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Abstract

Let (d,, Bn) denote the Gauss—Newton estimator of the parameter (o, ) in the autoregression model Z;; =
aZi—1;+ PZij—1 —opZi_1 j—1 + &;j. It is shown in an earlier paper that when o =f=1, {3 G, — o, By — B)}
converges in distribution to a bivariate normal random vector. A two-parameter strong martingale convergence

theorem is employed here to prove that n’(d, — o, f, — ) — 0 almost surely when r < %
(© 2003 Published by Elsevier B.V.
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1. Introduction and preliminaries

Martin (1979) introduced the spatial autoregression model
Zij=0Zi—yj+ PBZij1 — ofZi—1 -1 + & (1.1)

and indicated its applicability in a subsequent paper in 1990. The above model is used in the study
of image processing by Jain (1981) and in the analysis of digital filtering and system theory by
Tjostheim (1981). Basu and Reinsel (1994) illustrate the feasibility of (1.1) being nonstationary
with a practical example. Moreover, Cullis and Gleeson (1991) include model (1.1) with a = =1
in the class of models used to represent the error structure in linear regression to analyze field data.
When |x| <1 and |f| < 1, various estimators of (o, f) are known to converge in distribution to a
bivariate normal, where the normalizing term is n (Basu, 1990; Khalil, 1991). A similar conglusion
is proved by Bhattacharyya (1995) when « = f =1 by using a Gauss—Newton estimator (d,, ,) and
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a normalizing term n*2. It is proved here that n’(&, — o, ﬁn — p) — 0 almost surely when oo =f =1
and r < %

It is assumed without further mention that Z;; =0 when i A j < 0. The following axioms are listed
below for future reference.

Assumptions.

(Al) a=p=1

(A2) gy, i,j =1, are i.i.d., each having mean zero, variance ¢~ and a finite fourth moment

(A3) E| Y, 8k1‘4+25 O(i**%) for some & > 0, where ¢;; are i.i.d. and each has mean zero.

(A4) &, and f, are initial estimators obeying n’(&, — o) — 0 and n’(f, — f) — 0 almost surely
when r < %

2

Remark 1.1. Assume model (1.1) obeys (A.1)—(A.3). According to (1.4), X;;=oX;_ ;+e¢;; define d,
to be the least squares estimator of «. Since a=f=1,X;;=2; Z,, j—1 1s observable and, moreover,
when r <3, n'(&, —a)=n"> _ZZJ:I Xioy e /n~3 doii X%, . — 0 as. by Theorem 2.2(i) and
Theorem 2.4(i). The estimator f, is defined similarly and hence this establishes the existence of
initial estimators in axiom (A.4) whenever (A.1)—(A.3) are fulfilled.

Let 0= (o B).0) = (. o). f(@.b) =aZuc1 s+ bZejs — abZis 1. Fla.b)= (0, (a.b)/da. 0 f
(a, b)/ob) = (Zi-1,j — bZi—1,j-1,Zij—1 — aZi—1,j—1) and Rij(a, b)——(oc—a)(ﬁ b)Z;_y ;1. Denote

5y = =[>0- | Fii(0,) F (0 )~ 1ZU | Fi(0,)(Z; — £(0,)); then 0, =6, + 0, is said to be the
“Gauss—Newton estlmator” of 0y. It is shown by Bhattacharyya (1995) that 0, obeys

—1
0, —00= | > Fy@F00)| > Fy(0n)Rii(0,) + &) (1.2)
i,j=1 i,j=1
Define Xj; = Z;; — fZ; ;—1,Y;; = Z;j — aZ;—, ; and observe that
Fl(0,) = Xie1; + (B = Bu)Zim1j1, Yoyt + (0 — @) Zim1 1) (1.3)

Moreover, using model (1.1),

Xij=0aX;_;;+¢; and thus X,»j:Zskj when = f=1. (1.4)
k=1
Likewise,
J
Yii=pY;j—1 +¢&; and Y,»j:ZS,-Z when a = f=1. (1.5)

=1

The principal result of this work is stated below and proved in subsequent sections.

