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ABSTRACT. Cramér–von Mises type goodness of fit tests for interval censored data case 2 are

proposed based on a resampling method called the leveraged bootstrap, and their asymptotic

consistency is shown. The proposed tests are computationally efficient, and in fact can be applied to

other types of censored data, including right censored data, doubly censored data and (mixture of)

case k interval censored data. Some simulation results and an example from AIDS research are

presented.
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1. Introduction

Incomplete data are frequently encountered in medical follow-up studies and in reliability

studies. Partially motivated by problems arising from these studies, analysis of right censored

data has been one of the focal points of statistics in the past three decades. While there exist

some earlier works, viz. Gehan (1965), Turnbull (1974), among others, recently statisticians

are paying more and more attention to some more complicated types of incomplete data, such

as doubly censored data and interval censored data, as these data occur in important clinical

trials. For instance, doubly censored data were encountered in recent studies on primary

breast cancer (Peer et al., 1993; Ren & Peer, 2000), and interval censored data were

encountered in AIDS research (Kim et al., 1993). For doubly censored data (Turnbull, 1974;

Mykland & Ren, 1996), a goodness of fit test has been studied by Ren (1995a), and Bickel &

Ren (1996, 2001). This current paper is concerned with the goodness of fit test with interval

censored data.

Precisely, the interval censored sample we consider in this paper is given by Oi ¼ ðYi; Zi; diÞ,
i ¼ 1; . . .; n, with

di ¼
1; if Zi < Xi � Yi

2; if Xi > Yi

3; if Xi � Zi

8<
: ð1Þ

where X1; . . .;Xn is an independently and identically distributed (i.i.d.) non-negative random

sample from an underlying distribution function (d.f.) F , and (Yi; Zi) are i.i.d. and independent
from Xi with PfZi < Yig ¼ 1. This is the interval censoring case 2 considered by Groeneboom

& Wellner (1992), among others.

To deal with more complicated interval censored cases encountered in practice, Wellner

(1995) studied interval censored case k model. More generally, Schick & Yu (2000) studied a

mixture of case k models, which was further investigated by Wellner & Zhang (2000) in the

context of the mean function of a counting process. The method developed in this paper for

interval censored case 2 data can easily be applied to the models in Wellner (1995), Schick &

Yu (2000), Wellner & Zhang (2000), provided that some information on the convergence rate

of the estimator for F is available in their cases.

In practice, researchers often like to make parametric assumptions on the underlying

distributions, say, normal distribution, exponential distribution, etc. Motivated by this, this
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paper provides a method for model checking when interval censored data (1) are encountered.

Specifically, for the simple goodness of fit test on F given in (1), we consider testing:

H0: F ¼ F0 vs: H1: F 6¼ F0; ð2Þ

where F0 is a known continuous d.f., while for the parametric family goodness of fit test on F ,
we consider testing:

H0: F 2 F0 	 fF0ð
; hÞjh 2 Hg vs: H1: F j2 F0; ð3Þ

where F0ð
; hÞ is a specified d.f. with unknown parameter h 2 H � Rq.

1.1. Testing the simple goodness of fit (2)

For testing (2), when there is no censoring, the Cramér–von Mises test statistic is given by

Tn ¼ n
Z 1

0

ðFnðxÞ � F0ðxÞÞ2 dF0ðxÞ; ð4Þ

where Fn is the empirical d.f. of X1; . . .;Xn, and it is known that under H0,

Tn !
D
W ; as n ! 1 ð5Þ

where W has a d.f. given in Shorack & Wellner (1986, p. 147). When a censored sample is

observed, one may want to use

T̂T n ¼ n
Z 1

0

ðF̂FnðxÞ � F0ðxÞÞ2 dF0ðxÞ ð6Þ

as the test statistic, where F̂Fn is an estimator of F using censored data. But this functional

‘‘plug-in’’ method fails for interval censored data (1). To see this, let F̂Fn be the non-parametric
maximum likelihood estimator (NPMLE) of F for data (1) (the method for computing F̂Fn can
be found in Groeneboom & Wellner, 1992). It is known that the convergence rate of F̂Fn is
slower than

ffiffiffi
n

p
(for more general interval censored cases, such as in Schick & Yu (2000), it is

not clear what is the convergence rate of the NPMLE F̂FnÞ. In Geskus & Groeneboom (1999), it

was pointed out that for a given point t0, the convergence rate of F̂Fnðt0Þ is sometimes n1=3

(Wellner, 1995; Groeneboom, 1996), but sometimes perhaps ðn log nÞ1=3 (Groeneboom &

Wellner, 1992), depending on whether the observation time distribution has sufficient mass

along the diagonal point ðt0; t0Þ. This means that for a given NPMLE F̂Fn computed from

observed interval censored data (1), the convergence rate of F̂Fnðt1Þ could be different from that

of F̂Fnðt2Þ for two different points t1 and t2. Thus, T̂Tn is not a suitable test statistic for interval
censored data, because it does not stabilize under H0 as n ! 1. This is confirmed by the

simulation results presented in Fig. 1. Let expðlÞ denote the exponential d.f. with mean l. For
sample size n ¼ 200, 500 and 1000, Fig. 1 presents three Monte Carlo curves of T̂Tn under H0 in

