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Spatial autoregression model: strong consistency
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Abstract

Let (�̂n; �̂n) denote the Gauss–Newton estimator of the parameter (�; �) in the autoregression model Zij =
�Zi−1; j +�Zi; j−1 − ��Zi−1; j−1 + �ij. It is shown in an earlier paper that when �=�= 1; {n3=2(�̂n− �; �̂n−�)}
converges in distribution to a bivariate normal random vector. A two-parameter strong martingale convergence
theorem is employed here to prove that nr(�̂n − �; �̂n − �) → 0 almost surely when r ¡ 3

2 .
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1. Introduction and preliminaries

Martin (1979) introduced the spatial autoregression model

Zij = �Zi−1; j + �Zi; j−1 − ��Zi−1; j−1 + �ij (1.1)

and indicated its applicability in a subsequent paper in 1990. The above model is used in the study
of image processing by Jain (1981) and in the analysis of digital >ltering and system theory by
Tjostheim (1981). Basu and Reinsel (1994) illustrate the feasibility of (1.1) being nonstationary
with a practical example. Moreover, Cullis and Gleeson (1991) include model (1.1) with �= �= 1
in the class of models used to represent the error structure in linear regression to analyze >eld data.
When |�|¡ 1 and |�|¡ 1, various estimators of (�; �) are known to converge in distribution to a
bivariate normal, where the normalizing term is n (Basu, 1990; Khalil, 1991). A similar conclusion
is proved by Bhattacharyya (1995) when �=�= 1 by using a Gauss–Newton estimator (�̂n; �̂n) and
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a normalizing term n3=2. It is proved here that nr(�̂n − �; �̂n − �) → 0 almost surely when �= �= 1
and r ¡ 3

2 .
It is assumed without further mention that Zij = 0 when i∧ j6 0. The following axioms are listed

below for future reference.

Assumptions.

(A.1) � = � = 1
(A.2) �ij; i; j¿ 1, are i.i.d., each having mean zero, variance �2 and a >nite fourth moment
(A.3) E|∑i

k=1 �k1|4+2� = O(i2+�) for some �¿ 0, where �ij are i.i.d. and each has mean zero.
(A.4) K�n and K�n are initial estimators obeying nr( K�n − �) → 0 and nr( K�n − �) → 0 almost surely

when r ¡ 3
2 .

Remark 1.1. Assume model (1.1) obeys (A.1)–(A.3). According to (1.4), Xij=�Xi−1; j+�ij; de>ne K�n
to be the least squares estimator of �. Since �=�= 1; Xij =Zij−Zi; j−1 is observable and, moreover,
when r ¡ 3

2 ; n
r( K�n − �) = nr−3 ∑n

i; j=1 Xi−1; j�ij=n−3 ∑n
i; j=1 X

2
i−1; j → 0 a.s. by Theorem 2.2(i) and

Theorem 2.4(i). The estimator K�n is de>ned similarly and hence this establishes the existence of
initial estimators in axiom (A.4) whenever (A.1)–(A.3) are ful>lled.

Let �′0 = (�; �); K�′n = ( K�n; K�n); fij(a; b) =aZi−1; j +bZi; j−1 −abZi−1; j−1; F ′
ij(a; b) = (@fij (a; b)=@a; @fij

(a; b)=@b) = (Zi−1; j − bZi−1; j−1; Zi; j−1 − aZi−1; j−1) and Rij(a; b) = −(� − a)(� − b)Zi−1; j−1. Denote
�̂n = [

∑n
i; j=1 Fij( K�n) F ′

ij( K�n)]−1 ∑n
i; j=1 Fij( K�n)(Zij − fij( K�n)); then �̂n = �̂n + K�n is said to be the

“Gauss–Newton estimator” of �0. It is shown by Bhattacharyya (1995) that �̂n obeys

�̂n − �0 =


 n∑
i; j=1

Fij( K�n)F ′
ij( K�n)



−1

n∑
i; j=1

Fij( K�n)(Rij( K�n) + �ij): (1.2)

De>ne Xij = Zij − �Zi; j−1; Yij = Zij − �Zi−1; j and observe that

F ′
ij( K�n) = (Xi−1; j + (� − K�n)Zi−1; j−1; Yi; j−1 + (�− K�n)Zi−1; j−1): (1.3)

Moreover, using model (1.1),

Xij = �Xi−1; j + �ij and thus Xij =
i∑

k=1

�kj when � = � = 1: (1.4)

Likewise,

Yij = �Yi; j−1 + �ij and Yij =
j∑

l=1

�il when � = � = 1: (1.5)

The principal result of this work is stated below and proved in subsequent sections.

