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We discuss the rami�cations of Widom's idea that attractive intermolecular forces essentially cancel
in dense uniform liquids. This idea was used directly in the WCA theory of uniform liquids, where
the structure of the liquid is approximated by that of a simpler reference 
uid with purely repulsive
intermolecular forces. To take account of the unbalanced attractive forces found in nonuniform

uids, Weeks, Selinger, and Broughton (WSB) developed a new method where the structure is
related to that of a nonuniform reference 
uid in an external �eld chosen to yield a self-consistent
description of correlations induced by the repulsive forces and a mean �eld treatment of the at-
tractive forces. Using simulations, we provide a quantitative test of the accuracy of both methods
for the uniform 
uid at di�erent points in the phase diagram by relating correlation functions in
the uniform 
uid to those in a nonuniform 
uid with a particle �xed at the origin. We �nd that at
high densities the WSB approach can correct most of the small errors in the structure of the WCA
reference 
uid. At lower densities the WSB method provides a considerable improvement over the
WCA theory. A simpli�ed version of the WSB method is presented that is of comparable accuracy.

I. INTRODUCTION

Ben Widom has made major contributions to the con-
ceptual framework of almost every area of liquid state
science. He is widely renowned both for the depths of his
insights and for the clarity of his exposition. His ability
to focus on the critical questions using the simplest pos-
sible physical models has shaped the research directions
of the entire �eld. While Widom's work in the theory
of interfaces and critical phenomena is perhaps better
known, we focus here on the theory of uniform liquids
away from the critical point, where his ideas have proven
no less important. As an illustration of this fact, we ex-
amine herein the problem of determining the structural
and thermodynamic properties of uniform liquids, based
on a generalization of a physical picture presented by
Widom in an exceptionally lucid article [1].
In the following, we �rst give in Sec. II a brief review

of Widom's original picture and its quantitative imple-
mentation into the perturbation theory of dense uniform
liquids [2] developed by Weeks, Chandler, and Ander-
sen (WCA). Recently, Weeks, Selinger, and Broughton
(WSB) developed an extension of these ideas to nonuni-

form liquids [3]. Initial applications to drying transitions
near hard walls and to the liquid-vapor interface were
quite encouraging, but further tests and simpli�cations
of the basic method are needed. After describing the
general WSB method and a simpli�ed version in Sec. III,
we apply both versions to a uniform 
uid and compare
the results to the usual WCA approach. This allows us
to make a quantitative test of the new method and to
clarify its relation to the original ideas of Widom and
WCA. In Sec. IV we present the results of Molecular Dy-
namics simulations (MD) designed to test the various
approaches. The results are given in Sec. V and we sum-

marize in Sec. VI.

II. REPULSIVE FORCE MODEL FOR UNIFORM

FLUIDS

A. Widom force cancellation argument

In the fundamental paper mentioned above [1], Widom
�rst showed how attractive forces play the dominant role
in determining the highly unusual density correlations
found near the critical point. He then turned to a discus-
sion of \ordinary" uniform liquids near the triple point.
Highly nontrivial \excluded volume" correlations arise
in the dense but disordered environment of such a liq-
uid simply from the requirement that neighboring repul-
sive molecular cores cannot overlap. Widom argued that
in typical con�gurations the vector sum of the longer
ranged and relatively weak \attractive forces exerted on
any molecule by its neighbors largely cancel, while the
negative potentials largely add : : : . " Thus it is \funda-
mentally the molecular correlations that are due to the
repulsive component of the intermolecular forces, and not
those that are due to the attractive component, that de-
termine the properties" of such a 
uid. He idealized the
repulsive interactions by hard spheres and the attractions
by a constant uniform background potential, which ex-
erts no force on the hard spheres immersed in it, and was
able to provide an accurate parameter free prediction of
several thermodynamic properties of a simple 
uid such
as Argon at the triple point.
Widom's idea that the attractive forces essentially can-

cel at high density is quite compelling. It allows us
to understand why a mean �eld approach, where the
e�ects of the attractive forces on the structure are ig-
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nored completely, could be surprisingly accurate. This
picture applies not only to an idealized model [4] with
in�nitely long ranged and weak interactions (where the
attractions rigorously exert no force) but also to realis-
tic models describing the �nite ranged attractive interac-
tions seen in simple liquids [1], where the force cancella-
tion is mainly between oppositely situated neighbors of
a given molecule. It is also easy to see why this picture
would be less accurate at lower density, where the 
uc-
tuations in neighbor positions are more pronounced and
the cancellation less complete.