(2) with F0 ¼ expð1Þ, where for each n, the Monte Carlo curve is based on 1000 samples

generated for Xi and Yi from exp(1) and exp(3), respectively, with Zi ¼ ½ð2=3ÞYi � 2:5�. Clearly
these curves appear to be diverging as n increases.
One may note that although it is shown in th. 3.2 of Geskus & Groeneboom (1999) that for

some smooth functional Kð
Þ of the NPMLE F̂Fn with interval censored data case 2,ffiffiffi
n

p ðKðF̂FnÞ � KðF ÞÞ is asymptotically normal, their theorem cannot be used for functional T̂Tn
given in (6) to construct a test statistic for testing (2). This is because with KðF̂FnÞ ¼ n�1T̂Tn � 0

always and KðF Þ ¼ 0 under H0, T̂Tn cannot possibly be asymptotically normal no matter what
normalization is used on it. In fact, from above we know that a proper normalization for T̂Tn
may not generally exist unless more assumptions are made on the interval censoring case 2
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model (1). Thus, the usual methods developed for testing (2) with right censored data (Efron,

1981) or doubly censored data (Ren, 1995a; Bickel & Ren, 2001) do not apply to interval

censored data (1). Other resampling methods, such as subsampling (Politis & Romano, 1994;

or see a recent book by Politis et al., 1999) and the m out of n bootstrap (Bickel et al., 1997;
Bickel & Ren, 2001), do not apply either for the same reason, as all these methods require that

the original statistic, suitably normalized (with a known convergence rate), has a limit under

the null hypothesis.

In section 3, we propose a method for testing the simple goodness of fit (2) with interval

censored data (1) using a new resampling method, called the leveraged bootstrap (Ren, 1995b,

2001), and show that the proposed test is asymptotically consistent with proofs deferred to the

appendix. This method is extended to test the parametric family goodness of fit (3) in section 4,

while the idea of the leveraged bootstrap (LB) is described in section 2. Some simulation

results on the theorems in sections 3 and 4 are presented in section 5, and an example of

interval censored data (1) from AIDS research (Kim et al., 1993) is discussed in section 6.

Section 7 includes some concluding remarks.

2. Leveraged bootstrap

We begin by recalling the bootstrap principle (Efron, 1979). Suppose the distribution function

of statistic Hn ¼ HnðX1; . . .;XnÞ is to be approximated, where X1; . . .;Xn is an i.i.d. random

sample from a distribution function F . Since the empirical distribution function Fn for

X1; . . .;Xn is asymptotically close (a.s.) to F and since Fn puts equal weight n�1 at each

observation Xi in the sample, one hopes that if X̂Xn1; . . .; X̂Xnm is a random sample from Fn, where
m is a positive integer (see Efron, 1979, for the case m ¼ n; and see Bickel et al., 1997, for the
case m ¼ oðnÞÞ, then the distribution of ĤHm ¼ HmðX̂Xn1; . . .; X̂XnmÞ is asymptotically close to that
of HnðX1; . . .;XnÞ. However, when we have censored data, such as right censored data, doubly
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Fig. 1. Monte Carlo curves of T̂Tn with interval censored data under H0: F ¼ expð1Þ, where X � expð1Þ,
Y � expð3Þ;Z ¼ ½ð2=3ÞY � 2:5�, n ¼ 200 (solid line), n ¼ 500 (dashed line), n ¼ 1000 (dotted line).
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censored data and interval censored data, the complete sample X1; . . .;Xn and Fn are not

available.

For a censored sample, the idea of the non-parametric bootstrap (Efron, 1994) is to

bootstrap the observed censored data. This resampling method still produces an incomplete

sample. Hence, the above statistic Hn formulated for a complete sample is no longer

applicable, and the extension of Hn for the particular censoring mechanism under

consideration is needed. In some situations, such as the aforementioned goodness of fit test

with interval censored data (1), the extension may not be at all obvious.

Extending the idea of Efron’s bootstrap principle, we see that one way to look at the

problem is that, instead of seeking an extension of Hn for incomplete data, one may try to

obtain a complete i.i.d. bootstrap sample, which is asymptotically close to a sample directly

drawn from F , so that the statistic Hn for the complete sample may be used for this bootstrap

sample. A natural thing to do is to replace the empirical d.f. Fn in the usual bootstrap

procedure by an estimator F̂Fn of F based on incomplete data. Then, inferences may be done

based on the pseudo complete i.i.d. sample X �
n1; . . .;X

�
nm drawn from F̂Fn. As shown in section 3,

one may expect that under some suitable conditions, HmðX �
n1; . . .;X

�
nmÞ has approximately the

same distribution as HnðX1; . . .;XnÞ. Next, we describe the leveraged bootstrap (LB), while

Fig. 2 shows how the bootstrap, the non-parametric bootstrap and the leveraged bootstrap are

related to one another.

Leveraged bootstrap

(LB1) Compute the NPMLE F̂Fn using observed incomplete data fOi; 1 � i � ng.
(LB2) For an integer m satisfying m ! 1, as n ! 1, obtain an i.i.d. leveraged bootstrap

sample X �
n1; . . .;X

�
nm, which is drawn from F̂Fn.