Theorem 1.2. Assume that model (1.1) obeys axioms (A.1)—(A.3); then nr((j,, — 00) — 0 almost
surely when r < %
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Even though (A.3) implies the existence of fourth moments of ¢;, condition (A.2) is listed sepa-
rately since some results proved here are valid under (A.1)—(A.2). Note that (A.3) is satisfied when
&y, i,j = 1, are 1.1.d. and each is distributed as N (0, ¢?), which leads to the corollary below. More
generally, axiom (A.3) is fulfilled with 6 =1 when (A.2) is valid and Ele;;|® < .

Corollary 1.3. Suppose that o=p=1 in model (1.1) and ¢;, i ] 1, are i.i.d. and each is distributed
as N(0,6%). Then n (Hn — 0y) — 0 almost surely when r < 5.

2. Strong martingale

Almost sure convergence results are established in this section by appealing to a martingale
convergence theorem for doubly indexed processes due to Walsh (1979, 1986). Let N? denote
the set of all ordered pairs of positive integers and define s = (s51,52) < (t1,,) = ¢ iff 5; <t and
s <t provided s; < t;, i =1,2. Suppose that (Q,F,P) denotes the underlying probability space and
S teEN 2 is an increasing sequence of sub-o-fields of F; that is, Ss € §: € § when s < £. Moreover,
assume that V,, t€ N 2 is an §,-measurable random variable. Then {V,8i, teN 2} is called a strong
martingale if it obeys the following conditions:

(a) E[V,|§s] =V, when s <t (martingale)
(b) E[V(s,t]|3]1=0 provided s < ¢,

where V(s,t]=V,— Vs, — Vs, + Vs and S* denotes the smallest o-field containing each §;; with

either i < 1 or j < s,. Walsh (1979, 1986) proved that an L'-bounded strong martingale converges
almost surely.
An extension of Kronecker’s lemma to two indices is given below.

Lemma 2.1. Assume that {x;; : i,j > 1} and {c;; : i,j = 0} are sequences of real numbers, where
cij =0 when i N\ j =0, satisfying the following conditions:

(a) Vcl-j :C,'j —Ci—1,j — ci,j—] + Ci—1,j—1 > 0 when l/\] = 1
(b) cam/cun — 0 and cppr/con — 0 as n — oo, for each fixed M > 1
(©) Yimn =D 41y Xuifcr — y as mAn — 00 and { Yy, : m,n = 1} is bounded.

Then (1/cun) >y xij — 0 as n — oo.

Proof. Let y;=>"}_, Z{:l xgi/ciy when i Aj > 1 and y;; =0 elsewhere. Denote Vy;; = y;; — yi—1;
—Vij—1 + yi—ij—1 and thus Vy; = x;/c; when i A j>1. Then sz:l Xij = ZJZO
CijVij = D1 -0 CYint ~ S o CipYij—1 + 20 g CiVim1j—1 = Dt g Ciij = Dot Doj—o Citl Vi —
Z Z/ =0 clj+1y11+27/_10 Cl+lj+1ylj_21n;_10 YijVeivt,j1— Zzn_ol (Cit1,n Cm)ym Zn l(cn J+H1 T

Caj)Vnj + Canyun- Define U, = (1ew) S0 v Ve i Vi = (ew) 3120 (¢iv1n — ¢in)yin and

w,= (l/cnn) Z; ()l (Cn j+l — Cn_/)yn_/~
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Observe that since Vc¢;; > 0 and ¢;;=0 when iAj=0, it follows that ¢;; > 0 provided iAj > 0 and
cij < cst ifi <s,j <tand (i) is distinct from (s, ¢). First, it is shown that U, — y as n — 0o. Since
Z, 0 vcz+lj+l—cnm |U y|_(1/cnn)| Zz O(ylj )vci+l,j+l‘ (l/cnn) Zl 0 |yij_ |vcz+lj+l+

J= J= J=
(1/cnn)2 Z |y1/ y’vcH—l,jH + (l/cnn)zi:N ;\/:—01 |ylj y|vct+1/+l + (l/cnn)z N !y,,
YIVeip ji- Assumptlon (c) implies that for ¢ > 0,|y; — y| <& when i A j >N and also since
{yi} is bounded, |y; — y| <M for all i Aj > 1. Then |U, — y| < (M/cpn)eny + (M/cpn)cnn +
(M/cp)eny + (efcun)(Com — Cnn — an + cyy) and thus by assumption (b) U, — yas n — oo.
L1kew1se ‘V - y’ - (l/Cnn)‘ Z (Cl+1 n cin)(yin - y)‘ (l/cnn)‘ Z (Cl+1 n Cin)(yin - y)’ +

(Mew)| D20 (c,+1 n— Cin) Vin — y)\ (M/cpn)enn + (€/cun)(Cpn — Chn) and thus 7, — y as n — oo.

