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Self-Consistent Treatment of Repulsive and Attractive Forces in Nonuniform Liquids
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Structural and thermodynamic properties of a nonuniform liquid are related to those of a reference
fluid with purely repulsive intermolecular forces in an external field. A new equation for that field
derived from the Yvon-Born-Green hierarchy permits a self-consistent description of correlations
induced by the exact repulsive forces and a mean field treatment of the attractive forces. Predictions
of the theory for drying effects at repulsive walls and for the liquid-vapor interface are compared to
molecular dynamics simulations.
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PACS numbers: 61.20.Gy, 68.10.Cr, 68.45.Gd

The dominant source of correlations in a dense u
form nonassociated liquid arises from the short-rang
harshly repulsive intermolecular forces [1,2]. As argu
by Widom [3], in the isotropic environment of a dens
liquid the vector sum of the attractive forces on a giv
particle essentiallycancelsin most typical configurations
This suggests a mean field picture where this cancella
is exact and correlations are induced solely by the rep
sive intermolecular forces [3,4]. Indeed, repulsive for
models have provided an accurate description of a g
many properties of both simple and complex fluids [5].

However, some qualitatively new ideas are needed
understand properties of nonuniform liquids. Attracti
forces must be treated more carefully, since their av
aged effects clearly do not cancel by symmetry. The m
difficult cases arise whenboth attractive and repulsive
forces have important effects on the structure of a nonu
form fluid and over comparable length scales of order
molecular size. Examples discussed below include p
tial wetting and drying effects at walls, and the interfa
between a dense liquid and its vapor [6]. The basic pr
lem is to take account of the new and substantial effe
of attractive forces while still maintaining an accurate d
scription of repulsive force correlations.

We introduce here a new theory of nonuniform fluid
based on an analysis of the balance of forces [7] as
pressed by the first equation of the exact Yvon-Born-Gre
(YBG) hierarchy [1]. To motivate the theory, first consid
a dense uniform liquid. Highly nontrivial correlations o
the molecular length scale arise in the dense but dis
dered environment of a liquid simply from the requireme
that neighboring repulsive molecular cores cannot over
To describe these “excluded volume” correlations qua
titatively it is useful to consider areference fluidmade
up of particles with purely repulsive intermolecular forc
identical to the repulsive forces in the real fluid of intere
andconstrained to have the same (number) densityr [4].
This constraint ensures that typical local environments
the two fluids are similar: both fluids then have identical r
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pulsive cores at the same average separation determined
the fixed density. Excluded volume correlations in the ref-
erence fluid manifest themselves in the oscillatory behavio
of theconditional singlet densityr0sr2jr1d—the density at
r2 given that there is a particle fixed atr1. If correlations
in the full fluid are dominated by excluded volume effects
as well, we then expectrsr2jr1d ; rgsr12d ø r0sr2jr1d.
The full fluid’s radial distribution functiongsrd is indeed
very similar to the reference system’sg0srd; this is the fun-
damental reason for the accuracy of modern perturbatio
theories of liquids [1,4].

We now extend these ideas about excluded volume
correlations to dense nonuniform liquids. We discuss
here the simple case of pairwise additive intermolecular
forces. Particles in the total system of interest interact
with a known external fieldfsrd, incorporating confining
walls, etc., if present, and through a pair potentialwsrijd ;
u0srijd 1 usrijd, divided as usual so that all the repulsive
intermolecular forces arise fromu0 [4]. The reference
system has only the repulsive pair interactionu0srijd and
a different external fieldf0srd, to be determined later.
Consider now both for the total system (shown here), and
for the reference system, the first equation of the exac
YBG hierarchy [1]. This can be written in the form
kBT=1 lnrsr1; ffgd ­ 2 =1fsr1d

2
Z

dr2 rsr2jr1; ffgd=1wsr12d .

(1)
Here rsr2jr1; ffgd ; rs2dsr1, r2; ffgdyrsr1; ffgd is the
conditional singlet density. The notationffg indicates
that the correlation functions are functionals of the ex-
ternal field; for a givenf all correlation functions are in
principle determined. The right-hand side (r.h.s.) gives
the ensemble-averagedmean forceon a particle fixed
at r1; this must be nonzero for a gradient in the density
rsr1; ffgd to exist. Suppose we now choosef0srd so that
the local (singlet) densities [8] at every pointr in the two
fluids are equal:r0sr;ff0gd ­ rsr;ffgd, thus implying
© 1995 The American Physical Society
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equality of the mean force at eachr. It is known that
such a field always exists [9]. Assuming again that t
condition produces similar local environments for t
repulsive cores in the two fluids, and that correlations
dominated by excluded volume effects, we then exp
the conditional densities to be very similar:

rsr2jr1; ffgd ø r0sr2jr1; ff0gd . (2)

Equation (2) is our basic structural hypothesis and r
resents the only approximation in the theory. As is
case for uniform fluids, it should be most accurate at h
density.