(LB3) For the statistic of interest HnðX1; . . .;XnÞ formulated for complete i.i.d. sample,

compute H�
m ¼ HmðX �

n1; . . .;X
�
nmÞ and draw inference.

One may note that the above leveraged bootstrap method can be applied to different types

of censored data, including interval censored data (1), and is computationally efficient, but the

part of ‘‘draw inference’’ in (LB3) often requires some care depending on the situations. One

example on this is studied in Ren (2001) in the context of the empirical likelihood inference,

while the goodness of fit tests with interval censored data discussed in sections 3 and 4

demonstrate additional examples of the application of the leveraged bootstrap in practice.

3. Simple LB-goodness of fit test

Consider testing the simple goodness of fit (2) with interval censored data (1). From the test

statistic Tn in (4) formulated for complete data, the statistic based on the leveraged bootstrap
in (LB3) is given by

Nonparametric Bootstrap

 Bootstrap

incomplete
i.i.d. sample

complete
i.i.d. sample

Leveraged Bootstrap

i.i.d. sample
complete

i.i.d. sample
incomplete

complete i.i.d. sample
statistics for

statistics for
incomplete i.i.d. sample

Fig. 2. The relation among bootstrap, non-parametric bootstrap and leveraged bootstrap.
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T �
m ¼ m

Z 1

0

ðF �
nmðxÞ � F0ðxÞÞ2 dF0ðxÞ; ð7Þ

where F �
nm is the empirical d.f. of a leveraged bootstrap sample X �

n1; . . .;X
�
nm from F̂Fn. We note

that the conditional covariance function of F�
nm ¼ ffiffiffiffi

m
p ðF �

nm � F̂FnÞ is given by

EfF�
nmðxÞF�

nmðyÞjOng ¼ F̂FnðxÞ ^ F̂FnðyÞ � F̂FnðxÞF̂FnðyÞ; ð8Þ

where On ¼ fOij1 � i � ng. Since F̂Fn is a consistent estimator of F (Groeneboom & Wellner,

1992), we know that the limit of (8) is Cðx; yÞ ¼ F ðxÞ ^ F ðyÞ � F ðxÞF ðyÞ. Noting that Cðx; yÞ is
the covariance function of

ffiffiffi
n

p
ðFn � F Þ, with proofs deferred to the appendix the following

theorem shows that T �
m in (7) has the same null limiting distribution as Tn in (4). This is also

supported by the simulation results presented in section 5.

Theorem 1

Assume

ncðF̂Fn � F Þ ¼ Opð1Þ; for some c > 0; ðAS1Þ

and let m ¼ oðn2cÞ satisfy m ! 1, as n ! 1. Then, under H0

lim
n!1

sup
0<x<1

jPfT �
m � xjOng � PfW � xgj ¼ 0; ð9Þ

in probability, where W is as in (5).

One may note that the percentiles of W may be used directly as the critical value when T �
m in

(7) is used as the test statistic for testing (2). Specifically, at a100% significance level we

Reject H0 if T �
m � Ca; ð10Þ

where PfW � Cag ¼ a. This means that only one leveraged bootstrap sample is used for the
decision, thus (10) is called LB1-test.

It is easy to see that if in (LB2) one repeatedly obtains N leveraged bootstrap samples

X �
kn;1; . . .;X

�
kn;m from F̂Fn; k ¼ 1; . . .;N , and computes T �

km for each of these samples, then frequent

occurrence of T �
km � Ca should lead to the rejection of H0. This idea gives another test as

follows.

Let

�WW ¼ N�1
XN
k¼1

IfT �
km � Cag and pn ¼ PnfT �

km � Cag; ð11Þ

where ‘‘Pn’’ denotes the conditional probability given F̂Fn. Then, we know that N �WW has

binomial distribution with parameters pn and N , and is asymptotically normal for large N . If
we denote za as the ð1� aÞ100th percentile of the standard normal distribution Nð0; 1Þ, and for
some q such that 0 < q < a < 1 we choose

N ¼ max 1;
pnð1� pnÞ

½ða � pnÞ=ðza�q � zaÞ�2

( )
; ð12Þ

then for testing (2), at a100% significance level we

Reject H0 if �WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

N

r
: ð13Þ

This is called LB-goodness of fit test (LB-GOF test), and it is asymptotically consistent under

some conditions on m in (7). The following theorem establishes its consistency with proofs
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deferred to the appendix, where the derivation of N in (12) is apparent. The choice of m in

practice is discussed at the end of this section, and some simulation results are presented in

section 5.

Theorem 2

Under the assumptions of theorem 1, LB-GOF test (13) satisfies:

(i) under H0,

lim
n!1

P

(
�WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

N

r 




H0

)
� a; ð14Þ

(ii) under fixed alternative H1: F ¼ F1 6¼ F0,

lim
n!1

P

(
�WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

N

r 




H1

)
¼ 1: ð15Þ

Remark 1. Theorems 1 and 2 can be applied to different types of censored data, including

right censored data, doubly censored data and interval censored data. In fact, under some

conditions, assumption (AS1) holds with c ¼ 1=2 for right censored data (Gill, 1983) and

doubly censored data (Gu & Zhang, 1993), respectively. The situation for interval censored

data is more complicated, but we know c ¼ 1=3 in (AS1) for interval censoring case 1

(Groeneboom & Wellner, 1992). As pointed out by Geskus & Groeneboom (1999), the

convergence rate of F̂Fn for interval censoring case 2 and for those cases studied by Wellner

(1995), Schick & Yu (2000), Wellner & Zhang (2000) mentioned in section 1 should not be

worse than case 1, because one has more information on the location of Xis. Thus, we use

c ¼ 1=3 for interval censoring case 2 in section 5’s simulation studies, which appear to be quite

satisfactory.