B. Repulsive force reference 
uid

It was natural to embed these ideas for a uniform 
uid
in a more formal and quantitative approach. This was
essentially the program followed by WCA [2]. Although
the theory can be applied to any pair interaction, we will
consider for concreteness in the following the Lennard-
Jones (LJ) 
uid. WCA �rst divided the LJ pair potential

w(r) = 4� [ (�=r)
12
� (�=r)

6
] (1)

into repulsive and attractive components: w(r) = u0(r)+
u1(r); de�ning the repulsive force reference potential

u0(r) uniquely by the requirement that it vanish for
r > r0 � 21=6�; where the LJ force is attractive, and that
it reproduce exactly the full LJ repulsive force �w0(r);
for r � r0: Thus u0(r) = w(r) + � for r � r0, and is zero
otherwise.
To describe Widom's \excluded volume" correlations

quantitatively, they considered a uniform repulsive force

reference 
uid (indicated by the subscript 0) made up of
particles interacting only through the pair potential u0(r)
and under the constraint that it has the same (number)
density � [2] as the full LJ 
uid. This requirement en-
sures that typical local environments in the two 
uids are
similar: both 
uids then have identical repulsive cores at
the same average separation determined by the �xed den-
sity. Fig: 1a and 1b give a pictorial representation of this
idea. Both analytical and numerical calculations can be
carried out more easily using the simpler reference 
uid.
If Widom's picture were exact, and correlations were

propagated only by repulsive forces, we would then ex-
pect that all correlation functions in the repulsive force

uid should equal those in the full LJ 
uid. Thus, com-
parison of correlation functions in the two systems pro-
vides a direct test of these ideas. The most favorable case
is the pair correlation function. WCA found that the full

uid's radial distribution function g(r) (indicated by no
subscript) is indeed very similar to the reference 
uid's
g0(r) at high density. The WCA perturbation theory of
liquids uses this assumption in calculating the free en-
ergy, and this similarity is the fundamental reason for
its accuracy at high density [2]. This provides a striking

con�rmation of the power and utility of Widom's original
insight.

C. E�ects of attractive forces

However, as will be discussed in detail below, small dif-
ferences can be seen in the correlation functions, even at
the highest density. Moreover, at lower density, where the
cancellation picture is clearly less applicable, the errors
in the approximation g0(r) � g(r) become much more
signi�cant. As � ! 0; the approximation is not even
qualitatively accurate. To improve on these results, we
must take some account of the e�ects of attractive forces

on the structure of the 
uid, while still maintaining an
accurate description of the important excluded volume
correlations.
The standard approach to this problem uses integral

equation methods [5]. The most accurate of these [6] are
based on some type of perturbation treatment of the at-
tractive forces, and have given quite satisfactory results
for g(r) except near the critical point where, as Widom
points out, special techniques are needed. Thus, the prac-
tical task of determining g(r) for a uniform simple 
uid
away from the critical point is essentially a solved prob-
lem. However, the physical basis for using a particular
integral equation closure and the underlying reasons for
their accuracy are not fully understood. Moreover, these
methods have failed dramatically in other seemingly re-
lated applications, such as determining the structure of
inhomogeneous 
uids [7].
It was these latter di�culties that lead WSB to try to

develop a more physically motivated theory of inhomo-
geneous and con�ned 
uids, based on a generalization of
the Widom and WCA ideas. As we will see below, the
insights gained from that work will also allow us to gain
a deeper understanding of the role of attractive forces on
the structure of uniform 
uids. We �rst review the WSB
theory [3] for nonuniform 
uids.

