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(1) Let R = R[x, y]/(x2 + y2 − 1).
(a) To show R is a Dedekind domain, we can apply the theorem proved in class, that it

suffices to show R is the integral closure of the PID S = R[x] in a finite extension field
of K = R(x) (the field of fractions of R[x]). Let L = R(x)[y]/(y2 + x2 − 1). This is a
finite algebraic extension of K of degree 2, since 1 − x2 is not a perfect square in K.
Any element of L can be represented by an expression f(x, y) = k1(x) + k2(x)y with
k1(x), k2(x) ∈ K. If f(x, y) (here we mean the image in L) is integral over S, then so is
its Galois conjugate k1(x)−k2(x)y, so adding and subtracting, we see k1(x) and k2(x)y
are integral over S. But S is integrally closed in K, so k1(x) ∈ S, and since y is integral
over S, being a root of the monic polynomial y2 − (1− x2), k2(x)y2 = k2(x)(1− x2) is
also integral over S. That means k2(x)(1− x2) lies in K and is integral over S, and so
is a polynomial in x. So k2(x) = g(x)/(1− x2) with g(x) ∈ S. Since k2(x)y is integral
over S, so is

(k2(x)y)2 =
g(x)2(1− x2)

(1− x2)2
=

g(x)2

1− x2
,

which can only happen if g(x) is divisible by 1− x2. So then k1(x) and k2(x) are in S
and f(x, y) ∈ R.

(b) Let P be a non-zero prime ideal of R; then its contraction P ∩S to S = R[x] is a prime
idea of S. If P ∩S = (0), then (0) ⊂ R and P would be nested prime ideals both lying
over (0) ⊂ S, which is impossible by A-M Corollary 5.9 Thus P ∩S is a non-zero prime
ideal and R/P is a finite extension field of S/(P ∩S). But every maximal ideal of R[x]
is of codimension 1 or 2, and the quotient by this maximal ideal is either R or C (the
only finite extensions of R), so R/P is a finite extension field of R and is isomorphic to
R or C. In the other direction, by the Lying Over Theorem, R must have at least one
prime ideal lying over every maximal ideal of R[x]. Now we distinguish various cases.

(i) The maximal ideals of S = R[x] of codimension 1 are all of the form (x − α),
α ∈ R. Suppose |α| ≤ 1. Then there exists β ∈ R, |β| ≤ 1, unique up to sign,
with α2 + β2 = 1. The ideal P = (x − α, y − β) of R has codimension 1, so is
maximal with R/P ∼= R, and P ∩ S = (x − α). We claim that all prime ideals
P lying over (x− α) when α ∈ R, |α| ≤ 1, are of this form. If we extend scalars
from R to C, i.e., we look at R ⊗R C = C[x, y]/(x2 + y2 − 1), then since every
maximal ideal of C[x, y] is the kernel of evaluation at some point of C2, P must
be the contraction to R of the kernel of evaluation at (α, β), where β ∈ C and
α2 + β2 = 1. But since 1 − α2 ≥ 0 in our case, any such β is real and satisfies
|β| ≤ 1, α2 + β2 = 1, as required.
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(ii) Suppose P is a maximal ideal of R lying over (x− α) in S = R[x], but this time
with |α| > 1. Then P must be the contraction to R of (x − α, y − β), where
β ∈ C and α2 + β2 = 1. Since β2 = 1− α2 < 0, β = iγ is purely imaginary, with
γ ∈ R, γ2 = α2− 1 ≥ 0. Then P contains (y− β)(y− β) = y2 + γ2 = y2 +α2− 1
as well as x − α. But y2 + α2 − 1 is congruent mod x2 + y2 − 1 to −(x2 − α2),
which already lies in (x− α), and in fact, in this case, (x− α) is maximal, with
R/(x − α) ∼= C, since R/(x − α) ∼= R[y]/(y2 − 1 + α2) ∼= C. So P = (x − α) is
necessarily principal in this case.

(iii) Finally, suppose P is a maximal ideal lying over a maximal ideal P ′ of codimen-
sion 2 in S = R[x], which must be of the form P ′ = (x2 +bx+c) with b2−4c < 0.
Then R/P is a finite extension field of R[x]/(x2 + bx + c) ∼= C, and R/P ∼= C.
We know P must be the contraction to R of (x − α, y − β) for some α, β ∈ C
with α2 + β2 = 1. Here α must satisfy α2 + bα+ c = 0, so α = − b

2 ±
i
2

√
4c− b2.

Without loss of generality, we can take the positive square root. (The other
choice is conjugate under the Galois group of C over R, and thus won’t change
P .) Thus

(1)
β2 = 1− α2 = bα+ 1 + c

= −b
2

2
+ 1 + c+ i

b

2

√
4c− b2.