Similarly, W, — y as n — oo and thus by assumption (c), (1/c,n) >}, xij — 0 as n —oco. [

Recall from (1.4) and (1.5), when « = ff =1 in model (1.1), X;; = Zk | &g Yij = Z, | &ir and,
moreover, Z; = Z;;’lel &l

Theorem 2.2. Suppose that model (1.1) and axioms (A.1)—(A.2) are fulfilled. Then

(i) - Do Xie1 e — 0 a.s. when r > 2
3 1 n 3
(i) 72 ;=1 Yij—18; — 0 as. when r > 3

(iii) nl :’/  Zicij—18 — 0 a.s. when r > 2.

Proof. (i) Define, for each ¢t =(t,,t,) € N2, VL:Zf‘j”l X;—1 j&; and let §, be the smallest o-field for
which each ¢; is measurable, i <1,/ < t,. First, it is shown that {V,,§,, teN 2} is a martingale.

Fix s = (s1,52) < (#1, ) = t; employing standard properties of conditional expectation,

t1,h 1,82

EV|&]=Ve+ > EX i DEE)+ Y. ElXiie8

i=1,j=s+1 i=s1+1,j=1
1,82 S1 i—1
=V, + E g e E (e | Ts) + E E(ege)| = Vs
i=s1+1,j=1 Lk=1 k=s+1

by (A.2). Hence {V,,§,, t€N?} is a martingale.
It remains to show that the above is a strong martingale. Assume that s=(s1,5,) < (¢1,%,)=t; then

V(s (0=30000 ey Ximr ey Hence B[V (s, | F1= 2000 11 o1 ERX ey | B0 1= 20000 11 e
[Ek | eE () + Zk et E(gkj)E(sij)] =0, and thus {V},,, £ € N*} is a strong martingale. Define

W,= Zf]]t21 Xi—1,j¢;/i?j9, where p > 1 and ¢ > 1. Then {W,,T,, t € N?} is also a strong martingale
and, moreover, E(W?) = Zf‘j’zl E(X2, )O‘z/izpqu = O(1). According to Walsh (1986, Corollary
2.8), W, — W almost surely as t) At — oo, for some W. Employlng Lemma 2.1 with ¢;; =79, it

follows that (1/n") >} =1 Xie1,j€; — 0 almost surely when r > . Parts (ii)—(iii) are verified using
a similar argument. []

The next result is due to Hu et al. (1989).
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Theorem 2.3. Assume that {V,; : 1 <j <n,n>=1} is an array of random variables satisfying:

(1) E(Vj)=0
(1) Vo, Vazse..s Van are independent, for each fixed n = 1
(iii) supn’jE]an\zt"*‘S < o0, for some 1 < p <2 and o > 0.

Then (l/nl/f”)z;’:l V,j — 0 almost surely.
Theorem 2.4. Suppose that model (1.1) obeys axioms (A.1)—(A.3). Then
() & oy X2y, — 5 as

.. 1 2
(i) & 30, Y3 — % as.

1S}

Proof. (i) Denote V,;=(1/n*) Y1, [)(ial)_i—E()Q{I’_j)]; Theorem 2.3 is used to show that (1/n) >,
V,j — 0 a.s. Since XUZZ;{:] &rj, axiom (A.2) implies that V1, Vip, ..., V,, are 1.1.d. random Vayiables
and thus Theorem 2.3(ii) is satisfied. It follows from axiom (A.3) that E|V,;[>*° < (C;/n?@+9)p!+o
S ENXim M < (Cy/nPt0) SO0 i#T°=0(1). Employing Theorem 2.3 with p=1, (1/n*) !

ij=1
[X,-z_u — E(Xiz_l’j)] — 0 a.s. Since E(Xl-z_l’j) = (i — 1)a?, (1/n) ZZj:l E(Xl.z_l’j) — ¢2/2 and thus
(1/n) doij X2, — ¢°/2 as. Part (ii) is proved in a similar manner. [J

