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Simultaneous Bunching and Debunching of Surface Steps: Theory and Relation to Experiments
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We study a model of two-dimensional step flow where the velocity of a step depends predominantly
on the width of the terrace remaining behind it. While the uniform step train is unstable towards step
bunching, the bunches themselves are unstable and tend to debunch. This leads to patterns where slow
moving fairly straight bunches coexist with fast, strongly bent single steps, in qualitative agreement
with experiments on electric current driven step motion on Si(111) surfaces. Analytical predictions of
the shape and velocity of the single steps agree very well with Monte Carlo simulations.

PACS numbers: 61.50.Cj, 68.55.Jk

Several experimental groups [1-4] have shown thahumberg, and y is directly related to the step stiffness
the motion of surface steps on Si(111) surfaces duringssociated with step bending [12].
evaporation by heating with direct electric currents de- A straightforward linear stability analysis of (1) around
pends crucially on the direction of the current relative tothe uniform step train configuration with terrace width
the step orientation. Current in one direction results inshows [7] that if
stable step flow, with the motion of more or less uni- . ,
form and straight steps. Current in the opposite direc- JEW) > fL(w), )

tion cguses.the steps to bunch togethe_r'and fofm compl%e uniform step train is unstable towards step bunching.
two-dimensional patterns. These exhibit very mterestlnq_'eref, are the derivatives of.. The asymmetry in the

dynamical properties, with the exchange of single S'[epli,ffective model may have several different microscopic

between bunches. The microscopic m_echanlsm respon hysical origins. One possibility, discussed by Schwoebel
ble for these phenomena is very complicated and not at a . . .

] . and Shipsey [13], arises from the presence of different
understood [5]; there are three temperature regimes where

the stable and unstable current directions change role§, < 9y barriers associated with the exchange of adatoms

Electromigration, which is the major cause for the dete_Between the step edge and the terraces in front or behind.

S : . ) Another possibility is an asymmetry in the diffusion of
rioration of semiconductor electronic devices, has bee datoms on terraces caused, e.g., by couplings to external
suggested [.1'5] asa candujate._ In this _work WE PropOSE e tric fields or elastic strain' fiéld’s.

a mesoscopic model [6] delmeatln_g crucial featgres of the_} To describe the long time behavior of an unstable sys-
phy3|cs on large sc_ales, anq achieve extraordinary quaI{—em of steps we have to take into account two impor-
tative agreement with experiment. We also make Ut nt physical effects that Eq. (1) does not treat. First,

g(agg/rei:mperﬁtdslcnons that can be directly tested with newWe prevent energetically costly step crossings or over-

A wide class of instabilities in step flow during both hangs by imposing a restriction of a minimal distance,

growth and evaporation can be understood in terms of DPmin, between steps. Some researchers [14] have sug-
simple model [7-9] of step flow: aested simply stopping steps when the minimal distance

, is achieved. However, this misses a second basic physi-
a;(,, = Fo(W,) + f-(W,_)) + 73 X2n . (1) cal effect: the contribution to the step velocity from ter-
! ay races other than the nearest-neighbor ones considered in
Here X,(y,t) is the position of thenth step at timer,  model (1). Consider for concreteness crystal growth (sim-
wherey is the orthogonal coordinate along the step edgeilar considerations apply to evaporation). When the steps
The step index increases in the direction of step motion. are far apart, each step edge traps adatoms efficiently and
W, = X,+1(0,t) — X, (y,t) is the width of the terrace in multistep jumps are suppressed [15]. However, when the
front of stepn. The first two terms [7] on the right-hand terrace widths approach the minimal distance, capture of
side of (1) express the dependence of the velocity of adatoms by steps in the bunch becomes less efficient be-
step on the widths of the terraces in front and behindcause this would make some terraces even narrower, lead-
it. They arise from an effective treatment of adatoming to an energetically unfavorable configuration. Thus,
attachment, detachment, and surface diffusion [10], andurface diffusion over the entire bunch becomes more
can be calculated explicitly using a microscopic theoryprobable. Within our step flow model, this is equivalent
such as the BCF theory [11]. The last term [9(d)] ofto consideringeffective multistep jumpsf adatoms, which