Theorem 1.2. Assume that model (1.1) obeys axioms (A.1)–(A.3); then nr(�̂n − �0) → 0 almost
surely when r ¡ 3

2 .



B.B. Bhattacharyya et al. / Statistics & Probability Letters 65 (2003) 71–77 73

Even though (A.3) implies the existence of fourth moments of �ij, condition (A.2) is listed sepa-
rately since some results proved here are valid under (A.1)–(A.2). Note that (A.3) is satis>ed when
�ij; i; j¿ 1, are i.i.d. and each is distributed as N (0; �2), which leads to the corollary below. More
generally, axiom (A.3) is ful>lled with �= 1 when (A.2) is valid and E|�11|6 ¡∞.

Corollary 1.3. Suppose that �=�=1 in model (1.1) and �ij; i; j¿ 1, are i.i.d. and each is distributed
as N (0; �2). Then nr(�̂n − �0) → 0 almost surely when r ¡ 3

2 .

2. Strong martingale

Almost sure convergence results are established in this section by appealing to a martingale
convergence theorem for doubly indexed processes due to Walsh (1979, 1986). Let N 2 denote
the set of all ordered pairs of positive integers and de>ne s = (s1; s2)6 (t1; t2) = t iP si6 ti and
s¡ t provided si ¡ ti; i = 1; 2. Suppose that (�;F; P) denotes the underlying probability space and
Ft ; t ∈N 2, is an increasing sequence of sub-�->elds of F; that is, Fs ⊆ Ft ⊆ F when s6 t. Moreover,
assume that Vt; t ∈N 2, is an Ft-measurable random variable. Then {Vt;Ft ; t ∈N 2} is called a strong
martingale if it obeys the following conditions:

(a) E[Vt|Fs] = Vs when s6 t (martingale)
(b) E[V (s; t ]|F∗

s ] = 0 provided s¡ t,

where V (s; t ] = Vt − Vs1t2 − Vt1s2 + Vs and F∗
s denotes the smallest �->eld containing each Fij with

either i6 s1 or j6 s2. Walsh (1979, 1986) proved that an L1-bounded strong martingale converges
almost surely.

An extension of Kronecker’s lemma to two indices is given below.

Lemma 2.1. Assume that {xij : i; j¿ 1} and {cij : i; j¿ 0} are sequences of real numbers, where
cij = 0 when i ∧ j = 0, satisfying the following conditions:

(a) ∇cij = cij − ci−1; j − ci; j−1 + ci−1; j−1 ¿ 0 when i ∧ j¿ 1
(b) cMn=cnn → 0 and cnM =cnn → 0 as n → ∞, for each ;xed M¿ 1
(c) ymn =

∑m;n
k; l=1 xkl=ckl → y as m ∧ n → ∞ and {ymn : m; n¿ 1} is bounded.

Then (1=cnn)
∑n

i; j=1 xij → 0 as n → ∞.

