CoolPaint: Direct Interaction Painting

Leah Findlater, Dustin Lang, and Michael Shaver
University of British Columbia

Problem
Computer drawing packages have several sources of indirection:
- One input device maps to several virtual tools, creating modes
- 2- or 3-degree-of-freedom input device controls a conceptually 6-dof virtual tool
- Spatial disconnect between input device and display
These add to the user's cognitive load.

Approach
1. Use real paint brushes for prop-style input
 - **Props**: passive physical objects that directly manipulate virtual objects
2. Model virtual tool to match physical paint brush
3. Interact directly on display surface

User Evaluation
- Informal evaluations with 6 users
- CoolPaint vs. Adobe Photoshop + tablet
 - Easy to use
 - Collaborative: No hesitation in picking up a spare brush and joining in
 - Expressive: full six-degree-of-freedom movement
 - Fun: encourages creativity, and all users wanted to use CoolPaint further

Future Work
- User evaluations with amateur and professional artists
- Incorporate better brush and paint models, and digital tools (e.g. copy/paste)
- Provide a wider range of physical tools

Conclusions
- Painter can focus on the task, rather than on the mechanics of interaction, because computer is 'hidden'
- Keeping high fidelity between physical input devices and virtual tools allows skill transfer from the real world, intuitive interaction, and expressiveness

Acknowledgements
We would like to thank Sid Fels and Mark Hancock for their contributions.

Setup
- LCD projector
- Mirror
- Table
- Fastrak transmitter

Interaction
- Physical paint brushes (with 6-degree-of-freedom trackers) control 3D models - the painter gets exactly the brush stroke she expects

Brushes
- Real and virtual brushes

Canvas
- Custom colours: Color mixing is performed by picking up a color and dabbing the brush in a mixing circle

Related Work
Some examples:
- DAB - 3D haptic painting on virtual canvas (Baxter, 2001)
- CavePainting - 3D painting in immersive CAVE environment (Keefe, 2001)