To get an explicit equation to determinef0, we use
Eq. (2) in (1), and subtract the exact YBG equation
for the reference system. This yields our basic result,

=1ffsr1d 2 f0sr1dg ­ 2
Z

dr2 r0sr2jr1; ff0gd=1usr12d .

(3)

Some important benefits of the subtraction are that rap
varying terms involving the repulsive pair interactio
and the singlet density cancel by choice off0, leaving
an average only over the gradient of the slowly vary
attractive potentialusr12d. The resulting Eq. (3) has a
obvious interpretation in terms of mean field ideas,
directly involves forces; it can appropriately be calle
the inhomogeneous forceequation. In essence, Eq. (
equates the net force generated by the external field
from attractive pair interactions to the inhomogeneo
force 2=f0 in the reference system. This force canc
by symmetry in a uniform system, and the theory redu
to the mean field picture of Widom [3].

Perhaps the simplest way to solve (3) is by iterati
For any given “trial field” ft , the associated correla
tion function rtsr2jr1; fftgd is completely specified an
can in principle be calculated accurately. Equation
then gives another nontrivial relation betweenft and
rtsr2jr1; fftgd that can be iterated to self-consistenc
The resulting self-consistentf0 yields a correlation func
tion r0sr2jr1; ff0gd that reproduces thesamef0 on the
left-hand side (l.h.s.) of (3). The self-consistentr0srd and
r0sr2jr1d offer approximations to the same functions
the full fluid; their accuracy can be checked against co
puter simulation data. Note that any errors in (2) are
portant in determining=f0srd from (3) only where the
attractive forces are nonzero. Moreover, these vecto
quantities, weighted by the structure, are averaged
all space. Thus the main features of=f0srd are apparen
from (3) using only crude approximations forr0sr2jr1d,
and we expect the iteration process to converge rap
This also suggests that simplified treatments of the co
lation functionr0sr2jr1d in (3) may still yield rather accu
rate approximations to=f0srd. This will be examined in
future work.

The above described the lowest order structural
plications of the theory. We can also derive the as
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ciated mean field expression for thefree energy, using
a coupling parameter method. Consider a partially co
pled system with pair potentialwlsrd ; u0srd 1 lusrd,
0 # l # 1, and single particle potentialflsrd chosen so
that rlsr; fflgd ­ rsr; ffgd for all l, wheref ­ fl­1.
Differentiating and then integrating the canonical parti
tion function with respect tol gives an exact expression
for the Helmholtz free energyA. Assuming as in (2) that
with this choice offl the pair correlation function is es-
sentially independent ofl then gives the final result,

A ­ A0 1
Z

drffsrd 2 f0srdgr0srd

1
1
2

Z
dr1 dr2 usr12drs2d

0 sr1, r2d . (4)

If properties of the inhomogeneous reference system c
be accurately determined, this relation could lead to mo
accurate estimates for thermodynamic properties th
would be found using (2) directly in the standard cor
relation function expressions. This approach also allow
direct contact with other free energy based methods i
cluding, in particular, density functional theory.

It is important to establish the accuracy of the basi
inhomogeneous force equation (3) independent of an
additional approximations made in determiningr0sr2jr1d.
To that end, we carried out molecular dynamics (MD
simulations [10] of the structure of the reference and th
full Lennard-Jones (LJ) fluids next to a “hard” planar
wall [modeled by the repulsive part of the LJ potentia
u0szd] for thermodynamic states of varying bulk density
along theT ­ 1.35 isotherm. This is a typical example
where a careful treatment of the effects of both attractiv
and repulsive forces is required. Indeed, the attractiv
interparticle interactions combined with the repulsive
wall-particle interactions can stabilize a lower densit
drying regionnear the wall even under conditions where
heterophase fluctuations in the bulk liquid are relativel
small [6]. Sullivan and co-workers [8] have shown
that standard integral equation methods cannot accurat
describe these drying states. Density functional metho
have had more success, but a self-consistent treatm
based on (3) has never been carried out [11].

