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R =Rlz,y]/(a® +y* - 1).

To show R is a Dedekind domain, we can apply the theorem proved in class, that it
suffices to show R is the integral closure of the PID S = R[z] in a finite extension field
of K = R(z) (the field of fractions of R[z]). Let L = R(z)[y]/(y? + 22 —1). This is a
finite algebraic extension of K of degree 2, since 1 — 22 is not a perfect square in K.
Any element of L can be represented by an expression f(z,y) = ki(x) + kao(x)y with
ki(x), ko(z) € K. If f(z,y) (here we mean the image in L) is integral over S, then so is
its Galois conjugate ki (x) — ka(z)y, so adding and subtracting, we see k1 (z) and ka(z)y
are integral over S. But S is integrally closed in K, so k1(x) € S, and since y is integral
over S, being a root of the monic polynomial y? — (1 — 22), ka(2)y? = ko(z)(1 — 2?) is
also integral over S. That means k2(z)(1 — 2?) lies in K and is integral over S, and so
is a polynomial in z. So ko(z) = g(z)/(1 — 2?) with g(x) € S. Since ks (z)y is integral

over S, so is
z)?(1 — 22 x)?
(hataly? = 22 =

which can only happen if g(z) is divisible by 1 — 2. So then ki(z) and ky(x) are in S
and f(z,y) € R.
Let P be a non-zero prime ideal of R; then its contraction PNS to S = R[z] is a prime
idea of S. If PN S = (0), then (0) C R and P would be nested prime ideals both lying
over (0) C S, which is impossible by A-M Corollary 5.9 Thus PN S is a non-zero prime
ideal and R/P is a finite extension field of S/(PNS). But every maximal ideal of R|x]
is of codimension 1 or 2, and the quotient by this maximal ideal is either R or C (the
only finite extensions of R), so R/P is a finite extension field of R and is isomorphic to
R or C. In the other direction, by the Lying Over Theorem, R must have at least one
prime ideal lying over every maximal ideal of R[z]. Now we distinguish various cases.
(i) The maximal ideals of S = R[z] of codimension 1 are all of the form (z — «),
a € R. Suppose |a| < 1. Then there exists § € R, |3 < 1, unique up to sign,
with o + %2 = 1. The ideal P = (x — o,y — 3) of R has codimension 1, so is
maximal with R/P 2 R, and PN S = (x — ). We claim that all prime ideals
P lying over (z — a) when o € R, || < 1, are of this form. If we extend scalars
from R to C, i.e., we look at R ®g C = Clx,y]/(z? + y? — 1), then since every
maximal ideal of C[z,y] is the kernel of evaluation at some point of C2, P must
be the contraction to R of the kernel of evaluation at («, (3), where g € C and
a? + 2 = 1. But since 1 — o? > 0 in our case, any such f3 is real and satisfies
18] <1, a® + 3% = 1, as required.
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(ii) Suppose P is a maximal ideal of R lying over (z — «) in S = R[z], but this time
with || > 1. Then P must be the contraction to R of (z — a,y — (3), where
B e Canda?+ 32 =1. Since %2 =1—-0a? <0, B =iy is purely imaginary, with
v €R,v2=a?-1>0. Then P contains (y — B)(y — ) =y> +2 =y’ +a® -1
as well as © — . But y? + a? — 1 is congruent mod 2 4+ y? — 1 to — (2% — a?),
which already lies in (z — «), and in fact, in this case, (z — «) is maximal, with
R/(x —a) =2 C, since R/(x —a) 2 R[y]/(y* —1+a?) = C. So P = (z — a) is
necessarily principal in this case.

(iii) Finally, suppose P is a maximal ideal lying over a maximal ideal P’ of codimen-
sion 2 in S = R[z], which must be of the form P’ = (22?4 bx +c) with b> —4c < 0.
Then R/P is a finite extension field of R[z]/(z% + bz +¢) = C, and R/P = C.
We know P must be the contraction to R of (x — o,y — ) for some o, 3 € C
with a? + 32 = 1. Here a must satisfy a® +ba +c =0, so o = —g + %\/46 — b2,
Without loss of generality, we can take the positive square root. (The other
choice is conjugate under the Galois group of C over R, and thus won’t change
P.) Thus

F=1-a’=ba+1+c

2
z—b—+1+c+z§\/4c—b2.

