decisions are exogenous to the standards. Moreover, we assume that standards do not affect the frequency
with which firms redesign their vehicles, which is necessary because of the length of our sample period. We
are not aware of evidence that standards have affected the frequency of redesigns.
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Recall that the model is static and includes two periods. During the first period, the

regulator announces the level of the standards and the firm chooses a level of technology.

Because models are typically redesigned every five years, we can conceive of period 1 as

representing the year 2011, when the standards were determined, and period 2 as representing

the steady state in 2016, which is five years later. In the baseline scenario, the standards

correspond to the values of the standards that were actually applied to model year 2012,

depicted by the orange marks in Figure A.1. Note that we do not model the transitional

dynamics of compliance with the standards, which is the same as most of the literature (e.g.,

(Whitefoot et al. 2017)). However, unlike the rest of the literature, we interpret the steady

state as occurring five years after the standards are announced. That allows us to account

for technology adoption in a scenario in which standards do not tighten over time. Note

that the EPA and NHTSA welfare analysis models transitional dynamics and assumes that

standards do not change after 2016.18

The equilibrium for the baseline scenario is found iteratively.19 On average, firms have to

increase fuel economy by about 1 mpg from 2011 levels to comply with the 2012 standards.

We determine the initial conditions for the simulation by assuming that manufacturers use

technology adoption and trade off horsepower for fuel economy in equal amounts, and that

they do not adjust prices from observed 2011 levels. These assumptions determine initial

conditions and not simulated outcomes, and they are consistent with Klier and Linn (2016)

and Reynaert (2019). Starting from that initial condition, each firm chooses technology (Tmt),

fuel economy, and price to maximize profits. Each firm’s decisions are the best response given

choices of all other firms in the market, and we loop over firms and iterate across the entire

market until simulated choices converge to within the chosen tolerance.20

18This difference between our analysis and that of EPA and NHTSA probably has little effect on the
welfare conclusions. Their analysis includes banking and borrowing of credits over time as well as credit
trading across firms, as allowed under the regulations. These provisions reduce compliance costs, relative
to regulations that do not include them. However, there have been few cross-firm credit trades (Leard and
McConnell 2017), suggesting that this provision has not affected compliance costs substantially. Between
2012 and 2016, most firms complied on average, and a few firms overcomplied. Because there have been
so few cross-firm trades, it is likely that the overcomplying firms are banking credits to use for their own
compliance, in anticipation of tighter standards in future years. A welfare analysis of the 2012–2016 standards
should not include this overcompliance, since it is caused by standards that apply in later years. For this
reason, in the simulations we assume that all firms exactly comply with the standards.

19Convergence of the model is not guaranteed, and in fact for a minority of vehicles the model may cycle
among two or more sets of price and attributes. These situations typically affect lower-selling vehicles and
vehicles sold by small manufacturers.

20Specifically, the tolerance is set such that each firm’s average fuel consumption rate is within 0.1 percent
of its standard, and the maximum price change across iterations across vehicles in the market is 1 percent. For
a few firms, the model does not converge after 50 iterations, in which case we use the simulated technology
and attributes from the final iteration. Achieving convergence is especially challenging for Jaguar–Land
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The central policy scenario is the same as the baseline, except that firms must achieve the

2016 standards rather than the 2012 standards. Welfare effects are calculated by comparing

equilibriums in the baseline and central policy scenarios. The welfare analysis includes

changes in consumer welfare, manufacturer profits, and the global value of avoided carbon

dioxide emissions.

To facilitate comparison with the literature and the agencies’ welfare analysis, we

calculate consumer welfare in two separate ways. First, for consistency with the literature,

we assume that consumers do not make mistakes, and that the estimated undervaluation

represents a hidden cost of choosing a technology with high fuel economy. As noted in the

Introduction, hidden costs may reflect consumers’ perceptions of new technologies. We adopt

the closed-form formula from Small and Rosen (1981) to compute consumer surplus changes.

Second, for consistency with the agencies we follow Allcott (2013) and Train (2015) to adjust

for consumer mistakes. For this calculation, we assume a 3 percent real discount rate for

consistency with EPA (2010), and we use assumptions on vehicle scrappage and mileage from

Leard et al. (2019).