(1) accounts for transverse step fluctuationgyq? is the  permit continued evolution of the step bunching process.
relaxation time of fluctuations along the step edge of wave\ reasonable way to take this physics into account is to

3632 0031-900795/74(18)/3632(4)$06.00 © 1995 The American Physical Society



VOLUME 74, NUMBER 18 PHYSICAL REVIEW LETTERS 1 My 1995

modify Eq. (1) to the uniform step train is non-negative by convention.) If
e 92X, k+ > 0 as well [17], Eqg. (4) will hold for small enough
0 fo@ZD) + fzP) + Yoy ()  z® orlarge enouglv. We then expect to see the unique

) ) oo signature of the instability mechanism discussed in this
for W, > Dmin and 9X,,/ot = 0 otherwise. Z»" (Z;”) IS work: simultaneous bunching and debunching of steps.
the width of the first terrace in front of (behind) th¢h To test these ideas, we carried out Monte Carlo
step that is larger thaDyin. simulations of the following two-dimensional coarse-
~We now analyze the stability of the bunches. Wegrained model of step flow.M steps, each consisting
find, quite surprisingly, that under some conditions thegf . segments, reside on a square lattice with periodic
bunches areinstable towards debunchingConsider first boundary conditions in both directions. The position
the dynamics of a single bunch of straight steps of the yth segment of thenth step is denoted by
separated by the minimal distance. Denote the width oj(n(y)_ Distances are measured in units of the lattice
the wide terrace behind steipby Z” and the width of ~ gpacing and time in Monte Carlo cycles. Each Monte
the one in front of stepv by z\. Initially, only step  Carlo cycle consists of a “step flow” sweep followed
N can move. After it has moved a small distance, ithy a “line tension” sweep. In a step flow sweep, we

“sees” in (3) the narrow terrace directly behind it (which first calculate the maximal possible distance of motion
hardly contributes to its velocity) and the wide terrace infor each individual step segment in one unit of time:

front.(f)Therefore, the velocity of stelg is approximately Do) = k+ZSLf)(y,t) + k_Z®(y,1). To use this in our

f+@Z7). lattice model, we define an integer distanfg such
Once stepv has moved, stey — 1 can move forward; that I,(y) = [D,(y)] + 1 if a random numben < x <

its initial velocity from (3) is approximatelyf-(Z®)). | "ic smaller thanD (vy) — [D.(y)]. Otherwise,l,(y) =

However, after it moves slightly, its motion is controlled [D,(y)]. Here [D ]" s the iyﬁteger part ofp ’_ " Next

by the relatively narrow terraces directly behind and in, "\ \ove all the nstep segments taking into account the

e SO, SucCeSei minima distance resiricon by seting, . = 1 =
P y en X,(y, 1) + mMin[1,(y), W,,(y,7) = Din].

downd\_/vnhln t3he minimal dlstancg from step NO}NI’d The energetics of step bending is taken into account in
according to (3), stefy — 1 can again move more quickly o jine tension sweep. Here we choose a step segment

and the entire process repeats itself. In effect, each steff .--4om and attempt to move it forward or backward

moveslwnh \éelﬁc'tyf‘.(z(f)) frc])r an m;‘lr;]lteSImal time  \yith probability /2. If the move violates the minimal
interval 67, and then walits for the rest of the Steps to MoVeyigiance restriction, it is rejected. If the restriction is not