3. Proof of Theorem 1.2

Bhattacharyya (1995) proves that {n*/ 2(én — 0p)} converges in distribution to a bivariate normal
random vector. Under assumptions (A.1)—(A.3), it is shown below that »"(0, — 0y) — 0 almost
surely when » < %

Lemma 3.1. Suppose that model (1.1) and axioms (A.1)—(A.2) are satisfied. Then

(i) var(Zijl Xf_l,j) =0(n%),

(i) Var<22j=1 ij_l) —0(n’),
(iii) var (Z;j,:l zr H) =0(n*),
(iv) var (ZZ_/:I Xi—1,jYi,j—1) =0(n%),
(v) var (ZZ/=1 Xi—1,jZi—1,j—1> =0(n%),
(vi) VaI‘(ZZj:l Yi,j—IZi—l,j—l) =0(n®).

Proof. Only verification of (v) is given here since the other arguments are similar. Since
- SV _ )
Xi1;=>_ & and Zi_y ;-1 = >, >)_, & are independent, mean zero random variables,
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cov( X1, Zi—1j—1,Xi—1j7Zy—1jr—1) = 0 unless j = j'. Moreover, cov(Xim1,;Zi—1,j—1,Xir—1,jZir—1,j—1)
=E(Xi—1,/Xy—1,))E(Zi—1 j—1Zy—1,j—1) = O((i Ai")*j) and when i <7, var(ZZj:, AXifl,_/Zifl,_/fl) =

o Zi:] > i O(i?j) = O(n®). Therefore var (ZZj:l X,»,L_,-Z,»,l,_,»,l) =0(n®). O
Let 0, = = (a,, ﬁ,,) denote the initial estimator defined in Remark 3.2, 4, = diag(n="*,n _3/2) A=

diag(a?/2,0°/2), G, =37}, Fy(0,)F (9 ) and R;;(0,) = —(o — &,)(B — Bu)Zi—1,j—1, Where F’(Q )
is given in (1.3).

Lemma 3.3. Suppose that model (1.1) and axioms (A.1)—(A.3) are fulfilled. Then

(i) 4,G,4, — 4 a.s. )
(i) Ay 327 5=y Fij(0n)R;j(0n) — 0 a.s.
(i) n=°4, 327 Fiy(0,)e; — 0 a.s. when 6 > 0.

Proof. (i) Denote

bl’l cl’l
A,G,A, = .
¢, d,

Then bn (1/11 )Z” 1 1 l/+(ﬁ ﬁﬂ)Zl 1,j— 1]2 (1/”3)21] ])(2 1/+(2/n )(ﬁ ﬁn)zl] 1 1 L,j
Zi—i;+((p— ﬁn)z/n )Z” | 1/ | =V +V+V,3. According to Theorem 2.4(i), V,,; — 62/2 as.
It follows from Lemma 3. l(V) and the Borel-Cantelli Lemma that (1/n7/2%9) Zl/ VXic 2y o —

0 a.s. when 6 > 0, and hence by Remark 1.1, n¥279(f — j, )(1/n7/2+°)zl] L\ Xic1jZi—1 j—1 — 0 as.
In particular, V,; — 0 a.s. A similar argument using Lemma 3.1(iii) and the Borel-Cantelli Lemma
shows that V,3 — 0 a.s. Hence b, — ¢2/2 a.s.; likewise, ¢, — 0 a.s. and d, — ¢%/2 a.s.

(i1) Verification is similar to part (i).
!/
(iii) Appealing to (1.3), n~°4, Z” ' 11(9 Ve =n—327° <Z” lXi—I,jSij»ZZj:l Yi,j—18[j> 4n—32-0
Ei,j:l Zi—1j—1&;(B — B0t — d,) — 0 a.s. by Theorem 2.2 and Remark 1.1. O

Verification of Theorem 1.2 now follows immediately from Lemma 3.3. Indeed, employing (1.2),
noA- 10, — 00) = (4,GpAy)~'n04, > F,,(B )(R,j(G )+e;) = A7'0=0 as.

i,j=1

4. Further reading

Martin (1990) may also be of interest to the reader.
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