For both sets of welfare calculations, we assume a rebound effect of 10 percent (which is

the same as the assumption the agencies make for their analysis of the 2012--2016 standards).

For the calculations that use preference parameters, we do not include the benefits from

additional driving because the demand model implicitly incorporates these welfare changes.

Households compare across vehicles the utility from owning and driving the vehicle. Increases

in fuel economy lower household fuel costs but also let households drive more miles for the

same fuel costs. These components are implicitly accounted for in the definition of utility.

Because the calculations that correct for consumer mistakes do not include the benefits from

additional driving, we use the conventional Harberger approximation similarly (EPA and

NHTSA do the same).

For firms, we compute profits by including fixed costs. Finally, we compute the social

value of avoided emissions using estimates from EPA et al. (2016) of the social cost of carbon

dioxide emissions, using the same 3 percent discount rate that we use for the fuel savings

calculations.

Note that we do not include refueling time costs and external costs of fine particulate

matter, accidents, noise, congestion, and energy security. Estimating these costs and benefits

requires many assumptions that lie well outside the scope of the paper. EPA and NHTSA

Rover, which sells a small number of high-end vehicles and faces particularly stringent standards, but this
company accounts for less than 0.1 percent of total sales in the market.
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estimate combined net welfare benefits of $7 billion for these categories. Therefore, including

them would strengthen our findings that the standards have increased social welfare.

5.2 Results for Baseline and Central Policy Scenarios

The simulated mean attributes for the baseline and central policy scenarios appear in

the row headings of Table 6. The fractional technology improvement in the baseline scenario

implies an average annual efficiency improvement of about 2.5 percent, which is roughly

consistent with historical averages. The tighter standards in the central policy scenario

increase the incentive to adopt technology, causing more technology adoption than in the

baseline scenario. This result is consistent with empirical analysis in Klier and Linn (2016).

Sales-weighted average fuel economy is about 14 percent higher under the 2016 standards,

which corresponds to a 13 percent decline in average fuel consumption rate required by the

standards.21 Performance (as measured by the log of the ratio of horsepower to weight) is

about 0.37 log points lower in the central policy scenario than in the baseline scenario, and it

is within a few percentage points of the observed 2011 and 2015 values (see Panel B of Figure

2). Thus, the simulations imply that in the baseline, horsepower is about 30 percent higher

than the observed 2011 value, and that in the central policy, horsepower is about equal to

the observed 2011 value. In other words, tighter standards do not decrease horsepower over

time in absolute terms, but they decrease horsepower relative to the counterfactual of weaker

standards.

Mean vehicle prices are slightly higher in the central policy scenario. The similarity

reflects two opposing effects on vehicle prices, which roughly cancel each other. On the one

hand, the standards induce technology adoption, which raises marginal costs and prices. On

the other hand, the standards reduce consumer demand for new vehicles (which Table 7

shows), reducing equilibrium vehicle prices.

The magnitudes of the technology, horsepower, and fuel economy changes indicate that

manufacturers comply with the standards largely by trading off horsepower for fuel economy.

The difference in technology across the two scenarios means that the additional technology

adoption reduced the average fuel consumption rate by about 4 percent. The remaining

9 percent reduction is caused by trading off horsepower for fuel economy. The main

explanation for this pattern is that adopting technology gets increasingly expensive, as Table

5 shows. More specifically, manufacturers have three options for complying with tighter

21Because the fuel consumption rate is the reciprocal of fuel economy, the percentage change of the sales-
weighted average fuel economy does not equal precisely the negative of the sales-weighted percentage change
in the fuel consumption rate, across the two scenarios.
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standards: adjusting vehicle prices, adding technology, and trading off fuel economy for

horsepower. In equilibrium, manufacturers equate the marginal costs of the three options.

