High-Fidelity
Josephson Gates

UC Santa Barbara

John Martinis
Andrew Cleland
Ken Cooper (JPL)
Robert McDermott (UW)
Matthias Steffen (IBM)
Eva Weig (LMU)
Nadav Katz (HU)
Haohua Wang
Max Hofheinz

Markus Ansmann
Matthew Neeley
Radek Bialczak
Erik Lucero
Aaron O’connell
James Wenner
Daniel Sank

UCR A. Korotkov, Qin Zhang (GS),
 Abraham Kofman (VS)

UCI C. Yu, Magdalena Constantin (PD)

UG M. Geller, Emily Pritchett (GS),
 (Andrei Galiautdinov (PD))

NIST D. Pappas, Jeff Kline
Outline

Superconducting and Phase Qubits

Environmental Decoherence
 Dielectric loss and TLS
 T1

Control Decoherence & Gate Fidelity
 98% measured, 99.99% 2 errors
 >99.9% possible for coupled gates
Quantum Computer Architecture

(1) Single qubits
(2) Coupling
(3) Long-range coupling

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Error threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlimited range</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>2D lattice nearest-neighbor</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>1D lattice nearest-neighbor</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>

Superconducting qubits: “Quantum Bus” = Al wire (use IC technology)
Coherence versus Coupling

Atoms
- EM modes
 - Photons
 - Ions
 - Neutral Atoms
 - NMR
 - Spin
 - Semiconductor spin
 - Quantum Dot

Coherence easier

Coupling easier

SC: unique approach, Strength seen in future

microscopic
- Superconductor SET
- 2-Degenerate SSET
- 3 Junction SQUID
- RF SQUID
- Josephson Junctions
 - (this work)

mesoscopic
- Photons
- Superconductor SET
- 2-Degenerate SSET
- 3 Junction SQUID
- RF SQUID
- Josephson Junctions
 - (this work)

atomic
- Photons
- Superconductor SET
- 2-Degenerate SSET
- 3 Junction SQUID
- RF SQUID
- Josephson Junctions
 - (this work)
Strategy for Phase Qubits

• Impedance $Z = 1/\omega C \sim 50 \ \Omega$
 More straightforward to couple (direct wiring)
• Gate fidelity through speed
 1 qubit 10 ns
 2 qubit 10-20 ns, > 99.9% intrinsic fidelity
• Improve T_1, T_2 through materials
• No sensitivity to charge noise
 (Biased transmon)
Environmental Decoherence: Where’s the Problem?

Inductors & Junctions

Superconductors:
- Gap protects from dissipation
- X-tal or amorphous metal
- Protected from magnetic defects

Circuits

Good circuit design (
wave engineering.)

Capacitors

Many low-E states
Only see at low T

2$∆$~4T_c
Qubit Improvements: Understanding TLS Defects

- Al₂O₃ wafer
- SiO₂ \Rightarrow SiNx
- Small junction + external Cap.
- Δt_{Rabi}[ns]
 - $T_1 = 40\,\text{ns}$
 - $T_1 = 500\,\text{ns}$
 - $T_1 = 470\,\text{ns}$
- $T_\Phi \approx 300\,\text{ns}$
- $I_L \Rightarrow I_R\Rightarrow E$
- Piezoelectric materials

Diagram showing quantum states and energy levels.
TLS Defects and Dielectric Loss

- a-oxides have large loss, $\delta_i \sim 10^{-3}$ – BE CAREFULL
- Statistically avoid TLS with small junctions ($\delta_i \sim 10^{-5}$)
- TLS invisible at high T, power – BE CAREFULL
- Predicted how to improve phase qubits - outsource C
- Explains spectroscopy data (size and density)
- Explains loss of measurement visibility
- Explains loss of Rabi amplitude (coherence)
- Consistent with 30+ years of LT physics

- Lower loss dielectrics: xtal’s or a-Si:H (4-bonds)
 Lossy barriers: a-AlN, MgO (D. Pappas, NIST)
- Understand magnitude of 1/f charge noise $S_Q \sim \delta_i$ (Yu and
- Understand magnitude of 1/f critical-current noise Constantin)
- TLS produces phase noise (C-fluctuations), theory in progress