The effective wall potentialf0szd in the reference
fluid was computed self-consistently from (3) usingexact
(MD) values forr0sr2jr1d. Only two or three iterations
were needed to achieve a self-consistent solution ev
starting from the “bare”u0szd. As shown in Fig. 1, Eq. (3)
generates asoft and smooth repulsive force2=f0szd that
tends to push particles away from the hard wall, opposin
the natural tendency of repulsive particles to produc
partially ordered layers with a density maximum near th
wall. This produces the drying effect in our reference
system model. As Eq. (3) makes clear, the physical orig
of this effective repulsive force arises from the unbalance
attractive pair forces in the full nonuniform liquid near the
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FIG. 1. The (dimensionless) self-consistent forceFszd given
by the r.h.s. of Eq. (3) near a repulsive planar wall with b
potential u0szd is shown for two states along theT ­ 1.35
isotherm: (a) bulk density 0.78, (b) bulk density 0.54. Al
shown in (c) is the forceFbareszd ­ 2=u0szd from the bare
wall. The total force 2=f0szd is given by Fszd 1 Fbareszd.
The units of length and energy are the usuals and´ of the LJ
potential.

wall. Figure 2 shows that the method correctly reprodu
the pronounced change in behavior inrszd from significant
layering remaining near the wall at high bulk density
the formation of a relatively structureless profile with
density maximum well away from the wall at lower bu
density. In general, there is good qualitative agreem
with simulations both forrszd and rsr2jr1d, and at high
density nearly quantitative agreement.

One of the most theoretically interesting applications
these ideas is to thefree liquid-vapor interface withf ­
0. In this case the approximation (2) is fundamentally

FIG. 2. Density profilesrszd for the full LJ fluid (solid line)
and the self-consistent reference fluid (dashed line) for the s
two states along theT ­ 1.35 isotherm as in Fig. 1: (a) bulk
density 0.78, (b) bulk density 0.54. The LJ fluid experien
the bare external force2=u0szd, while the reference fluid
experiences the external force2=f0szd shown in Fig. 1.
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error for an infinite system. Because of long wavelength
capillary wave fluctuations [12,13], there exist long-
ranged correlations along the interface inrsr2jr1d that are
impossible to reproduce in any repulsive fluid’sr0sr2jr1d.
In an infinite system these fluctuations also lead to a
washing out of the true density profilerszd. This basic
distinction between free interfaces and interfaces near
rigid walls cannot be captured in mean field theory, which
attempts to describe both situations in terms of some
effective fieldf0szd.

Nevertheless, self-consistent liquid-vapor solutions of
Eq. (3) exist, yielding a well-defined profiler0szd of fi-
nite width. This can legitimately be called anintrinsic
interface profile: a profile unbroadened by capillary wave
fluctuations [14]. We had argued earlier [13] that inter-
faces infinite systems, where significant capillary wave
fluctuations cannot occur, should be well described by
such a mean fieldr0szd. Figures 3 and 4 report the re-
sults of MD simulations [15] for free interfaces in the full
and reference LJ systems that suggest this is indeed the
case. For states away from the critical region, there is
good qualitative agreement between the full (finite sys-
tem)rszd produced by computer simulations and the self-
consistentr0szd. Both simulations and theory produce
smooth profiles with no indication of oscillatory behav-
ior even at the lowest (triple point) temperature. How-
ever, the self-consistent solution to (3) yields values for
the coexisting bulk vapor and liquid densities as well as
the shape of the profile between them, and differences can
be seen in the predicted bulk densities. The main errors
in these mean field predictions arise from the inaccuracy
of (2) in describing the relatively simple correlations seen

FIG. 3. Self-consistent force2=f0szd (solid line) and poten-
tial f0szd (dashed line) for the liquid-vapor interface atT ­ 0.6
andT ­ 1.0. Different simulation cell sizes in thez direction
of 60s at T ­ 0.6 and 90s at T ­ 1.0 were used, so the
curves at different temperatures are naturally displaced along
the z axis. For ease in viewing, the force has also been dis-
placed vertically by two units.
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FIG. 4. Density profilesrszd for the liquid-vapor interface for
the same two states as in Fig. 3. Circles denote the LJ fluid a
triangles the reference fluid. The two profiles are shown wi
the same location for the Gibbs dividing surface.

in thevaporphase [16]. In future work we plan to incor-
porate simple virial-like corrections to the theory at low
density that should improve these results.

The method introduced here logically separates t
self-consistent calculation of the inhomogeneous for
=f0srd, which from (3) is rather insensitive to errors in
r0sr2jr1d, from the determination of the structure of the
reference fluid itself in the presence of a given extern
field [17]. The latter becomes an appropriate focus f
future research. This indirect treatment of the effects
attractive forces allows us to focus on a simpler mod
with purely repulsive intermolecular forces. Theoretica
methods such as integral equation and density function
theories have proved most accurate in such applicatio
This approach ensures that the physically sensible resu
of mean field theory are reproduced while still allowing
for an accurate representation of the important exclud
volume correlations. We believe it will often prove more
successful than a direct attack using standard integ
equation closures or density functional methods th
explicitly incorporate the attractive interactions.

We are grateful to M. E. Fisher and F. Stillinger fo
helpful comments.
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