Starting from the 2011 equilibrium, it turns out that the cost of trading off horsepower for

fuel economy is roughly linear, based on the estimated preference parameters and trade-

off coefficient in Equation (6). However, average fixed costs increase faster than linearly

with the fuel economy increase, making it increasingly expensive to comply by adopting

technology. Consequently, in equilibrium, firms rely more on attribute trade-offs than

technology adoption for compliance. In contrast, it turns out that the cost of adjusting

vehicle prices for compliance increases quickly with the price change, and firms make only

small price adjustments, usually within a few percentage points.

The estimated welfare effects of the 2016 standards appear in Table 7. The first row

of the table shows the difference in consumer surplus between the central policy and the

baseline scenarios using the two computations described in the previous subsection. Using

the estimated preference parameters to compute consumer surplus in the first column, we find

that consumer surplus decreases by about $9.6 billion. The 2016 standards reduce consumer

surplus because the decrease in welfare from lower performance outweighs the increase in

welfare from higher fuel economy (Table 6 shows that vehicle prices are approximately the

same in the two scenarios). The value of the fuel cost savings is about $30 billion (not shown

in the table), and the mean valuation ratio of 0.5 implies that consumers value only about

half of those savings. Consequently, when we correct for consumer mistakes in the second

column, consumer surplus increases by about $15 billion.

The second row shows the change in producer welfare, as measured by profits. The

2016 standards reduce profits by about $5.8 billion, which includes two effects. First,

tighter standards cause firms to adopt more technology, which raises marginal costs, but

manufacturers are unable to pass through the full cost increase to consumers.22 The

resulting lower markup reduces profits, which contrasts with the EPA and NHTSA benefit-

cost analysis, which assumes full pass-through of compliance costs to vehicle prices. Second,

the additional technology adoption shown in Table 6 translates to an additional $3 billion

per year across the market.

The bottom two rows report the net social benefits and the private welfare cost per ton

of carbon dioxide abated. Using the estimated preference parameters to evaluate consumer

22This result differs from Leard et al. (2019), who show that manufacturers can pass through the full
cost increase. However, in their model, horsepower is exogenous, and firms cannot trade off horsepower for
fuel economy. In our analysis, because firms reduce horsepower, demand for new vehicles falls, preventing
manufacturers from passing through the full cost increase. This difference demonstrates the importance of
endogenizing horsepower for accurate welfare estimates.
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surplus in the first column, we find that tighter standards reduce social welfare by $11.4

billion. This cost exceeds the social value of the avoided emissions. The implied cost per

metric ton of carbon dioxide emissions abated, which is calculated as the ratio of the private

welfare cost and the tons of abated, equals $187 per metric ton and exceeds the estimated

social cost of carbon dioxide.

However, the standards increase social welfare if we include the full value of the fuel cost

savings. In this case, the tighter standards reduce private welfare by $470 million, which is

outweighed by the value of the avoided carbon dioxide emissions. As a result, social welfare

increases by $3.6 billion. The cost per metric ton of carbon dioxide emissions abated equals

$6, which is less than the estimated social cost of carbon dioxide including global damages.23

Table A.1 reports attribute and welfare changes by demographic group. Figure 4 shows

that low-income groups have lower WTP for fuel economy and horsepower than do high-

income groups. It turns out that manufacturers find it less costly, in forgone profits, to

trade off horsepower for fuel economy for vehicles that tend to be purchased by low-income

consumers. Consequently, those consumers experience larger fuel economy increases and

horsepower decreases than do high-income groups. When using the full value of the fuel

cost savings to compute welfare changes in the right-most column, we find that welfare

increases for low-income groups and decreases for high-income groups; thus, the standards

are progressive. This result contrasts with Leard et al. (2019), who find that standards are

regressive if horsepower is held exogenous. The difference arises from the fact that high-

income groups have higher demand for horsepower than do low-income groups.

The effects of the standards on manufacturers appear in Table A.2. The standards

reduce per vehicle profits for Ford and Chrysler. Compared with other manufacturers, Ford

and Chrysler have higher estimated fixed costs of technology adoption and face larger costs

of trading off horsepower for fuel economy because their customers have higher WTP for

horsepower than do other customers (see Table 2). The tighter standards reduce consumer

demand for vehicles sold by these manufacturers, which increases demand for vehicles sold

by other manufacturers. Consequently, profits for some manufacturers increase, including

Toyota and Honda.