for a time intervalN — 2)8r. We therefore conclude that jq|ated, we reject the attempted move with probability
at least for a V.Vh'le’ steps..., N — 1 stay ('g one bunch 1 — exp(—BAE) if it raises the line tension energy by
that moves with an average velocify-(Z*)/(N — 1). an amountAE, and accept it otherwise. The line tension
Thus if energy ist = /2>, ,[X,(y + 1) — X,(y)]?, andg is an
f+ZD) > Fz®)/N - 1), (4)  inverse temperature parameter. In each sweep this process
stepN will move faster than thev — 1 steps behind it, is repeated/L times.
and will escapefrom the bunch. In this case the bunch We started the simulation witid = 30 uniformly
is unstable towards debunching, and releases a step thsgaced straight steps of length= 1000, and performed
moves into the terrace in front of it, until it reaches therepeated step flow and line tension sweeps. The initial
bunch ahead. This instability of the bunch leads to anerrace width wasv = 50. In Fig. 1 we show a typical
exchange of single stegsetween neighboring bunches. configuration after 160 000 cycles wiiBy = 0.2, k; =
Although this argument for the debunching instability 0.001, and k- = 0.004. We find fairly straight bunches
used a specific initial configuration of straight steps,(the thick lines) coexisting with single strongly bent steps
we expect it to hold in many experimentally relevantthat reside on the terraces. These patterns differ dra-
situations where steps can bend. The bunches shouldatically from the ones we found for the Frank insta-
then remain straighter than the single steps moving on thiility [9(d)]. We followed the dynamics of the system
terraces, since the effective stiffness of a bunch of steps &nd found that, indeed, the bunches move slowly and ex-
much greater than that of a single step. change fast moving single steps between them. We also
In the limit relevant to the sublimation experiments note that the single steps often arrange themselves into
of Si(111) in the presence of an electric current, thesurprisingly uniformcrossing arrays where successive
diffusion length (the average distance an adatom diffusesteps separate from a bunch into the terrace in front of
before it desorbs) is large compared to terrace width#, forming large angles with respect to the bunch in the
[1,16]. Thereforef. (W) = k+W, and f_(W) = k-W.  middle of the terrace, and then join the upper bunch. The
The uniform step train is unstable towards step bunchinglistanced between steps in a crossing array, in the direc-
when k_ > ky, with k- > 0. (The net step velocity of tion parallel to the bunch behind, and their velocities (in
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ity [18]. This selection mechanism, although not justifi-
able rigorously, works well in many cases [9,18]. Mar-
ginal stability predicts that the selected satisfies the
equationw”/q" = dw"/dq". This leads to the following
relation betweery andA:

k+G(gA) — k-G(—qA) + yq* = 0, 7

whereG(x) = (x — 1)expix) + 1 and we assumeg’ =
0. Further analysis [19] shows that a step pairing mode
causes the crossing arrays to bestable for ¢gA <
—— — S (qA),, = 1/2In(k_/k4), the value ofgA at the maxi-
0 500  (y) 1000 1500 mum of the q(A)_ curve given byf?). Equation (71 is
physically meaningful forA = A,, = 2A., where A, =
FIG. 1. A snapshot of a system of 30 steps after 160006/2y/(k- — k. ); it predicts thaly goes to zero for larga
Monte Carlo sweeps of the kinetic model. The simulationas A~!. We can also obtain the behavior Bffrom the
parameters for all data reported @8 = 0.2, k+ = 0.001, and  g|ation
k- = 0.004. Steps move from left to right and are marked by 3
solid lines. Heavy solid lines correspond to step bunches. V= Alke?™ + ke %) + 2vq. (8)
For large values oA, V = aA + b/A, wherea andb are
known functions of., k_, andy.
the same direction) are constant within an array (to a good To compare with simulations we measure@ndV for
approximation), but vary from array to array. several crossing arrays such as the ones in Fig. 1. These
We now calculate analytically the shape and velocityresults are shown in Fig. 2 as full circles. Correlation
of the steps in the crossing arrays as a functiondof functions associated with step fluctuations [12] suggest
Since these steps escape from the bunches, we start #ye valuey = 0.0665. We then solved Eq. (7) numeri-
linearizing (1) around an infinite uniform bunch of straight cally, and found the functiog(A). Using this in Eq. (8)
steps, separated by narrow terraces of witith with  determines/(A). This result is plotted as a solid line in
d > W =~ Dmin, and tilted with an angler with respect Fig. 2. The agreement between the simulations and the
to they axis. The infinite uniform bunch configuration is theory for our model is evidently very good.
X0 =nW + ytana + (k+ + k_)Wr. But is the model itself physically realistic? Both our ef-
To describe properties of the crossing arrays, we novective treatment of adatom diffusion through the use of
look for particular solutions with the property that the velocity functionsf-(Z(y)) and the linearization of the cur-
distanced between two neighboring steps in the directionvature in the line tension term in Eq. (4) are quantitatively
parallel to the bunch isndependentof the step index. accurate only for relatively straight steps or bunches ori-
A family of such solutions fosX, = X, — X° that also  ented close to the axis. Itis quite appropriate to question
satisfies the boundary conditiédX,(y — «©) = 0 is the validity of our model’s description of the sharply an-
gled steps in the middle of the terraces. We now argue that