Choice of m. From the proof of theorem 1, we see that the conditions on m are required to

kill the bootstrap bias. In the appendix, this leads to the choice of m under H0 as:

m̂m ¼ min

(
e
rn
;

 
effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2mnz
2
g=2 þ ernn2c

q
þ rmnzg=2

!2

n2c
)
; ð16Þ

where for 0 < a; �; g < 1 and Ca given in (10),

e ¼ Ca � Caþ�; rn ¼
Z 1

0

ðF̂Fn � F0Þ2 dF0; ð17Þ

and rnm is the standard deviation (s.d.) of
R1
0

ffiffiffiffi
m

p
ðF �

nm � F̂FnÞncðF̂Fn � F0Þ dF0. Hence, in practice
one may choose m as:

m ¼ maxfnc; m̂mg: ð18Þ

For a ¼ 0:05 and interval censored data (1), based on our simulation studies we recommend

the use of g ¼ 0:10; � ¼ 0:02; c ¼ 1
3 in (16), and estimating rmn by LB samples (say, 30 samples)

with m ¼ nc.

Such a choice of m in (18) is associated with the LB-GOF test (13) as follows. Under H0, we

have m̂m ¼ Opðn2cÞ, which is asymptotically larger than nc, thus m ¼ m̂m in (18). When H0 is not

true, we have m̂m ¼ Opð1Þ, thus m ¼ nc in (18), which leads to a rejection decision. This selection

method of m is used in simulation studies of section 5, and generally performs well.
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4. Parametric family LB-goodness of fit test

Consider testing the parametric family goodness of fit (3) with interval censored data (1), and

let ĥhn be an estimator for h based on the NPMLE F̂Fn (for instance, if h is the mean of F , ĥhn is
the mean of F̂Fn). A natural extension of statistic T �

m in (7) is given by

~TT �
m ¼ m

Z 1

0

ðF �
nmðxÞ � F0ðx; ĥhnÞÞ2 dF0ðx; ĥhnÞ; ð19Þ

where F �
nm is the empirical d.f. of a leveraged bootstrap sample X �

n1; . . .;X
�
nm drawn from F̂Fn.

With proofs deferred to the appendix, the following theorem shows that theorem 1 holds for

this statistic ~TT �
m, while some related simulation results are presented in section 5.

Theorem 3

Let F0ðx; hÞ have a density function f0ðx; hÞ, and assume

nckF0ð
; ĥhnÞ � F0ð
; hÞk ¼ Opð1Þ and kf0ð
; ĥhnÞ � f0ð
; hÞk ¼ opð1Þ: (AS2)

Then, under the assumptions of theorem 1, we have that under H0

lim
n!1

sup
0<x<1

jPf~TT �
m � xjOng � PfW � xgj ¼ 0; ð20Þ

in probability, where W is as in (5).

Remark 2. In the consistency assumption (AS2), since the estimator ĥhn for h is based on the
NPMLE F̂Fn; we usually could expect the convergence rate of ĥhn to be at least the same as F̂Fn. In
fact, as mentioned in section 1, Geskus & Groeneboom (1999) showed that if ĥhn is a smooth
functional of F̂Fn, it is asymptotically normal with a better convergence rate than F̂Fn. In turn,
(AS2) holds from the boundedness of f0 and the uniform continuity of f0ð
; hÞ in h. On the

other hand, one should note that under the assumption of parametric family in (3), we cannot

use the usual parametric MLE in the place of ĥhn in (AS2) or in (19), because for interval

censored data (1), the observed random vector ðYi; ZiÞ does not have any parametric

assumption under H0 in (3). Of course, as the Associate Editor pointed out, a partial likelihood

MLE for h based on F0ð
; hÞ and observed data ðYi; Zi; diÞ could be used in the place of ĥhn. But
the computation of such a partial likelihood-based MLE may be complicated if F0ð
; hÞ has a
complicated form.

Based on theorem 3, it is easy to see that to test (3), the LB-GOF test (13) for testing (2) can

be extended to the following parametric family LB-goodness of fit test (PF-LB-GOF test): at

a100% significance level we

Reject H0 if �~WW~WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

~NN

s
; ð21Þ

where �~WW~WW and ~ppn are obtained by replacing T
�
m with

~TT �
m in (11), and

~NN is obtained by replacing pn
with ~ppn in (12). From the proof of theorem 2, it is also easy to see that under the assumptions

of theorem 3, theorem 2 holds for the PF-LB-GOF test (21). Thus, (21) is an asymptotically

consistent test.