2

There are actually two subcases. Note that P N R[y] must be a maximal ideal
in R[y|, hence of codimension 1 or codimension 2. If PNR[y] = (y — ) is of
codimension 1, then [ is real and b = 0, 0 < ¢. This case is just like case (ii)
above, and P = (y — 3) is principal. The other subcase is where « and 3 are
both complex, so PNR[z] and PNR[y| are both of codimension 2 (in R[x], R[y],
respectively). In this case, 3 is the root of an irreducible quadratic y? + by + ¢/,
where b',¢ € R can be computed explicitly from (1). And P contains both
x? + bz + ¢ and y? + b'y + ¢/. However, since the images of z and y in R satisfy
22 + 9% = 1, P also contains f(x,y) = bxr + b’y + ¢+ ¢ + 1, which is a linear
polynomial. We claim that P is just the principal ideal generated by f(z,y). This
can be seen by making a linear change of coordinates 2’ = (cosf)x + (sin8)y,
y = —(sinf)z + (cos )y for suitable 0, to write R as R[z’,y]/ (2" + y? — 1),
where 2’/ and ¢y are linear combinations of x and y and (f) is now of the form
(' — a). (Here we're using the fact that the circle is invariant under rotations.)
This reduces us to a previous case.

(c) Since the class group of a Dedekind domain is generated by the non-principal prime
ideals, we see from (b) that the class group is generated by the prime ideals P of the
form (z — o,y — 3), with a, 3 € R, a® + 3% = 1.

(i) Given such a prime ideal P, let’s show that P? is principal. As above, we may
make a linear change of coordinates and suppose that P = (z — 1,y) (in the new
coordinate system). Then P? = ((z — 1)%,2(z — 1)y,y?). But > =1 — 2% =
—(x —1)(1 + ) in R, so all the generators of P? are divisible by = — 1, and
P2 C (z —1). On the other hand, 2(z — 1) = (z — 1)(z + 1) — (z — 1)2 € P2, s0
(r —1) C P?2 and P? = (z — 1) is principal. Thus the image of P in the class
group is of order 2.
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(ii) Now let’s take two distinct non-principal prime ideals P; and P,. As above, we
may assume P, = (z —1,%), and P» = (z —a,y — §) with o, B € R, o>+ 3 =1,
a < 1. The general case works basically the same way, but to simplify the
algebra, let’s take « =0, 5 =1,80 Py = (z,y — 1). Then PP, = ((z — 1)z, (x —
D(y—1),zy,y(y—1)). Then (z—1)(y—1)—2y =1—z—y € P P, and we claim
that in fact P1P, = (1 — z — y). Indeed, PP, = ((x — 1)z, 2y, 1 — x — y), since
(x=1)(y—1) =ay+(1-z—y),and y(y—1) = (1-2%)—y = (1—z—y) —z(x—1).
But (1-2—y)? = 1+22+y> 222y +22y = 2(1—2—y)+ 22y, soxy € (1—z—y).
Similarly, (z — 1)z = —z(1 -2z —y) —zy € (1 —x —y), since zy € (1 —x — y).
Thus all the generators of Py P lie in (1 —z —y), and PP, = (1 —x —y) is
principal. Thus the classes of P; and of P, are each other’s inverses in the class
group of R.
To summarize, we’ve shown that all non-principal prime ideals define the same element
of the class group, and that the class group is of order 2.

(2) For cach of the following Z-modules M, compute the P-adic completion M, where P = (2).
Does M coincide with Z ®z M? Note: in this problem, Z is the (2)-adic completion Z(Q) of
Z, or in other words, the 2-adic integers.

(a) M =Z/(3). Slnce( ) and (3) are relatively prime, PM = M, and thus P"M = M for

all n, so M= lim M/P"M = 0. We have M=~7 ®Z M since M is finitely generated.
One can also check this directly since Z @z M = 7Z 2)/3) = (3 is a 2-adic unit).

(b) M =7Z/(2). Note PM = 0, and thus P"M = 0 for all n, so M= im M/P"M = M =
Z/(2). We have M~7 ®z M since M is finitely generated. One can also check this
directly since Z ®z M = Z( y/(2) =2Z/(2).

(¢) M = Q/Z. This is divisible, so P"M = M for all n and M= lim M/P"M = 0. On
the other hand, Q/Z = lim Cy,, where Cp, is a cyclic group of order m and where Cy,
embeds in C,, whenever m divides n. So Z ®z M = h_H)lZ Rz Cm = hi>nZ/(m) If

= 2"s, where s is odd, then s is a unit in Z, so Z/(m) = Z/(2") = Z/(2"). Thus the
hmlt is the union of all 2-primary cyclic groups, or Z [ ] /Z, which is NOT the same
as M. -

(d) M = Q. This is divisible, so P"M = M for all n and M = lim M/P"M = 0. But

Z ®7 Q is a Q-vector space of uncountable dimension.