23Recall that these estimates do not include savings of refueling costs and certain other costs and benefits
that EPA and NHTSA include in their analysis. Including those terms would cause us to estimate that the
2012–2016 standards caused welfare changes of –$4 billion to $11 billion, depending on the computation of
fuel cost savings.
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5.3 Other Results

Table 8 shows results from additional scenarios, described in the column headings. Each

column reports the differences in attribute changes between the policy scenario and the

corresponding baseline, with the first column repeating the results from the central policy

and baseline scenarios for comparison purposes.

The Introduction noted that fuel prices dropped after the agencies finalized the 2012--2016

standards and performed their welfare analysis. Lower fuel prices reduce consumer demand

for fuel economy, making it more costly for manufacturers to comply with standards.24

Lower fuel prices also reduce the value of the fuel cost savings, lowering the benefits. The

average gasoline price in 2015 was about $1 per gallon lower than the average price in

2011, corresponding to a 30 percent decline. In column 2 we resimulate the baseline and

policy scenarios using observed 2011 fuel prices (i.e., corresponding to the time at which the

agencies finalized the standards) rather than the observed 2015 fuel prices. With the higher

fuel prices, net social benefits are substantially higher than with lower fuel prices.

The stated objective of the footprint-based standards was to reduce incentives for

manufacturers to comply by selling smaller vehicles. NHTSA argued that smaller vehicles

are less safe in multivehicle collisions. Flat standards, in which a vehicle’s fuel economy

requirement depends on its class but not any other attribute, incentivizes firms to reduce

prices of smaller vehicles, which have higher fuel economy than do larger vehicles. The

footprint-based standards reduce this incentive to lower prices for small vehicles. Column 3

of Table 8 shows that with uniform standards, the 2016 standards cause a larger decrease

in average footprint than in column 1. However, the magnitude of this difference is small in

percentage terms, reflecting the fact that manufacturers rely little on vehicle price changes

to increase average fuel economy. Quantifying the welfare implications of this difference

lies outside the scope of the paper, since it requires modeling the interactions between new

vehicles and existing vehicles in multivehicle collisions.

Coinciding with the increase in stringency that occurred during the 2012–2016 phase of

the standards was a change in structure: allowing manufacturers to comply with an average

standard across their car and light truck fleets, rather than with separate standards for

24More specifically, lower fuel prices increase the cost of trading off horsepower for fuel economy and
decrease the ability of the manufacturer to pass through cost increases to consumers. The adoption of the
footprint-based standards mitigates a third reason why lower gas prices may increase costs. With uniform
standards, a drop in gasoline prices causes consumers to substitute to vehicles with lower fuel economy,
making it more challenging for the manufacturer to comply with the standards. With footprint-based
standards, however, vehicles with lower fuel economy tend to be larger and therefore have lower fuel economy
requirements. Leard et al. (2017) show that the footprint-based standards reduce but do not eliminate the
importance of this effect.
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each class, and the replacement of flat standards with footprint-based standards. Allowing

manufacturers to comply with a single standard should reduce welfare costs of the standards

because manufacturers can take advantage of compliance cost variation across classes. That

is, if it is less costly for a manufacturer to comply with a standard for one class than for

the other, a single standard across the classes allows the manufacturer to overcomply for the

low-cost class and undercomply with the high-cost class, reducing total costs. Column 4 of

Table 8 shows that this change in the standards had little effect on overall welfare costs.

Finally, we show the implications of relaxing two assumptions commonly made in the

literature and by the regulatory agencies: that horsepower is fixed in all scenarios, and

that manufacturers do not increase horsepower in the baseline scenario. If we assume

that horsepower is exogenous in column 6, consumer surplus is substantially higher than

in column 1 because consumers do not suffer the welfare losses of lower horsepower.

Manufacturers’ costs are also higher, largely because fixed costs roughly double. Columns 1

and 6 demonstrate the importance of endogenizing horsepower in the model and including

fixed costs: consumer benefits are $14 billion higher, and profits are $3 billion lower if

horsepower is exogenous and welfare analysis ignores performance increases in the baseline.