Proof. Let yij =
∑i

k=1

∑j
l=1 xkl=ckl when i∧ j¿ 1 and yij = 0 elsewhere. Denote ∇yij =yij−yi−1; j

−yi; j−1 + yi−1; j−1 and thus ∇yij = xij=cij when i ∧ j¿ 1. Then
∑n

i; j=1 xij =
∑n

i; j=0

cijyij−
∑n

i; j=0 cijyi−1; j−
∑n

i; j=0 cijyi; j−1 +
∑n

i; j=0 cijyi−1; j−1 =
∑n

i; j=0 cijyij−
∑n−1

i=0

∑n
j=0 ci+1; jyij−∑n

i=0

∑n−1
j=0 ci; j+1yij+

∑n−1
i; j=0 ci+1; j+1yij=

∑n−1
i; j=0 yij∇ci+1; j+1−

∑n−1
i=0 (ci+1; n−cin)yin−

∑n−1
j=0 (cn; j+1−

cnj)ynj + cnnynn. De>ne Un = (1=cnn)
∑n−1

i; j=0 yij∇ci+1; j+1; Vn = (1=cnn)
∑n−1

i=0 (ci+1; n − cin)yin and

Wn = (1=cnn)
∑n−1

j=0 (cn; j+1 − cnj)ynj.
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Observe that since ∇cij ¿ 0 and cij=0 when i∧j=0, it follows that cij ¿ 0 provided i∧j¿ 0 and
cij ¡ cst if i6 s; j6 t and (i; j) is distinct from (s; t). First, it is shown that Un → y as n → ∞. Since∑n−1

i; j=0 ∇ci+1; j+1=cnn; |Un−y|=(1=cnn)|
∑n−1

i; j=0 (yij−y)∇ci+1; j+1|6 (1=cnn)
∑N−1

i; j=0 |yij−y|∇ci+1; j+1+

(1=cnn)
∑N−1

i=0

∑n−1
j=N |yij − y|∇ci+1; j+1 + (1=cnn)

∑n−1
i=N

∑N−1
j=0 |yij − y|∇ci+1; j+1 + (1=cnn)

∑n−1
i; j=N |yij −

y|∇ci+1; j+1. Assumption (c) implies that for �¿ 0; |yij − y|¡� when i ∧ j¿N and also since
{yij} is bounded, |yij − y|6M for all i ∧ j¿ 1. Then |Un − y|6 (M=cnn)cNN + (M=cnn)cNn +
(M=cnn)cnN + (�=cnn)(cnn − cNn − cnN + cNN ) and thus by assumption (b), Un → y as n → ∞.
Likewise, |Vn − y| = (1=cnn)|

∑n−1
i=0 (ci+1; n − cin)(yin − y)|6 (1=cnn)|

∑N−1
i=0 (ci+1; n − cin)(yin − y)| +

(1=cnn)|
∑n−1

i=N (ci+1; n − cin)(yin − y)|6 (M=cnn)cNn + (�=cnn)(cnn − cNn) and thus Vn → y as n → ∞.
Similarly, Wn → y as n → ∞ and thus by assumption (c), (1=cnn)

∑n
i; j=1 xij → 0 as n → ∞.

Recall from (1.4) and (1.5), when � = � = 1 in model (1.1), Xij =
∑i

k=1 �kj; Yij =
∑j

l=1 �il and,
moreover, Zij =

∑i; j
k; l=1 �kl.

Theorem 2.2. Suppose that model (1.1) and axioms (A.1)–(A.2) are ful;lled. Then

(i) 1
nr
∑n

i; j=1 Xi−1; j�ij → 0 a.s. when r ¿ 3
2

(ii) 1
nr
∑n

i; j=1 Yi; j−1�ij → 0 a.s. when r ¿ 3
2

(iii) 1
nr
∑n

i; j=1 Zi−1; j−1�ij → 0 a.s. when r ¿ 2.

Proof. (i) De>ne, for each t=(t1; t2)∈N 2; Vt =
∑t1 ; t2

i; j=1 Xi−1; j�ij and let Ft be the smallest �->eld for
which each �ij is measurable, i6 t1; j6 t2. First, it is shown that {Vt;Ft ; t ∈N 2} is a martingale.
Fix s = (s1; s2)6 (t1; t2) = t; employing standard properties of conditional expectation,

E[Vt |Fs] =Vs +
t1 ; t2∑

i=1; j=s2+1

E(Xi−1; j)E(�ij) +
t1 ; s2∑

i=s1+1; j=1

E[Xi−1; j�ij |Fs]

=Vs +
t1 ; s2∑

i=s1+1; j=1

[
s1∑
k=1

�kjE(�ij |Fs) +
i−1∑

k=s1+1

E(�kj�ij)