8X,(y,1) = el ) our model is indeed relevant for experimental systems.
where bothg and w are, in principle, complex numbers,
andg¢” > 0. Here A = dcosy and superscripts and i 1o T T T T T )
stand for the real and imaginary parts, respectively. A I ]
large value ofg” corresponds to a sharp angle that the 0.8 y
steps in the crossing array form with respect totheis. i
The linear dispersion relation corresponding to solutions 0.6 ]
(5) is v/V,
= ki@ — D+ k(1 —e )+ yg  (6) 041 ]

We anticipate that the value @f yielding the maximal 0.2} .
growth rateo” will dominate in actual patterns. In our !
case it is they’ = 0 mode, where botlv andg are real. 0.0Z .

It is difficult to measureg” accurately in the simula- 0 2 4 A/A, 6 8 10

tions, but it is quite easy to measuve= w’/q". V is
the step velocity parallel to the bunch projected onhe FIG. 2. The velocityV of crossing arrays in the direction
axis. We find, within the numerical accuracy of our simu-Parallel to the bunch behind, projected on thexis, in units
lations, thatv takes a well-definedyniquevalue for each of the initial step velocityv, = (k, + k)W, as a function of

’ . - ' A/A, (see text for definition). The solid line is the theoretical
value of A. In order to explain the selection of definite prediction based on the marginal stability ansatz. The full

g"(A) andV(A), we invoke the ansatz oharginal stabil-  circles are results from simulations of the kinetic model.
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As discussed above, the essential physics of both thg2] See, for example, Y. Homma, R.J. McClelland, and
bunching and debunching instabilities is seen in the one-  H. Hibino, Jpn. J. Appl. Phys29, L2254 (1990); H.
dimensional limit. Thus we do not require the delicate ~ Yasunaga and A. Natori, Surf. Sci. Refb, 205 (1992),
and inherently two-dimensional coupling of the diffusion ~ @nd references therein; M.J. Ramstad, R.J. Birgeneau,
field and the line tension terms needed for Mullins- Eu'm;:‘;rsn L%ttY.z4N%kgsB('1%§ g’)\{ef’va”fatys}fév\(%”g’
Sekerka type instabilities. Since our model is accurate L e P L
near t_he relatively straight' step bunghe_s, it should properly[S] ,\ijlrassllﬂlzlii\ll i?.d ﬁblr‘ﬁn'i‘;?e\\(/j Slgl:g oifgzjﬁ dggg_(lfgsi'k o,
describe the way a crossing array initially separates from Ultramicroscopy42—44 940 (1992).

a bunch, and the way it joins another bunch. Note thatthej) A v. Latyshev, A.B. Krasilnikov, and A.L. Aseev,
marginal stability ansatz we have used to derive the basic ~ Ujtramicroscopy48, 377 (1993).

relations (6) and (7) relies only onlmearizationaround  [5] One approach, which makes some predictions disagreeing
a solution of straight steps. with experiment, is found in S. Stoyanov, Jpn. J. Appl.