Overall, these two assumptions overstate net benefits by about $11 billion.

6 Conclusions

The US market for new passenger vehicles is dynamic and complex. Firms spend billions

of dollars per year designing and producing highly differentiated vehicles; these investments

steadily improve vehicles over time.

This situation presents a challenge to analyzing the welfare effects of fuel economy and

GHG standards. Despite the numerous studies of consumer demand for new vehicles, the

literature on the standards has largely ignored three key supply-side factors: trade-offs

between performance and fuel economy, technology adoption that would occur in the absence

of the standards, and fixed costs of adopting technology. Moreover, the literature has ignored

the possibility that consumers systematically make mistakes when evaluating differences in

fuel costs across vehicles.

In this paper, we analyze the first phase of combined fuel economy and GHG standards,

which covered model years 2012–2016, using a new equilibrium model of the passenger

vehicles market that addresses these supply and behavioral factors. In the demand

component of the model, consumers choose among a highly differentiated set of vehicles.

Consumer preferences for price and attributes vary across demographic groups. Using
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data from a household survey of recent vehicle buyers, we estimate substantial preference

heterogeneity across demographic groups. On average, consumers undervalue fuel cost

savings and prefer horsepower to fuel economy.

In the supply component of the model, manufacturers choose vehicle prices, fuel economy,

horsepower, and fuel-saving technology, where technology adoption increases fixed costs as

well as marginal costs. We estimate all cost parameters using first-order conditions to a

firm’s profit maximization problem and observed attribute choices.

We estimate benefits and costs of the standards by comparing two scenarios that differ

according to the level of standards that apply in model year 2016. In the first case, we

assume that standards are maintained at their 2012 levels for model years 2012–2016. In the

second, we use the actual 2016 standards for model year 2016. The comparison accounts for

technology adoption and horsepower changes that occur in the 2012 scenario, differing from

EPA and NHTSA welfare analysis as well as estimates in the literature in which horsepower

is endogenous (i.e., (Klier and Linn 2012) and (Whitefoot et al. 2017)).

After accounting for the full value of the fuel cost savings, the 2012–2016 standards

reduced GHG emissions at a cost of $6 per metric ton of carbon dioxide, implying that the

standards increased social welfare. The largely unexpected decline in fuel prices that began

in 2014 substantially reduces the net benefits of the standards. The shift from uniform to

footprint-based standards had a small effect on overall welfare and average footprint.

As noted in the Introduction, our model focuses on the new-vehicle market to address the

shortcomings in the literature. We follow EPA (2012) to incorporate the effects of standards

on vehicle utilization. Accounting for scrappage would not overturn the main conclusion

that the standards have increased social welfare.

The net benefits of the standards are substantially lower than the agencies predicted.

This is partly due to the drop in fuel prices that occurred after they performed their welfare

analysis. Failing to account for technology adoption and performance improvements that

would have occurred if standards had not tightened appears to explain much of the difference

between our results and theirs. Our results suggest that tightening standards beyond 2016

levels also increases social welfare because our estimated compliance costs are less than the

social cost of carbon dioxide. During our period of analysis, plug-in vehicles accounted for

less than 1 percent of the market, and for simplicity our model allows for limited preference

heterogeneity across demographic groups for plug-in vehicles. However, the market share of

these vehicles was above 2 percent in 2019 and is expected to continue rising. Therefore,
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analyzing welfare effects of future standards requires a more detailed treatment of plug-in

vehicles, which we leave for future work.
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Figures

Figure 1: US Fuel Economy and Greenhouse Gas Standards, Historical and Projected
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Figure 2: Trends in Vehicle Attributes, 2010–2015
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Figure 3: Own-Price Elasticity of Demand by Demographic Group