]
= Vs

by (A.2). Hence {Vt;Ft ; t ∈N 2} is a martingale.
It remains to show that the above is a strong martingale. Assume that s=(s1; s2)¡ (t1; t2)= t; then

V (s; t]=
∑t1 ; t2

i=s1+1;j=s2+1 Xi−1; j�ij. Hence E[V (s; t] |F∗
s ]=

∑t1 ; t2
i=s1+1;j=s2+1 E[Xi−1; j�ij |F∗

s ]=
∑t1 ; t2

i=s1+1;j=s2+1[∑s1
k=1 �kjE(�ij) +

∑i−1
k=s1+1 E(�kj)E(�ij)

]
=0, and thus {Vt;Ft ; t ∈N 2} is a strong martingale. De>ne

Wt =
∑t1 ; t2

i; j=1 Xi−1; j�ij=ipjq, where p¿ 1 and q¿ 1
2 . Then {Wt;Ft ; t ∈N 2} is also a strong martingale

and, moreover, E(W 2
t ) =

∑t1 ; t2
i; j=1 E(X 2

i−1; j)�
2=i2pj2q = O(1). According to Walsh (1986, Corollary

2.8), Wt → W almost surely as t1 ∧ t2 → ∞, for some W . Employing Lemma 2.1 with cij = ipjq, it
follows that (1=nr)

∑n
i; j=1 Xi−1; j�ij → 0 almost surely when r ¿ 3

2 . Parts (ii)–(iii) are veri>ed using
a similar argument.

The next result is due to Hu et al. (1989).
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Theorem 2.3. Assume that {Vnj : 16 j6 n; n¿ 1} is an array of random variables satisfying:

(i) E(Vnj) = 0
(ii) Vn1; Vn2; : : : ; Vnn are independent, for each ;xed n¿ 1
(iii) supn; j E|Vnj|2p+� ¡∞, for some 16p¡ 2 and �¿ 0.

Then (1=n1=p)
∑n

j=1 Vnj → 0 almost surely.

Theorem 2.4. Suppose that model (1.1) obeys axioms (A.1)–(A.3). Then

(i) 1
n3

∑n
i; j=1 X

2
i−1; j → �2

2 a.s.

(ii) 1
n3

∑n
i; j=1 Y

2
i; j−1 → �2

2 a.s.

Proof. (i) Denote Vnj=(1=n2)
∑n

i=1 [X 2
i−1; j−E(X 2

i−1; j)]; Theorem 2.3 is used to show that (1=n)
∑n

j=1

Vnj → 0 a.s. Since Xij=
∑i

k=1 �kj, axiom (A.2) implies that Vn1; Vn2; : : : ; Vnn are i.i.d. random variables
and thus Theorem 2.3(ii) is satis>ed. It follows from axiom (A.3) that E|Vnj|2+�6 (C1=n2(2+�))n1+�∑n

i=1 E|Xi−1; j|4+2�6 (C2=n3+�)
∑n

i=1 i
2+�=O(1). Employing Theorem 2.3 with p=1, (1=n3)

∑n
i; j=1

[X 2
i−1; j − E(X 2

i−1; j)] → 0 a.s. Since E(X 2
i−1; j) = (i − 1)�2, (1=n3)

∑n
i; j=1 E(X 2

i−1; j) → �2=2 and thus
(1=n3)

∑n
i; j=1 X

2
i−j → �2=2 a.s. Part (ii) is proved in a similar manner.

3. Proof of Theorem 1.2

Bhattacharyya (1995) proves that {n3=2(�̂n − �0)} converges in distribution to a bivariate normal
random vector. Under assumptions (A.1)–(A.3), it is shown below that nr(�̂n − �0) → 0 almost
surely when r ¡ 3

2 .

Lemma 3.1. Suppose that model (1.1) and axioms (A.1)–(A.2) are satis;ed. Then

(i) var
(∑n

i; j=1 X
2
i−1; j

)
= O(n5),

(ii) var
(∑n

i; j=1 Y
2
i; j−1

)
= O(n5),

(iii) var
(∑n

i; j=1 Z
2
i−1; j−1

)
= O(n8),

(iv) var
(∑n

i; j=1 Xi−1; jYi; j−1

)
= O(n4),

(v) var
(∑n

i; j=1 Xi−1; jZi−1; j−1

)
= O(n6),

(vi) var
(∑n

i; j=1 Yi; j−1Zi−1; j−1

)
= O(n6).