Moreover, from the discussion in section 3, in practice the choice of m for the PF-LB-GOF

test (21) may be given by

m ¼ maxfnc; ~̂mm~mmg; ð22Þ

where ~̂mm~mm is obtained from replacing F0 by F0ð
; ĥhnÞ in (16)–(17).
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5. Simulation studies

This section presents some simulation results on theorems 1–3. In these studies, the choices of

m given by (18) and (22) are used for statistics T �
m and ~TT �

m, respectively, with a ¼ 0:05 and

c ¼ 1=3 for interval censored data (1). Since the function of parameters � in (17) and g in (16) is
to reduce the bootstrap bias, shown in (32)–(33) of the appendix, the choice of � ¼ 0:02 and

g ¼ 0:10 seems reasonable enough for this purpose, and our simulation results confirm this.

Thus, based on (17) and Shorack & Wellner (1986, p. 147), we have e ¼ 0:05616 for a ¼ 0:05

and � ¼ 0:02. In (16), the s.d. rnm or ~rrnm with F0ð
; ĥhnÞ replacing F0 is estimated based on 30 LB
samples with m ¼ nc. Moreover, with an arbitrarily chosen q ¼ a=2 in (12), the choices of N
for LB-GOF test (13) and ~NN for PF-LB-GOF test (21) are computed according to pn and ~ppn,
respectively, which are estimated by 10 000 T �

ms and
~TT �
ms, respectively.

One may note that the NPMLE F̂Fn is not always a proper d.f. for censored data (Mykland &

Ren, 1996). In our studies, we always adjust F̂Fn to be a proper d.f. by setting F̂Fn ¼ 1 at the

largest observation in the data, and our experiences show that due to this, the simulation

results appear to be less biased. This kind of adjustment of the Kaplan–Meier estimator has

been adopted by some researchers in literature (Efron, 1967; Miller, 1976).

Simulation on theorems 1 and 3. Table 1 displays the simulation results which compare the

percentiles of W in (5) (Shorack & Wellner, 1986, p. 147) with those of T �
m in (7) for interval

censored data case 2. Here, the simulation percentiles of T �
m are based on 5000 samples, and the

absolute value of the differences between the simulation percentiles of T �
m and the percentiles of

W are displayed in the ‘‘Errors’’ column. The same simulation studies are repeated for ~TT �
m in

(19) with interval censored data, and the results are displayed in Table 2.

The results in Tables 1 and 2 show that the leveraged bootstrap performs well, which is

consistent with theorems 1 and 3. One may note that ~TT �
m in (19) for testing the parametric

Table 1. Percentiles of T �
m with interval censored data of sample size n ¼ 200

X � F0 ¼ expð1Þ;
Y � expð3Þ; Z ¼ ð2=3ÞY – 2:5

X � F0 ¼ Nð0; 1Þ;
Y � Nð1; 4Þ; Z ¼ ð2=3ÞY� 2:5

Percentile W T�
m Errors T�

m Errors

5th 0.03656 0.049818 0.013258 0.049516 0.012956

10th 0.04601 0.060394 0.014384 0.060410 0.014400

15th 0.05426 0.070873 0.016613 0.069615 0.015355

20th 0.06222 0.081346 0.019126 0.079429 0.017209

25th 0.07025 0.090635 0.020385 0.090035 0.019785

30th 0.07860 0.099284 0.020684 0.099979 0.021379

35th 0.08744 0.109160 0.021720 0.109021 0.021581

40th 0.09696 0.119359 0.022399 0.119893 0.022933

45th 0.10736 0.129680 0.022320 0.131418 0.024058

50th 0.11888 0.141144 0.022263 0.144100 0.025220

55th 0.13183 0.155332 0.023502 0.158298 0.026468

60th 0.14663 0.170091 0.023461 0.176190 0.029560

65th 0.16385 0.187482 0.023632 0.197282 0.033432

70th 0.18433 0.209727 0.025397 0.220952 0.036622

75th 0.20939 0.238128 0.028738 0.246602 0.037212

80th 0.24124 0.268220 0.026980 0.276236 0.034996

85th 0.28406 0.307563 0.023503 0.318523 0.034463

90th 0.34730 0.365021 0.017721 0.384534 0.036347

95th 0.46136 0.463432 0.002072 0.491160 0.029800

99th 0.74346 0.716075 0.027385 0.744601 0.001141

Average of selected m ¼ 5:1 Average of selected m ¼ 5:2

218 J.-J. Ren Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



family GOF (3) and T �
m in (7) for testing the simple GOF (2) have quite similar performance.

Also, as expected, our studies show that the approximation for interval censored data gets

better as the sample size n increases. However, we only present the results with n ¼ 200 for

interval censored data, because it is extremely time-consuming to conduct the simulation study

for large samples.

Simulation on theorem 2. The simulation results on theorem 2 for testing the simple GOF

(2) are displayed in Figs 3–5, which compare the power curves of the LB-GOF test (13) with

those of LB1-test (10). All power curves are the smoothed versions based on 500 simulation

runs for sample size n ¼ 200, and 300 simulation runs for n ¼ 500.

From Figs 3–5, one may notice that in the neighbourhood of H0, the power of LB-GOF test

is generally better, and that as expected, the power increases faster with larger sample size n as
F moves away from F0.