- New resonator data (J. Gao … Caltech/JPL)
 $\delta_i \sim 10^{-5} – 10^{-6}$ from surface oxide
T_1 Decoherence (energy decay)

• 5 different devices give $T_1 \sim 500$ ns
 50 gate op’s – algorithms possible
 Indication that 1-2 μs possible
 2-3 μs from loss of a-Si:H (not optimized)
 Radiation possible
 Need to measure T_1 of resonator

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{$T_1 = 470$ ns}
\end{figure}
Gate Fidelity and T_1-ology

- Often implied: gate fidelity $= T_{\text{op}}/T_{1,2}$

- Incomplete since other errors possible
 Possible to have errors constant with time
 T_1 & T_2 describe memory operation, not logic (change in state)
Single Qubit Gate Errors: Measurement Errors

Nothing or \(\pi \)-pulse

\[I_{\mu w} \quad \text{and} \quad I_z \]

8 ns 3 ns

Spectroscopy

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.22 GHz</td>
</tr>
<tr>
<td>6.75 GHz</td>
</tr>
</tbody>
</table>

Tunneling Prob.

\[I_{\text{meas}} / I_c \]

\(|1> \) (misidentified as \(|0> \))
- 4.5% splitting at 7GHz
- 3-5% other splittings
- 1% \(T_1 \) during measurement

\(|0> \) (misidentified as \(|1> \))
- 3.4% stray tunneling

Error Budget

\[|1> \]

\[|0> \]
Single-Qubit Gate Errors: Tomography Check

Goal:
Measure fidelity of pi-pulse (longest single-qubit gate) separately from measurement errors.

Idea:
Two pi-pulses bring state back to |0>, where the only measurement error is stray tunneling. Remaining error is due to pi-pulses only.

Tomography Check:
On resonance, phase of second pulse has no effect, as expected for pi-pulses.
Single-Qubit Gate Errors: Limited by T_1

Vary the time between pi pulses to separate gate fidelity from decoherence due to T_1 decay.

double - π error:
4%

single-qubit gate fidelity:
98%
(limited by T_1)

Direct measure of probability
Checks on measurement & π-gates
Two State Errors

Gaussian pulses:
Minimum width in
time and frequency

|2> Errors from Fast Pulses

Measure

\(\tau \) (FWHM)

\(\chi_{\pi} \)

\(\omega_{10} \)

\(\omega_{21} \)

Pulse Amplitude [V]

P of Tunneling [%]

Measure Pulse Amplitude [V]

|0> 4ns 5ns 6ns 8ns
π - π Pulses Give Low Background & Error Filtering

![Graphical representation of π-π pulses and their effect on background and error filtering.](image)

- **High Power Spectroscopy**
 - |2> Error
 - Two Photon
 - Qubit

- **Ramsey Fringe Filtering of |2> state**
 - Delay time \(\tau_{\text{delay}} \) [ns]

- **Microwave Frequency [GHz]**
 - 6.05
 - 6.15
 - 6.25

- **Graphs showing the distribution of P[|1> [%]] and P[|2> [%]] vs. delay time \(\tau_{\text{delay}} \) [ns] and microwave frequency.**

- **Equations and labels:**
 - \(\pi \)
 - \(\pi \)
 - \(X_\pi \)
 - \(X_\pi \)
 - Microwave Frequency [GHz]
 - \(|1> \)
 - \(|2> \)
 - \(4P_2\)-error
 - 5 ns
 - 200MHz
Error vs. Gaussian Pulse Width

- S-curve
- $\pi-\pi$
- FT theory
- Spectrum analyzer
- Quantum simulation

$|2\rangle$ error vs. τ [ns]
GHz DAC Electronics

Old analog system:

14 bits, 2x Gs/s
FPGA memory, ~2k$

measured waveform
Beyond T_1, T_2: Gate Performance

“\textbf{It works}” \quad \rightarrow \quad \textbf{Gates (+ fidelity)}
CNOT gates for capacitively coupled UCSB qubits