III. THEORY OF NONUNIFORM FLUIDS

When considering the structure of a nonuniform 
uid,
at least two new complications arise. First, the full 
uid
with pair interactions w(r) generally interacts also with
an external �eld �(r) describing, e.g., the e�ects of con-
�ning walls, etc. Perhaps conceptually more important
is the fact that attractive forces must be treated more
carefully, since their averaged e�ects clearly do not can-
cel by symmetry in a nonuniform 
uid. This problem is
more di�cult precisely because we can no longer rely on
Widom's cancellation argument to do most of the work
for us! Thus, in general, both attractive and repulsive
forces can have important e�ects on the structure of a
nonuniform 
uid.
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A. Nonuniform reference 
uid

To deal with these issues, WSB introduced a nonuni-

form repulsive force reference 
uid (denoted by the
subscript R). In this model 
uid, particles interact
through the repulsive pair potential u0(r) and with a
self-consistently chosen e�ective �eld �R(r) which takes
account of both the unbalanced attractive forces in the
full 
uid as well as the e�ects of the external �eld �.
With this choice, the structure of the nonuniform refer-
ence 
uid is again supposed to resemble that of the full

uid. Thus we still have the advantages of working with
a simpler reference system with short-ranged purely re-
pulsive intermolecular forces, but the proper choice of
the external �eld �R(r) can allow us to incorporate some
of the important e�ects of the attractive forces on the

uid's structure.
To determine the e�ective �eld �R(r), we follow WSB

and take seriously Widom's insight that it is pro�table to
look at the balance of forces in liquids. The exact YBG
hierarchy [5] permits a quantitative treatment [8] of this
idea. In particular, consider both for the total system
(shown here), and for the nonuniform reference system,
the �rst equation of the YBG hierarchy. This can be
written in the form

kBT r1 ln �(r1; [�]) = �r1�(r1)

�

Z
dr2�(r2jr1; [�])r1w(r12) : (2)

Here �(r2jr1; [�]) � �(2)(r1; r2; [�])=�(r1; [�]) is the con-

ditional singlet density | the density at r2 given that
a particle is �xed at r1: The notation [�] indicates that
the correlation functions are functionals of the external
�eld; for a given � and w all correlation functions are
in principle determined. The right hand side gives the
ensemble-averaged mean force acting on a particle �xed
at r1; i.e., the vector sum of the direct force from the
external �eld and the net force arising from the pair in-
teractions with all the other particles. Note that this
must be nonzero if there is a gradient at r1 in the singlet
density �(r1; [�]).
Since our aim is to produce similar structures in the

reference and full 
uids, it is natural to choose �R(r) so
that the local (singlet) densities [7] at every point r in
the two 
uids are equal:

�R(r; [�R]) = �(r; [�]); (3)

thus implying equality of the mean force at each r in the
two 
uids. It is known that such a �eld always exists in
principle [9]; we derive below an approximate equation
to determine its value explicitly.
To that end, let us examine physically the conse-

quences of such a choice. As suggested by the arguments
above for the uniform system, we assume that this condi-
tion produces similar local environments for the repulsive

cores in the two 
uids. Then if correlations are domi-
nated by excluded volume e�ects, higher order correla-
tion functions should again be very similar. In particular,
we assume that if Eq. (3) is satis�ed, then we also have

�R(r2jr1; [�R]) � �(r2jr1; [�]) : (4)

Eq. (4) is the basic structural hypothesis in the WSB
method, and, as we will see, it represents the only approx-
imation in the theory. This seems a natural extension of
the WCA picture to a nonuniform system. Indeed, in
a uniform system with � = �R = 0; we have the exact
relation �(r2jr1) = �g(r12), where r12 = jr1 � r2j; and
Eq. (4) reduces to the WCA approximation g0(r) � g(r):
As is the case for uniform 
uids, we expect Eq. (4) to be
most accurate at high density.

B. Inhomogeneous force equation

To get an explicit equation to determine �R, we use
Eqs. (3) and (4) in (2), and subtract the exact YBG equa-
tion (2) for the nonuniform reference system. This yields
the basic equation for �R in the WSB method:

r1[�(r1)� �R(r1)] = �

Z
dr2 �R(r2jr1; [�R])r1u1(r12) :

(5)

Some important bene�ts of the subtraction are that
rapidly varying terms involving the repulsive pair inter-
actions and the singlet density cancel by choice of �R,
leaving an average only over the gradient of the slowly
varying attractive potential u1(r12). The resulting self-
consistent equation (5) has an obvious interpretation
in terms of mean �eld ideas, which we will discuss in
more detail later. However, it focuses directly on forces,
and can appropriately be called the inhomogeneous force

equation. In essence, Eq. (5) equates the net force gener-
ated by the external �eld and from attractive pair interac-
tions to the inhomogeneous force �r�R in the reference
system. In a uniform system with zero external �eld, this
force cancels by symmetry and the theory reduces to the
mean �eld picture of Widom [1] and WCA.
Perhaps the simplest way to solve (5) is by iteration.