There are actually two subcases. Note that P ∩ R[y] must be a maximal ideal
in R[y], hence of codimension 1 or codimension 2. If P ∩ R[y] = (y − β) is of
codimension 1, then β is real and b = 0, 0 < c. This case is just like case (ii)
above, and P = (y − β) is principal. The other subcase is where α and β are
both complex, so P ∩R[x] and P ∩R[y] are both of codimension 2 (in R[x], R[y],
respectively). In this case, β is the root of an irreducible quadratic y2 + b′y+ c′,
where b′, c′ ∈ R can be computed explicitly from (1). And P contains both
x2 + bx+ c and y2 + b′y + c′. However, since the images of x and y in R satisfy
x2 + y2 = 1, P also contains f(x, y) = bx + b′y + c + c′ + 1, which is a linear
polynomial. We claim that P is just the principal ideal generated by f(x, y). This
can be seen by making a linear change of coordinates x′ = (cos θ)x + (sin θ)y,
y′ = −(sin θ)x + (cos θ)y for suitable θ, to write R as R[x′, y′]/(x′2 + y′2 − 1),
where x′ and y′ are linear combinations of x and y and (f) is now of the form
(x′ − α). (Here we’re using the fact that the circle is invariant under rotations.)
This reduces us to a previous case.

(c) Since the class group of a Dedekind domain is generated by the non-principal prime
ideals, we see from (b) that the class group is generated by the prime ideals P of the
form (x− α, y − β), with α, β ∈ R, α2 + β2 = 1.

(i) Given such a prime ideal P , let’s show that P 2 is principal. As above, we may
make a linear change of coordinates and suppose that P = (x− 1, y) (in the new
coordinate system). Then P 2 = ((x − 1)2, 2(x − 1)y, y2). But y2 = 1 − x2 =
−(x − 1)(1 + x) in R, so all the generators of P 2 are divisible by x − 1, and
P 2 ⊆ (x− 1). On the other hand, 2(x− 1) = (x− 1)(x+ 1)− (x− 1)2 ∈ P 2, so
(x − 1) ⊆ P 2, and P 2 = (x − 1) is principal. Thus the image of P in the class
group is of order 2.
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(ii) Now let’s take two distinct non-principal prime ideals P1 and P2. As above, we
may assume P1 = (x− 1, y), and P2 = (x−α, y− β) with α, β ∈ R, α2 + β2 = 1,
α < 1. The general case works basically the same way, but to simplify the
algebra, let’s take α = 0, β = 1, so P2 = (x, y− 1). Then P1P2 = ((x− 1)x, (x−
1)(y−1), xy, y(y−1)). Then (x−1)(y−1)−xy = 1−x−y ∈ P1P2, and we claim
that in fact P1P2 = (1 − x − y). Indeed, P1P2 = ((x − 1)x, xy, 1 − x − y), since
(x−1)(y−1) = xy+(1−x−y), and y(y−1) = (1−x2)−y = (1−x−y)−x(x−1).
But (1−x−y)2 = 1+x2+y2−2x−2y+2xy = 2(1−x−y)+2xy, so xy ∈ (1−x−y).
Similarly, (x − 1)x = −x(1 − x − y) − xy ∈ (1 − x − y), since xy ∈ (1 − x − y).
Thus all the generators of P1P2 lie in (1 − x − y), and P1P2 = (1 − x − y) is
principal. Thus the classes of P1 and of P2 are each other’s inverses in the class
group of R.

To summarize, we’ve shown that all non-principal prime ideals define the same element
of the class group, and that the class group is of order 2.

(2) For each of the following Z-modules M , compute the P -adic completion M̂ , where P = (2).
Does M̂ coincide with Ẑ⊗Z M? Note: in this problem, Ẑ is the (2)-adic completion Ẑ(2) of
Z, or in other words, the 2-adic integers.
(a) M = Z/(3). Since (2) and (3) are relatively prime, PM = M , and thus PnM = M for

all n, so M̂ = lim←−M/PnM = 0. We have M̂ ∼= Ẑ⊗Z M since M is finitely generated.
One can also check this directly since Ẑ⊗Z M = Ẑ(2)/(3) = 0 (3 is a 2-adic unit).

(b) M = Z/(2). Note PM = 0, and thus PnM = 0 for all n, so M̂ = lim←−M/PnM = M =
Z/(2). We have M̂ ∼= Ẑ ⊗Z M since M is finitely generated. One can also check this
directly since Ẑ⊗Z M = Ẑ(2)/(2) = Z/(2).

(c) M = Q/Z. This is divisible, so PnM = M for all n and M̂ = lim←−M/PnM = 0. On
the other hand, Q/Z = lim−→Cm, where Cm is a cyclic group of order m and where Cm

embeds in Cn whenever m divides n. So Ẑ ⊗Z M = lim−→ Ẑ ⊗Z Cm = lim−→ Ẑ/(m). If
m = 2rs, where s is odd, then s is a unit in Ẑ, so Ẑ/(m) = Ẑ/(2r) = Z/(2r). Thus the
limit is the union of all 2-primary cyclic groups, or Z

[
1
2

]
/Z, which is NOT the same

as M̂ .
(d) M = Q. This is divisible, so PnM = M for all n and M̂ = lim←−M/PnM = 0. But

Ẑ⊗Z Q is a Q-vector space of uncountable dimension.