<table>
<thead>
<tr>
<th>design</th>
<th>coupling strength g</th>
<th>speed</th>
<th>coupling efficiency η</th>
<th>average gate fidelity: intrinsic</th>
<th>average gate fidelity: 500ns amplitude damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNOTsqiswSteffen</td>
<td>3MHz</td>
<td>114ns</td>
<td>2.92</td>
<td>97.1%</td>
<td>90.9%</td>
</tr>
<tr>
<td>CNOTsqiswEntangling</td>
<td>3MHz</td>
<td>132ns</td>
<td>2.52</td>
<td>92.1%</td>
<td>85.5%</td>
</tr>
<tr>
<td>CNOTczStrauch</td>
<td>10MHz</td>
<td>98ns</td>
<td>1.02</td>
<td>98.5%</td>
<td>93.1%</td>
</tr>
<tr>
<td>CNOTspectroscopic</td>
<td>50MHz</td>
<td>82ns</td>
<td>0.24</td>
<td>84.7%</td>
<td>81.4%</td>
</tr>
<tr>
<td>CNOTrfCouplingWeyl</td>
<td>10MHz</td>
<td>111ns</td>
<td>0.90</td>
<td>85.7%</td>
<td>80.8%</td>
</tr>
<tr>
<td>CNOTsteeringGaliaudinov</td>
<td>3MHz</td>
<td>106ns</td>
<td>3.14</td>
<td>96.4%</td>
<td>90.8%</td>
</tr>
<tr>
<td>CNOTsqiswSteffen (RWA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>off/on ratio = 1%</td>
<td>50MHz</td>
<td>20ns</td>
<td>1.0</td>
<td>$>99.9%$</td>
<td>$98.7%$</td>
</tr>
<tr>
<td>off/on ratio = 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geller et al., to be published
Design Issues for Coupled Qubits

1) Switching by tuning/detuning is limited: \(\text{off/on ratio} = \frac{g}{\Delta} \)

\[
\begin{align*}
|11\rangle & \quad \text{“on”} \\
|10\rangle & \quad \text{coupling} = g \\
|00\rangle & \quad \text{“off”} \\
|01\rangle & \quad \text{coupling} \approx \frac{g^2}{\Delta}
\end{align*}
\]

Effective tuning via \(\mu \)waves gives no further improvement

2) Computational basis used here is the **uncoupled** qubit basis

- **computational basis** vs. **eigenstates**
 - \(\{\langle 00|, \langle 01|, \langle 10|, \langle 11|\} \) vs. \(|\psi_{00}\rangle = |00\rangle + a_1 |01\rangle + a_2 |10\rangle + a_3 |11\rangle \)
 - \(|\psi_{01}\rangle = |01\rangle + b_1 |00\rangle + b_2 |10\rangle + b_3 |11\rangle \)

- **basis choice compatible with scalability**
 - the \(a_i \) and \(b_i \) are of order \(\frac{g}{\Delta} \) (counted as errors)

3) For \(10^{-4} \) errors, \(\frac{g}{\Delta} \sim 10^{-2} \)

- With \(g = 100 \text{ MHz} – 10 \text{ GHz} \) is a difficult frequency detuning.

Can achieve with adjustable coupling (ie Berkeley, NEC)
Conclusions

Coherence is key issue with superconducting qubits

TLS & dielectric loss THE important decoherence mechanism
 Basic understanding of physics
 Know how to improve (materials take time)

Gate Fidelity is additional important measure
 98% single-qubit gate (limited by T_1)
 99.99% 2 errors
 >99.9% possible for coupled gates

T_2 and dephasing – Optimistic, see R. McDermott’s talk
Beyond 2 Qubits: Planning for Scalability

Custom electronics
- Cost effective: $2,000 / Qubit
- Scalable: Rack mount design
- Flexible, yet powerful: FPGAs

Custom software
- Modular ⇒ “Easy complexity”
- Cross language ⇒ efficient
- Distributed ⇒ many PCs
- Open Source ⇒ maintainable

Custom DR
- There’s plenty of room at the bottom: 200 coax’s

UCSB Qubit Fab
- Robust, multi-layer process
- Engineered materials
- Everyone makes qubits!