Remark 3. Although not presented, the power curves of PF-LB-GOF test (21) have similar

performance to Figs 3–5 for the simple LB-GOF test (13).

6. An example

In De Gruttola & Lagakos (1989), an interval censored data set on

X ¼ time of HIV infection ð23Þ

from AIDS research was presented. A brief description of this data set is given below.

Since 1978, 262 people with Type A and B haemophilia have been treated at Hôpital

Kremlin Bicêtre and Hôpital Cœur des Yvelines in France. For each individual, the only

Table 2. Percentiles of ~TT �
m with interval censored data of sample size n=200

F0 ¼ expðlÞ; X � expð1Þ
Y � expð3Þ;Z ¼ ð2=3ÞY� 2:5

F0 ¼ Nðl; r2Þ; X � Nð0; 1Þ
Y � Nð1; 4Þ;Z ¼ ð2=3ÞY – 2:5

Percentile W ~TT�
m Errors ~TT�

m Errors

5th 0.03656 0.051116 0.014556 0.050676 0.014116

10th 0.04601 0.061572 0.015562 0.061688 0.015678

15th 0.05426 0.071821 0.017561 0.071369 0.017109

20th 0.06222 0.080820 0.018608 0.081972 0.019752

25th 0.07025 0.090404 0.020154 0.093068 0.022818

30th 0.07860 0.099193 0.020593 0.102985 0.024385

35th 0.08744 0.108551 0.021111 0.113126 0.025686

40th 0.09696 0.119536 0.022576 0.124431 0.027471

45th 0.10736 0.130704 0.023344 0.135860 0.028500

50th 0.11888 0.141789 0.022909 0.147220 0.028340

55th 0.13183 0.155115 0.023285 0.161682 0.029852

60th 0.14663 0.171021 0.024391 0.178973 0.032343

65th 0.16385 0.188747 0.024898 0.199824 0.035974

70th 0.18433 0.208789 0.024459 0.220568 0.036238

75th 0.20939 0.232366 0.022976 0.243649 0.034259

80th 0.24124 0.266310 0.025070 0.275699 0.034459

85th 0.28406 0.308877 0.024817 0.320523 0.036463

90th 0.34730 0.373341 0.026041 0.378826 0.031526

95th 0.46136 0.471307 0.009947 0.488538 0.027178

99th 0.74346 0.720468 0.022992 0.719518 0.023942

Average of selected m ¼ 5:2 Average of selected m ¼ 5:5
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information available on X is X 2 ½XL;XR�, while it is assigned XL ¼ 1 if the individual was

found to be infected with HIV on his/her first test for infection. Along with the retrospective

tests for evidence of HIV infection, observations XL and XR were determined by the time at

which the blood samples were stored. In this data set, time is measured in 6-months intervals,

with X ¼ 1 denoting 1 July 1978, and one of the interests of the study is the distribution of X .
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Fig. 3. Power curves of LB-GOF test (solid line) and LB1 test (dashed line) for H0: F ¼ F0 ¼ expð1Þ, with
interval censored data: X � expðlÞ, Y � expð3Þ; Z ¼ ½ð2=3ÞY � 2:5�; n ¼ 200; Average N under H0 is 512.0.
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Fig. 4. Power curves of LB-GOF test (solid line) and LB1 test (dashed line) for H0: F ¼ F0 ¼ expð1Þ, with
interval censored data: X � expðlÞ, Y � expð3Þ; Z ¼ ½ð2=3ÞY � 2:5�; n ¼ 500; Average N under H0 is 874.0.
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To demonstrate the application of the parametric family LB-goodness of fit test developed

in section 4, we consider the updated version of this data set for 104 individuals in the heavily

treated group, i.e. patients who received at least 1000 lg/kg of blood factor for at least one

year between 1982 and 1985. The data set is given in Kim et al. (1993), and is included in

Table 3 for convenience.

Note that the data set in Table 3 always satisfies XL < XR, and it is associated with interval

censored data (1) in the following way:

1 < XL < XR < 1 , d ¼ 1; Z ¼ XL; Y ¼ XR

1 < XL < XR ¼ 1 , d ¼ 2; Z ¼ �1; Y ¼ XL

1 ¼ XL < XR < 1 , d ¼ 3; Z ¼ XR; Y ¼ 1:

ð24Þ
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Fig. 5. Power curves of LB-GOF test (solid line) and LB1 test (dashed line) for H0: F ¼ F0 ¼ Nð0; 1Þ,
with interval censored data: X � Nðl; 1Þ, Y � Nð1; 4Þ; Z ¼ ½ð2=3ÞY � 2:5�; n ¼ 500; Average N under H0

is 505.9.