-6

-5

-4

-3

-2

-1

0

R
u

ra
l, 

<4
5

U
rb

an
, <

4
5

R
u

ra
l, 

>=
4

5

U
rb

an
, >

=
4

5

R
u

ra
l, 

<4
5

U
rb

an
, <

4
5

R
u

ra
l, 

>=
4

5

U
rb

an
, >

=
4

5

R
u

ra
l, 

<4
5

U
rb

an
, <

4
5

R
u

ra
l, 

>=
4

5

U
rb

an
, >

=
4

5

R
u

ra
l, 

<4
5

U
rb

an
, <

4
5

R
u

ra
l, 

>=
4

5

U
rb

an
, >

=
4

5

R
u

ra
l, 

<4
5

U
rb

an
, <

4
5

R
u

ra
l, 

>=
4

5

U
rb

an
, >

=
4

5

$<44k $44-91k $91-123k $123-185k >$185k

Notes: Each bar shows the own-price elasticity of demand for the indicated demographic group. The

estimates are computed from the estimated demand model coefficients, and all estimates are weighted across

vehicles and markets using predicted market shares as weights.
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Figure 4: Willingness to Pay for Fuel Economy and Performance by Demographic Group
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Panel B: Willingness to pay for 1-percent horsepower increase (2015 $)

Notes: Panel A reports the WTP for a 1 percent fuel economy increase, and Panel B reports the WTP for

a 1 percent performance increase. Each bar shows the estimate for the indicated demographic group. The

estimates are computed from the estimated demand model coefficients, and all estimates are weighted across

vehicles and markets using predicted market shares as weights.
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Tables

Table 1: Estimated Valuation Ratios by Demographic Group

Panel A: Rural
Income Age < 45 Age >= 45

< 44k 0.30 0.20

44k – 91k 0.36 0.35

91k – 123k 0.60 0.36

123k – 185k 0.62 0.52

> 185k 0.74 0.99

Panel B: Urban
Income Age < 45 Age >= 45

< 44k 0.22 0.227

44k – 91k 0.35 0.33

91k – 123k 0.24 0.42

123k – 185k 0.37 0.57

> 185k 0.83 1.01

Notes: The table reports the valuation ratio

for each demographic group using the WTP

estimates from Figure 4.

Table 2: Own-Price Elasticity and Willingness to Pay by Manufacturer

Firm Own-price

elasticity of

demand

WTP for 1 percent

fuel economy increase

Estimated

valuation ratio

WTP for 1 percent

horsepower increase

GM –3.86 156.17 0.63 49.68

Ford –3.84 123.14 0.49 43.47

Toyota –3.61 122.39 0.49 46.86

Honda –3.76 100.76 0.40 38.97

Hyundai –3.73 75.85 0.30 33.87

Fiat-Chrysler –3.80 134.26 0.54 42.57

Nissan –3.79 108.89 0.44 40.48

Volkswagen –3.86 132.51 0.53 50.36

BMW –3.94 190.66 0.77 64.98

Subaru –3.70 99.91 0.40 38.46

Daimler –3.92 227.66 0.91 68.86

Other –4.01 199.61 0.80 56.94

Notes: The table reports the average own-price elasticity of demand, willingness to pay for fuel economy,

valuation ratios, and willingness to pay for horsepower by firm. All values are a weighted average using

predicted sales for each vehicle and demographic group as weights.
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Table 3: Estimated Marginal Costs and Feebate by Manufacturer

Firm Average marginal

costs

(2015$/vehicle)

Average feebate

(2015$/vehicle)

Standard

deviation of

feebate

(2015$/vehicle)

Fuel economy shadow

cost ($ per mpg per

vehicle)

GM 26,864 722 491 –144

Ford 24,524 687 632 –121

Toyota 25,266 691 952 –204

Honda 22,856 634 547 –177

Hyundai 19,924 475 422 –173

Fiat-Chrysler 23,897 802 383 –119

Nissan 23,202 718 808 –163

Volkswagen 29,181 765 633 –184

BMW 41,165 1741 1134 –261

Subaru 22,789 1093 458 –161

Daimler 42,555 1887 980 –203

Other 31,673 1237 253 –87

Notes: The table reports the estimated marginal costs and feebate by firm. All values are a weighted average

using predicted sales for each vehicle and demographic group as weights.