Proof. Only veri>cation of (v) is given here since the other arguments are similar. Since
Xi−1; j =

∑i−1
k=1 �kj and Zi−1; j−1 =

∑i−1
k=1

∑j−1
l=1 �kl are independent, mean zero random variables,
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cov(Xi−1; jZi−1; j−1; Xi′−1; j′Zi′−1; j′−1) = 0 unless j = j′. Moreover, cov(Xi−1; jZi−1; j−1; Xi′−1; jZi′−1; j−1)

=E(Xi−1; jXi′−1; j)E(Zi−1; j−1Zi′−1; j−1) = O((i ∧ i′)2j) and when i6 i′, var
(∑n

i; j=1 Xi−1; jZi−1; j−1

)
=∑n

i′=1

∑i′

i=1

∑n
j=1 O(i2j) = O(n6). Therefore var

(∑n
i; j=1 Xi−1; jZi−1; j−1

)
= O(n6).

Let K�n = ( K�n; K�n) denote the initial estimator de>ned in Remark 3.2, An = diag(n−3=2; n−3=2), A =
diag(�2=2; �2=2), Gn =

∑n
i; j=1 Fij( K�n)F ′

ij( K�n) and Rij( K�n) = −(�− K�n)(� − K�n)Zi−1; j−1, where F ′
ij( K�n)

is given in (1.3).

Lemma 3.3. Suppose that model (1.1) and axioms (A.1)–(A.3) are ful;lled. Then

(i) AnGnAn → A a.s.
(ii) An

∑n
i; j=1 Fij( K�n)Rij( K�n) → 0 a.s.

(iii) n−�An
∑n

i; j=1 Fij( K�n)�ij → 0 a.s. when �¿ 0.

Proof. (i) Denote

AnGnAn =

[
bn cn

cn dn

]
:

Then bn=(1=n3)
∑n

i; j=1 [Xi−1; j+(�− K�n)Zi−1; j−1]2=(1=n3)
∑n

i; j=1 X
2
i−1; j+(2=n3)(�− K�n)

∑n
i; j=1 Xi−1; j

Zi−1; j+((�− K�n)2=n3)
∑n

i; j=1 Z
2
i−1; j−1 :=Vn1+Vn2+Vn3. According to Theorem 2.4(i), Vn1 → �2=2 a.s.

It follows from Lemma 3.1(v) and the Borel–Cantelli Lemma that (1=n7=2+�)
∑n

i; j=1 Xi−1; jZi−1; j−1 →
0 a.s. when �¿ 0, and hence by Remark 1.1, n3=2−�(�− K�n)(1=n7=2+�)

∑n
i; j=1 Xi−1; jZi−1; j−1 → 0 a.s.

In particular, Vn2 → 0 a.s. A similar argument using Lemma 3.1(iii) and the Borel–Cantelli Lemma
shows that Vn3 → 0 a.s. Hence bn → �2=2 a.s.; likewise, cn → 0 a.s. and dn → �2=2 a.s.

(ii) Veri>cation is similar to part (i).

(iii) Appealing to (1.3), n−�An
∑n

i; j=1 Fij( K�n)�ij=n−3=2−�
(∑n

i; j=1 Xi−1; j�ij;
∑n

i; j=1 Yi; j−1�ij
)′

+n−3=2−�∑n
i; j=1 Zi−1; j−1�ij(� − K�n; �− K�n)′ → 0 a.s. by Theorem 2.2 and Remark 1.1.

Veri>cation of Theorem 1.2 now follows immediately from Lemma 3.3. Indeed, employing (1.2),
n−�A−1

n (�̂n − �0) = (AnGnAn)−1n−�An
∑n

i; j=1 Fij( K�n)(Rij( K�n) + �ij) → A−10 = 0 a.s.

4. Further reading

Martin (1990) may also be of interest to the reader.
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