For �xed u0 and any given \trial �eld" �t, the asso-
ciated correlation function �t(r2jr1; [�t]) is completely
speci�ed, and could in principle be calculated accurately.
Eq. (5) then gives another non-trivial relation between �t

and �t(r2jr1; [�t]) that can be iterated to self-consistency.
The resulting self{consistent �R yields a correlation func-
tion �R(r2jr1; [�R]) that reproduces the same �R on the
left hand side of (5). The self-consistent �R(r; [�R]) and
�R(r2jr1; [�R]) o�er approximations to the same functions
in the full 
uid.
Note that the approximation (4) is used only under the

integral sign in Eq. (5). Any errors in (4) are important in
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determining r�R(r1) from (5) only where the attractive
forces are non-zero. Moreover, these vectorial quantities,
weighted by the structure, are averaged over all space.
Thus in many cases the main features of r�R(r1) are
apparent from (5) using only crude approximations for
�R(r2jr1; [�R]), and we expect the iteration process to
converge rapidly.

C. Results for 
uids near walls

This was the case in the initial application [3] to 
uids
near repulsive walls studied by WSB, where a \drying
region" of lower density near the wall can occur. To es-
tablish the accuracy of the basic equation (5) indepen-
dent of any additional approximations made in determin-
ing �R(r2jr1; [�R]), they carried out MD simulations of
the structure of the reference and the full LJ 
uid next
to a \hard" wall [modeled by the repulsive part of the
LJ potential u0(z)] for a few thermodynamic states of
varying density along the critical isotherm. The e�ec-
tive wall potential �R(z) in the reference 
uid was com-
puted self-consistently from (5) using exact (MD) val-
ues for �R(r2jr1; [�R]). Only two or three iterations were
needed to achieve a self-consistent solution even starting
from the \bare" u0(z). Approximate values of �R(z) that
were calculated by using much simpler estimates for the
conditional density, including even a step function pro-
�le [10], were remarkably close to the fully self-consistent
value.
Eq. (5) generates a soft and smooth repulsive force

�r�R(z) that tends to push particles away from the hard
wall, opposing the natural tendency of repulsive particles
to produce partially ordered layers with a density maxi-
mum near the wall. This is the origin of the drying e�ect
in this mean �eld approach. Sullivan and coworkers [7]
have shown that standard integral equation methods can-
not accurately describe these drying states. In contrast,
the WSB method correctly reproduced the pronounced
change in behavior in �(z) from signi�cant layering re-
maining near the wall at high bulk density to the for-
mation of a relatively structureless pro�le with a density
maximum well away from the wall at lower bulk density.
In general they found good qualitative agreement with
simulations both for �(z) and �(r2jr1; [�R]), and at high
density nearly quantitative agreement.
In the WSB method, information about the structural

e�ects of attractive intermolecular forces is encoded into
an e�ective force �eld -r�R(r) that in many cases is easy
to approximate and to understand physically. The WSB
method logically separates the self{consistent calculation
of the inhomogeneous force -r�R(r), which from (5) is
often rather insensitive to errors in �R(r2jr1; [�R]), from
the determination of the structure of the reference 
uid
itself in the presence of a given external �eld [11]. The
latter becomes an appropriate focus for future research.

This indirect treatment of the e�ects of attractive in-
termolecular interactions through the use of an e�ec-
tive single particle potential is characteristic of a mean
�eld approximation. Here we have incorporated mean
�eld ideas into a formalism where forces appear natu-
rally. This has allowed us to take the next step beyond
Widom's profound insight that r�R(r) vanishes by sym-
metry for uniform systems with �=0 [1]. We can achieve
the computational and conceptual simpli�cations of a
model with purely repulsive intermolecular forces while
still taking into account the averaged e�ects of the at-
tractive forces in a physically sensible way.