Table 4: Estimated Fuel Economy-Horsepower Trade-off and Marginal Cost Function

Dependent variable is log fuel economy

Cars Trucks

Log horsepower
–0.239 –0.218

(0.054) (0.047)

N 2,508 2,901

R-squared 0.996 0.990

Dependent variable is log marginal costs

Cars Trucks

Efficiency
0.332 0.173

(0.082) (0.075)

N 2,508 2,901

R-squared 0.988 0.978

Change in marginal costs per mpg
266 234

(66) (102)
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Table 5: Changes in Marginal Costs and Average Fixed Costs from Raising Fuel Economy

Percentage efficiency increase

1 5 10

Marginal costs (2015$)
60.76 299.48 588.65

(30.71) (151.65) (298.80)

{53.34} {263.04} {516.13}

Average fixed costs (2015$)
5.58 139.47 557.87

(24.27) (606.84) (2427.34)

{1.77} {44.15} {176.60}

Notes: Each cell reports the mean with standard deviation in parentheses and

the median in brackets.

Table 6: Simulated Efficiency, Vehicle Attributes, and Transaction Price

2012 standards 2016 standards
(baseline) (central policy)

Efficiency (fractional improvement since 2011) 0.125 0.161

Fuel economy (miles per gallon) 23.82 27.19

Log (horsepower/weight) –2.50 –2.87

Transaction price (2015$) 33,580 33,810

Footprint (square feet) 49.71 49.70

Notes: The table reports average efficiency, vehicle attributes, and transaction prices for the two

scenarios described in the row headings. In column 1, the standards are fixed at 2012 levels from

model years 2011 through 2016. In column 2, the standards increase to 2016 levels.
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Table 7: Estimated Welfare Changes: Difference between 2016 and 2012 Standards

Welfare changes (billion 2015$)

Preference
parameter for fuel

cost savings

Present discount
value of fuel cost

savings

Consumers –9.65 5.29

Firms –5.76 –5.76

Carbon emissions 4.05 4.05

Total social welfare –11.35 3.59

Private welfare cost per tonne abated 187 6

Notes: The table reports the estimated costs and benefits of the 2016 standards. Welfare changes

are disaggregated by consumers and producers. We compute changes in consumer surplus in two

ways. In column 1, we use estimated preference parameters. Column 2 augments consumer surplus

changes with the difference between the present value of fuel cost savings and the valuation from

column 1. Welfare changes for manufacturers are the change in firm profits. Welfare changes due

to changes in carbon emissions are calculated by multiplying the change in lifetime emissions of

each vehicle by the social cost of carbon. Total social welfare is the sum of private welfare changes

and change in social welfare due to reduced carbon emissions. The implied cost per metric ton

of carbon emissions abated is the ratio of the private welfare cost and the metric tons of carbon

emissions abated.
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Table 8: Alternative Assumptions on Standards, Fuel Prices and Used Vehicle Supply

Central

policy

2011 fuel

prices

Flat

standards

No

car/truck

averaging

EPA/NHTSA

fuel price and

SCC

assumptions

Horsepower

exogenous

and static

baseline

Panel A: Attribute changes (2016 vs. 2012 standards)

Fuel economy

(mpg)
3.36 3.22 3.44 3.12 3.22 2.38

Log (hp/wt) –0.36 –0.37 –0.35 –0.34 –0.37 0.00

Footprint (sq ft) –0.01 0.02 –0.24 0.01 0.02 0.70

Price 231 200 69 215 200 1,049

Panel B: Welfare changes (2016 vs. 2012 standards, billion 2015$)

Consumer

(WTP)
–9.65 –6.28 –9.40 –9.40 –6.28 6.06

Consumers

(PDV)
5.29 14.38 5.63 5.38 6.76 19.73

Firms –5.76 –5.43 –6.15 –6.04 –5.43 –9.01

Carbon

emissions
4.05 4.05 4.07 4.04 1.94 3.93

Notes: The table reports results from the scenarios described in the column headings. Each column reports the

differences in attribute and welfare changes between the policy scenario and the corresponding baseline. The first

column repeats the results from the central policy and baseline scenarios. SCC = social cost of carbon; WTP =

willingness to pay; PDV = present discounted value.
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Appendix Figures