Table 3. HIV observations of 104 patients in the heavily treated group

XL XR XL XR XL XR XL XR XL XR XL XR XL XR XL XR

15 1 10 11 14 15 10 11 7 15 12 13 9 11 1 12

15 1 10 11 14 15 10 12 9 10 12 13 9 12 1 14

17 1 10 11 14 15 13 14 9 10 12 13 10 12 1 14

17 1 10 11 14 15 13 14 10 11 12 14 10 12 1 14

1 7 10 15 14 15 16 1 10 11 13 16 13 15 5 7

1 13 11 13 15 16 16 1 10 11 14 16 13 15 7 9

1 15 11 13 1 10 17 1 11 12 14 16 14 15 8 10

1 15 11 13 1 15 1 11 12 13 1 7 16 1 9 12

3 14 12 14 5 8 1 13 12 13 3 7 1 16 9 12

7 10 13 15 9 13 5 7 12 13 7 9 1 12 9 12

8 15 14 15 9 13 3 15 10 12 15 16 10 12 15 16

11 13 1 7 12 13 5 7 13 15 8 10 13 15 9 12

14 15 10 11 14 15 10 14 15 16 12 13 15 16 13 14

Scand J Statist 30 Goodness of fit tests 221

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



Although the data shown in Table 3 are integers due to the fact that De Gruttola & Lagakos

(1989) discretized the time axis into 6-month intervals in their studies, it is obvious that XL and

XR in (24) are continuous random variables. Moreover, due to the way in which XL and XR

were determined, we may assume that [XL;XR� is independent of X , because the available blood
samples were stored purely from haemophilia treatment which had nothing to do with HIV

infection. Thus, here we have a data set which is interval censoring case 2 as in (1).

Applying the same procedure for the simulation studies in section 5 to this data set (24), we

conduct the PF-LB-GOF tests (21) to test (3) and summarize the results in Table 4.

From Table 4, we conclude that at 5% significance level, there is not sufficient evidence to

reject that X in (23) has a normal distribution. Moreover, based on data (24), Fig. 6 compares

the curves of the NPMLE F̂Fn, Nðl̂ln; r̂r
2
nÞ, and expðl̂lnÞ, where l̂ln and r̂r2n are the mean and

variance of F̂Fn, respectively. Evidently, the results of Fig. 6 are consistent with the test results
shown in Table 4.

One may note that although Fig. 6 indicates that F̂Fn is above Nðl̂ln; r̂r
2
nÞ, our test result does

not conclude this. This is because our proposed testing procedure is constructed for the

alternative hypothesis H1: F j2 F0 in (3), which in the current context means that F is not

normal. To test whether F is above Nðl̂ln; r̂r
2
nÞ, a different testing procedure needs to be

developed for the corresponding alternative hypothesis, but this is not considered here.

Table 4. 5% parametric family goodness of fit tests with interval censored HIV data

H0
�~WW~WW a þ za�q½að1� aÞ= ~NN�1=2 Selected m Selected ~NN

F ¼ expðlÞ 1.0000 0.477172 6 1

F ¼ Nðl;r2Þ 0.0454 0.114399 7 44
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Fig. 6. Distribution curves of F̂Fn (solid line), Nðl̂ln; r̂r
2
nÞ (dashed line) and expðl̂lÞ (dotted line) for interval

censored HIV data.
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7. Conclusions

Cramér–von Mises type goodness of fit tests for interval censored data are proposed based on

a resampling method called the leveraged bootstrap (LB), and their asymptotic consistency is

shown mathematically with support from simulation results. The essential difference between

the LB tests and the usual testing procedures is that the test statistics of the LB tests are

obtained through resampling, in the process of which the leveraged bootstrap transfers

censored data through statistic Tn in (4) into some useful information to draw inference.

Although the proposed tests can in fact be applied to other types of censored data, including

right censored data and doubly censored data, they are mainly meant to fill a blank in the

literature for interval censored data. Simulation studies show that the proposed methods are

computationally very efficient, because the EM algorithm is used only once in the procedure to

compute the NPMLE F̂Fn. Based on Figs 3–5, one may prefer the LB-GOF test (or PF-LB-

GOF test) over the LB1-test in practice. Finally, it should be noted that a better choice of m
might be possible in the proposed procedure to improve the power of the tests.
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Appendix

Proof of theorem 1. Let U be the uniform d.f. on ð0; 1Þ and let U1; . . .;Um be a random sample

from U , then X �
ni ¼ F̂F �1

n ðUiÞ ¼ inffx; F̂FnðxÞ � Uig; 1 � i � m, is a random sample from F̂Fn.
Denote Fm as the empirical d.f. of U1; . . .;Um, and denote

WmðF �
nmÞ ¼ T �

m ¼ m
Z 1

0

ðF �
nm � F0Þ2 dF0; ð25Þ

where F �
nm is the same as in (7). From Serfling’s lemma (1980, p. 3), we have

F �
nmðxÞ ¼ m�1

Xm
i¼1

IfX �
ni � xg ¼ m�1

Xm
i¼1

IfF̂F �1
n ðUiÞ � xg

¼ m�1
Xm
i¼1

IfUi � F̂FnðxÞg ¼ FmðF̂FnðxÞÞ: ð26Þ

Note that assumptions (AS1) and m ¼ oðn2cÞ imply that under H0,ffiffiffiffi
m

p
½FmðF̂Fnð
ÞÞ � F0� ¼

ffiffiffiffi
m

p
½FmðF̂Fnð
ÞÞ � F̂Fn� þ

ffiffiffiffi
m

p
ðF̂Fn � F0Þ

¼
ffiffiffiffi
m

p
½FmðF̂Fnð
ÞÞ � F̂Fn� þ opð1Þ; ð27Þ
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where opð1Þ uniformly converges to 0 in probability, and note that the limiting process offfiffiffiffi
m

p
ðFm � UÞ on ½0; 1� is the Brownian bridge B with a covariance function given by