IV. UNIFORM FLUID REVISITED

A. Wall particle picture

Using this perspective, we now return to the problem of
determining the e�ects of attractive forces on the struc-
ture of uniform 
uids. If we simply set the external �eld
� = 0 in Eq. (5), then r�R(r) vanishes by symmetry,
and we revert to the original Widom-WCA approach.
However, we can obtain nontrivial results from Eq. (5)
through the use of the exact relation [12] between pair
correlations in a uniform 
uid and the singlet distribu-
tion function in a nonuniform 
uid in the external �eld
�LJ(r1) � w(r10) corresponding to a LJ-particle �xed at
the origin r0:

�g(r10) = �(r1jr0; [� = 0]) = �(r1; [�LJ]) : (6)

In the presence of this external �eld, the mean force at
r1 no longer vanishes by symmetry in the full 
uid and
Eq. (5) will yield a nonzero �R(r1):
We can think of this �eld as arising from a special ref-

erence particle �xed at the origin which interacts with
all the other particles through an e�ective pair poten-
tial wR(r10) � �R(r1); all other particles in the WSB
reference system interact with each other through the re-
pulsive pair potential u0(rij). In the example studied by
WSB of a 
uid next to a wall, the wall interacted with
the reference particles through an e�ective �eld �R(z); in
the present uniform 
uid application, we can imagine the
wall shrinking down to the special \wall particle" �xed
at the origin.
It is convenient in what follows to de�ne the ana-

log of u1(r10) for the potential of the wall particle,
u1R(r10) � wR(r10) � u0(r10); note that u1R in general
may have both attractive and repulsive regions. The orig-
inal WCA reference system corresponds to the particular
choice of wR(r10) � u0(r10) or u1R(r) = 0 for the wall
particle pair potential. The extra 
exibility in the WSB
method arising from the self-consistent choice of the po-
tential wR(r10) allows it to take account of some e�ects
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of the attractive forces on the structure. See Fig. 1 for a
pictorial representation of this idea.
This application of the inhomogeneous force equation

to a uniform 
uid provides a stringent test of its accuracy.
Unlike the previous examples studied by WSB where the
qualitative form of �R(z) was easy to guess, it was not
obvious (to us at least) what the proper form of wR(r10)
should be, at least at high density where the di�erences
in g(r) and g0(r) are rather small and subtle. Never-
theless, given its sound physical foundations, we would
expect Eq. (5) to give improved results over a wide range
of density.
Indeed, while the direct structural approximation in

Eq. (4) should be most accurate at high density, its use in
Eq. (5) can yield accurate predictions for �R even at much
lower densities. It is clear that in the extreme low density
limit � ! 0; the r.h.s. of Eq. (5) vanishes. Thus in this
limit it predicts wR(r10) = w(r10) or u1R(r10) = u1(r10);
which gives the exact low density limit for the correlation
function gR(r) = exp(�w(r)=kBT ) = g(r): This stands in
marked contrast to the poor results of the WCA approx-
imation g0(r) � g(r) in this limit. (However, as we will
see below, the next order correction in the density from
Eq. (5) is incorrect, and overall the theory is better at
higher density.)
We emphasize that we are not proposing to apply

Eq. (5) to uniform 
uids in order to arrive at a simpler or
computationally more e�cient method than the success-
ful integral equation approaches. Rather we view the uni-
form 
uid as an important testing ground for the physical
ideas that lead to Eq. (5); this equation has proved ac-
curate in other applications where the integral equations
have failed.
We can also use the uniform 
uid to test various sim-

pli�cations of the basic equation (5). It is quite di�cult
to accurately determine the full conditional singlet den-
sity �R(r2jr1; [�R]) appearing in Eq. (5), but in the ap-
plications studied by WSB, many basic features of the
e�ective �eld �R(r) could be found using relatively crude
approximations to this function. If this remains true in
the more subtle application to the uniform 
uid, this sug-
gests we may be able to simplify the theory with little
loss of accuracy. Moreover, this approach could lead to
a better physical understanding of the existing integral
equation closures and could suggest new ones.

B. Simpli�ed mean �eld equation

To that end, we also examine for the uniform 
uid case
the much simpler equation that results when the condi-
tional density �R(r2jr1; [wR]) is replaced by the ordinary
singlet density �R(r2; [wR]) on the r.h.s. of Eq. (5). This
approximation is much less drastic than one might at
�rst suppose, since the main di�erences in the two func-
tions occur when r2 is close to r1; but then for small

r12 < r0 = 21=6�, the multiplicative factor r1u1(r12)
vanishes identically. If this approximation is made, then
the gradient r1 can be taken outside the integral in
Eq. (5) and the equation can be integrated. If we choose
the constant of integration so that wR(r10) vanishes far
from the origin, then the simpli�ed equation can be writ-
ten in the following suggestive mean �eld [13] form:

u1R(r10) = u1(r10) + �

Z
dr2 [gR(r20)� 1]u1(r12) ; (7)

where

gR(r20) = �(r2; [wR])=� (8)

is the radial distribution function in the nonuniform ref-
erence 
uid with respect to the wall particle �xed at the
origin. Note that Eq. (7), like Eq. (5), yields exact re-
sults for u1R as �! 0: Although we will not pursue this
further herein, Eq. (7) can be solved by standard integral
equation methods and can be used to derive new closures
[14]. In any case, it is clear that Eq. (7) is signi�cantly
easier to deal with than Eq. (5) and we expect it to play
an important role in future developments of the theory.

C. Method of solution

In order to test the accuracy of the basic equations (5)
and (7) without any further approximations, we carried
out MD simulations for the three model systems shown
in Fig.1: the full LJ system, the original WCA repulsive
force system, and the inhomogeneous reference system.
To determine the e�ective potential in the latter case,
we solved Eqs. (5) and (7) by iteration using the MD
results. In the following all results will be given in re-
duced LJ-units, i.e., the unit of energy is �, the unit of
length is � and the unit of time is (m�2=�)1=2: In or-
der to cover a broad range of the phase diagram, sev-
eral states along the critical isotherm with T=1:35 and
�=0:78 = 0:54 = 0:45 = 0:1 as well as a state near the triple
point with T=0:88 and �=0:85 were investigated.

D. Simulation Details

We performed molecular dynamics (MD) simulations
in the (NVT)-ensemble using the velocity form of the
Verlet algorithm with a time step of �t=0:001. Constant
temperature was maintained by choosing new velocities
for all particles every 150 MD-steps with the probability
of the corresponding Boltzmann distribution. The LJ
potential was cut o� at r=2:5� and shifted in the usual
manner. We used N=3000 for the high density states
with T=1:35, �=0:78 and T=0:88, �=0:85 and N=450
for all other simulations. The absence of �nite size e�ects
was veri�ed. To measure �(r2; [wR]) we �rst equilibrated
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for at least 5 � 105 MD-steps and calculates �(r2; [wR]) in
the following 3 � 106 and in the longest runs 5:5 � 107 MD-
steps. In the cases of the inhomogeneous reference system
we iterate until we see a convergence in �(r2; [wR]).

V. RESULTS

The �gures 2-4 show the simulation results for the
radial distribution function gR(r20) at the temperature
T=1:35 and the densities �=0:78 , �=0:45 and �=0:1 re-
spectively. For each density we compare the g(r20) of the
full LJ system (solid line, �lled circles), the homogeneous
WCA repulsive system (dotted line, �lled squares) and
the inhomogeneous reference system (WSB approxima-
tion) as determined using both Eq. (5) (dashed line, open
circles) and Eq. (7) (long dashed line, open diamonds).
At the highest density (�=0:78) all curves are very

similar (Fig.2a) and even the enlargement of the �rst
peak (Fig.2b) shows only small di�erences. We also �nd
that there is very little di�erence in the results from the
full and the simpli�ed WSB equations. Similar results
were found near the triple point (T=0:88 , �=0:85). For
these high density states, the original WCA approxima-
tion, i.e., the homogeneous repulsive system, is a rather
good approximation to the full LJ system, as suggested
by Widom's cancellation argument.
However, as Figs.2b) shows, even these small di�er-

ences between the full and the repulsive force system can
be improved by using the WSB approximations. The
�rst term of Eq. (5) corrects the force of the wall par-
ticle on its �rst and second neighbors. Instead of us-
ing rwR(r1) = r�R(r1) = ru0(r1) as in the homoge-
neous repulsive system, the WSB approximations self-
consistently take account of attractive forces. Thus they
use to lowest order in �, rwR(r1) � rw(r1). As a conse-
quence, particles with separations r1>r0 are pulled into
the �rst neighbor peak of the wall particle at r0: There-
fore the �rst minimum of the WSB approximations is
lower than the �rst minimum of the repulsive system, and
the right wing of the �rst peak is shifted to the right, in
agreement with the full LJ system (Fig.2b). Thus, while
small di�erences remain, the use of the inhomogeneous
reference system corrects the main qualitative defects in
the WCA approximation. This is strong evidence that
the underlying physical picture is valid.
Even though the WCA approximation described in