Figure A.1: Fuel Economy for Vehicles Sold in 2011 and Requirements in 2012 and 2016
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Notes: Each circle and x represent a unique vehicle sold in 2011. Each blue circle is the vehicle’s fuel

economy, in miles per gallon, plotted against its footprint, in square feet, where the footprint is computed

as the product of the wheelbase and width. Each orange x shows the vehicle’s fuel economy requirement in

2012, and each black x shows the fuel economy requirement in 2016.
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Figure A.2: Comparison of Predicted and Observed Attributes by Demographic Group and
Year
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Notes: For each demographic group, we compute the predicted mean attribute indicated in the

panel title using the vehicle market shares predicted by the model. The figure plots the predicted

mean against the observed sales-weighted mean.
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Figure A.3: Comparison of Predicted and Observed 2015 Market Shares by Demographic
Group, Brand, and Class: No-change vs. Demand Model
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Panel B: Demand model

Notes: Vehicles are aggregated by brand and class. The figure plots the predicted against observed market

share by aggregated vehicle and demographic group. In Panel A, the prediction is equal to the observed

market share in 2010. In Panel B, the prediction is made using the demand model.
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Appendix Tables

Table A.1: Effects of Standards on Vehicle Prices and Attributes and Consumer Surplus

Income

group

Age

group

Urban? Average

transaction

price

(2015$)

Average fuel

economy

(mpg)

Average log

(horsepower

/weight)

Average

consumer

surplus using

preference

parameters

Average

consumer

surplus using

fuel cost

savings

< 44k < 45 No 154 3.93 –0.43 –42 60

< 44k < 45 Yes 31 3.92 –0.43 –34 99

< 44k >=45 No –126 3.59 –0.42 –13 144

< 44k >=45 Yes –109 3.57 –0.37 4 129

44k – 91k < 45 No 7 3.57 –0.43 –44 101

44k – 91k < 45 Yes 89 3.67 –0.39 –51 79

44k – 91k >=45 No 127 3.30 –0.39 –94 46

44k – 91k >=45 Yes 219 3.50 –0.36 –165 –8

91k – 123k < 45 No 0 3.23 –0.42 –18 140

91k – 123k < 45 Yes 217 3.53 –0.38 –118 71

91k – 123k >=45 No 431 3.03 –0.35 –273 –49

91k – 123k >=45 Yes 396 3.42 –0.34 –171 –47

123k – 185k < 45 No 295 2.97 –0.37 –160 124

123k – 185k < 45 Yes 305 3.11 –0.34 –123 70

123k – 185k >=45 No 536 2.82 –0.31 –226 –45

123k – 185k >=45 Yes 825 2.89 –0.28 –286 –165

> 185k < 45 No 174 2.57 –0.33 –1 155

> 185k < 45 Yes 489 2.62 –0.28 –85 31

> 185k >=45 No 933 2.37 –0.25 –305 –226

> 185k >=45 Yes 1,060 2.48 –0.22 –360 –353

Notes: The table reports changes in transaction prices, vehicle attributes, and consumer surplus by

demographic group, comparing the baseline and central policy scenarios. See Section 5.2 for description

of the two ways we define change in consumer surplus.
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Table A.2: Effects of Standards on Vehicle Prices and Attributes and Profits, by Firm

Firm Average

transaction

price (2015$)

Average fuel

economy

(mpg)

Average log

(horsepower

/weight)

Profits per

vehicle (2015$)

GM 251 3.00 –0.41 17

Ford 123 3.08 –0.35 –11

Toyota 260 3.18 –0.33 20

Honda 302 3.51 –0.29 32

Hyundai 148 3.71 –0.46 1

Fiat-Chrysler –28 3.57 –0.45 –29

Nissan 340 4.30 –0.31 16

Volkswagen 546 3.70 –0.28 37

BMW 250 3.16 –0.40 –39

Subaru 452 3.02 –0.26 31

Daimler –94 3.49 –0.35 –110

Other 1,487 3.08 –0.18 –10,315

Notes: The table reports the changes in transaction prices, vehicle attributes, and

profits by manufacturer, comparing the baseline and central policy scenarios.
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