Kðs; tÞ ¼ s ^ t � st, where s; t 2 ½0; 1�. Thus,

WmðF �
nmÞ ¼ WmðFm � F̂FnÞ ¼ m

Z 1

0

½FmðF̂Fnð
ÞÞ � F̂Fn�2 dF0 þ opð1Þ:

Hence, from (AS1), the continuity of F0; and Shorack & Wellner (1986, pp. 145, 147), we have

that under H0, as n ! 1,

PfWmðF �
nmÞ � xjOng ! P

(Z 1

0

ðB � F0Þ2 dF0 � x

)
¼ P

(Z 1

0

B2 dU � x

)
¼ PfW � xg;

in probability. Therefore, (9) follows from the continuity of the d.f. of W .

Proof of theorem 2. From theorem 1, we know that under H0, pn !
P

a, as n ! 1, and it is

easy to see that (AS1) implies that under H1, T �
m !P 1 and pn !

P
1, as n ! 1. Thus, from the

choice of N given in (12), we know that as n ! 1,

N !P 1 under H0 and N !P 1 under H1: ð28Þ

(i) Under H0, we know that (12) and (28) give

lim
n!1

P

(
�WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

N

r 




H0

)

¼ lim
n!1

P

( ffiffiffiffi
N

p
ð �WW � pnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnð1� pnÞ

p �
ffiffiffiffi
N

p
ða � pnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pnð1� pn Þ
p þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ
pnð1� pnÞ

s 




H0

)

� lim
n!1

P

( ffiffiffiffi
N

p
ð �WW � pnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnð1� pnÞ

p � �ðza�q � zaÞ þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ
pnð1� pnÞ

s 




H0

)
¼ PfZ � zag ¼ a;

(ii) Under H1, we know that (12) and (28) give

lim
n!1

P

(
�WW � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

N

r 




H1

)
¼ lim

n!1
PfT �

m � a þ za�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
jH1g ¼ 1:

Derivation of (16). If we denote

R�
m ¼ 2m

Z 1

0

ðF �
nm � F̂FnÞðF̂Fn � F0Þ dF0 þ mrn; ð29Þ

then (7) is expressed by

T �
m ¼ S�m þ R�

m; for S�m ¼ m
Z 1

0

ðF �
nm � F̂FnÞ2 dF0: ð30Þ

From the proof of theorem 1 above, we know that under H0, as n ! 1

S�m �D W and R�
m �D Nðmrn; 4mn�2cr2mnÞ: ð31Þ

Thus the choice of m should make R�
m negligible. Note that if jR�

mj � e, we have

jPnfT �
m � xg � PnfS�m � xgj � maxfPnfx < S�m � xþ eg; Pnfx� e < S�m � xgg

�H0
maxfPfx < W � xþ eg; Pfx� e < W � xgg ¼ G0ðxþ eÞ � G0ðxÞ � �; ð32Þ

where x � Ca and G0 denotes the d.f. of W . Since R�
m is a random variable for a given F̂Fn, (32)

implies that we may choose m such that
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PnfjR�
mj � eg � ð1� gÞ; where 0 < g < 1 ð33Þ

for some small g. Thus, (16) can be easily derived from (29), (33), m � e=rn and

PnfjR�
mj � eg � Pn

(




 2
ffiffiffiffi
m

p

nc
rnmZ þ mrn






 � e

)
� Pn

(




 2
ffiffiffiffi
m

p

nc
rnmZ






 � ðe� mrnÞ
)
;

where Z stands for a standard normal random variable.

Proof of theorem 3. Since assumptions (AS1), (AS2) and m ¼ 0ðn2cÞ imply that under H0,ffiffiffiffi
m

p
ðFm � F̂Fn � F0ð
; ĥhnÞÞ ¼

ffiffiffiffi
m

p
ðFm � F̂Fn � F̂FnÞ þ

ffiffiffiffi
m

p
ðF̂Fn � F0ð
; ĥhnÞÞ

¼
ffiffiffiffi
m

p
ðFm � F̂Fn � F̂FnÞ þ

ffiffiffiffi
m

p
ðF̂Fn � F0ð
; hÞÞ þ

ffiffiffiffi
m

p
ðF0ð
; hÞ � F0ð
; ĥhnÞÞ

¼
ffiffiffiffi
m

p
ðFm � F̂Fn � F̂FnÞ þ opð1Þ; as n ! 1;

thus for y ¼ F �1
0 ðt; hÞ, the proof follows from (AS2), the proof of theorem 1 and

~TT �
m ¼ m

Z 1

0

ðFm � F̂Fn � F̂FnÞ2 dF0ð
; ĥhnÞ þ opð1Þ

¼ m
Z 1

0

ðFm � F̂Fn � F̂FnÞ2 dF0ð
; hÞ

þ m
Z 1

0

½Fm � F̂FnðyÞ � F̂FnðyÞ�2½f0ðy; ĥhnÞ � f0ðy; hÞ� dt þ opð1Þ

¼ m
Z 1

0

ðFm � F̂Fn � F̂FnÞ2 dF0ð
; hÞ þ opð1Þ:
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