Sec. II B gives a fairly good description at high densities,
it breaks down noticeably at T=1:35 and �=0:54 and
�=0:45 (Fig.3). Both peak positions and peak heights are
clearly di�erent for the full and the repulsive force sys-
tem. On the other hand, both WSB approximations de-
scribe the full LJ system very well. As before, at � = 0:45
both the right wing of the �rst peak and even the peak
height are corrected by choosing rwR instead of ru0.
Again we �nd that the simpli�ed Eq. (7) gives as good

results as the full Eq. (5). Thus these equations are ca-
pable of describing the much more signi�cant e�ects of
attractive forces on the structure seen at moderate den-
sities. Moreover, as pointed out earlier, both equations
are exact in the extreme low density limit as �! 0:
However, at slightly higher, but still very low densi-

ties, noticeable errors in the WSB approximations can
be seen. Thus for �=0:1 (Fig.4), the �rst peak height
is overestimated and the right wing shifted too far to
the right. (Of course the results are still much better
than the WCA approximation.) The small second peak
in the LJ g(r20) is completely missing. It is still the case
that Eq. (7) gives essentially the same results as the full
Eq. (5). The reason for this is again the strong in
uence
of the force of the wall particle on the particles of the
�rst and second neighbor shell. It is clear that if we re-
quire a general theory that is accurate in this low density
regime, we must reexamine the use of the basic approx-
imation (4) in Eq. (2). Work along these lines will be
reported elsewhere [14].

VI. SUMMARY

In this paper we have examined theories building on
Widom's key idea of the cancellation of attractive forces
in dense liquids. This idea was embedded in the WCA
theory of uniform liquids. A more general treatment of
the roles of attractive and repulsive forces in nonuniform
liquids led WSB to the basic inhomogeneous force equa-
tion (5). After reviewing these ideas, we tested their
accuracy on the uniform 
uid by relating its correlation
function to that of a nonuniform 
uid with a particle
�xed at the origin. Via simulations we have tested quan-
titatively at di�erent points of the phase diagram the
WCA and the WSB approaches, using both Eq. (5) and
a simpli�ed version, Eq. (7).
The WCA approximation g0(r) � g(r) is reasonably

accurate only for very dense liquids; the WSB method
considerably improves these high density results. More-
over, it remains accurate for such moderate density states
as �=0:45, T=1:35; and is exact in the low density limit
� ! 0: However, noticeable errors are seen at slightly
higher density states such as �=0:1, T=1:35. A poten-
tially very useful �nding is that the much simpler e�ec-
tive �eld equation (7) gave nearly as accurate results as
did the use of (5). Since this was also the case in the
examples studied by WSB of a 
uid near a hard wall and
for the liquid-vapor interface [3], we believe it may prove
useful in a variety of other applications.
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Figure Captions

Fig.1 This �gure summarizes the three models used.
a) corresponds to the full system with interac-
tions of Eq. (1), b) corresponds to the homoge-
neous repulsive WCA system and c) corresponds to
the inhomogeneous reference system. In the orig-
inal Widom-WCA interpretation the circled parti-
cle represents a typical particle in the uniform 
uid;
the force cancellation in a) is mainly between oppo-
sitely situated neighbors. In the WSB interpreta-

tion the circled particles in a), b) and c) represent
special particles �xed at the origin. The pair po-
tential of the �xed particle in c) is wR.

Fig.2 g(r20) at T=1:35 and �=0:78. Shown are the sim-
ulation results of the homogeneous full LJ system
(solid line in a), �lled circles in b)), of the homo-
geneous repulsive system (dotted line in a), �lled
squares in b)) and of the inhomogeneous reference
system with rwR determined iteratively via simu-
lations with Eq. (5) (dashed line in a), open circles
in b)) and with Eq. (7) (long-dashed line in a), open
diamonds in b)). Fig. b) is an enlargement of the
�rst peak.

Fig.3 g(r20) at T=1:35 and �=0:45. Symbols are as in
Fig. 1. Fig. b) is an enlargement of the �rst peak.

Fig.4 g(r20) at T=1:35 and �=0:1. Symbols are as in
Fig. 1. Fig. b) and c) are enlargements of the �rst
and second peaks respectively.
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