Moreover, while our description of the steeply angled Phys. 30, 1 (1991); S. Stoyanov, H. Nakahara, and M.
steps in the middle of a terrace is certainly inadequate, it  Ichikawa, ibid. 33, 254 (1994).
does keep those steps relatively straight. Using the full[6] For a different approach, see J. Krug and H.T. Dobbs,

curvature in the line tension term should not change thism Eh)ése-nﬁg\r/ﬁ;ztrtmza(sl?—|47G(illr?12f).'mrystal Growth: An In
behavior significantly. We expect that any reasonable ap- troduction, edited by P. Hartman (North-Holland, Amster-

proximation scheme which matches the nontrivial behav- dam, 1973), p. 263.

ior of the CrO_SSing arrays near the bunc_h behi”d ,to, that[8] F.C. Frank, inGrowth and Perfection of Crystalgdited

of the bunch in front would produce qualitatively similar by R. Doremus, B. Roberts, and D. Turnbull (Wiley,

behavior between the bunches. New York, 1958), p. 411; see also N. Cabrera and D.A.
Thus we expect our results to be directly relevant Vermilyea, ibid., p. 393; J.P. v. d. Eerden and H. Muller-

to experiments. Indeed, there is a striking resemblance  Krumbhaar, Phys. Rev. Leth7, 2431 (1986).

between the patterns obtained in the experiments and th€f] (@) D. Kandel and J.D. Weeks, Phys. Rev. Leib,

ones we get in our simulations. Both the thick fairly 3758 (1992); (b) D. Kandel and J.D. Weeks, Physica

straight bunches and the crossing arrays predicted by (Amsterdam)66D, 78 (1993); (c) D. Kandel and J.D.

our model (see Fig. 1) are observed in experiments (see Weeks, Phys. Rev. BS, 5554 (1994); (d) D. Kandel and

Fig. 1 of [3] and Fig. 1(c) of [4]). Moreover, Latyshev, J.D. Weeks, Phys. Rev. Leit2, 1678 (1994).

Krasilnikov, and Aseev [4] observed the escape of Sihglélo] This effective treatment of th(_e dlffu_s_l(_)n of atoms on the

. . surface excludes diffusional instabilities of the Mullins-
steps from bunches as described above. This strongly

. . : Sekerka type [see G. S. Bales and A. Zangwill, Phys. Rev.
suggests that an asymmetry of the type discussed in this g 41 5500 (1990)].

work, coupled with effective multistep jumps of adatoms,[11] w. K. Burton, N. Cabrera, and F.C. Frank, Philos. Trans.
is responsible for the interesting step behavior observed R. Soc. London A243 299 (1951).

in the experiments. It should be possible to measure botf12] N.C. Bartelt, J.L. Goldberg, T.L. Einstein, E.D.
q(A) andV(A) from the experimental data. One can then Williams, J.C. Heyraud, and J.J. Métois, Phys. Rev. B
evaluate the effective parameters of the model, k-, 48, 15453 (1993).

andy, and check the consistency of the predictions in (7)13] R.L. Schwoebel and E. J. Shipsey, J. Appl. PI8/%.3682
and (8). To the best of our knowledge, this is the first _ (1966); R.L. Schwoebelbid., 40, 614 (1969).

proposal for a direct experimental determination of thesél™ See: for example, . Saito and M. Uwaha, Phys. Rev. B

important parameters from step patterns. We hope thi 49, 10677 (1994).
p P PP ) P 5] Still in some such cases, multistep jumps are thought to

work will spur new experiments as well as more detaile be important. See S.A. Chalmers, J.Y. Tsao, and A.C.
theories that will uncover the microscopic origin of the Gossard, J. Appl. Phy33, 7351 (1gé3), '
basic asymmetry. [16] Y.-N. Yang (private communication).
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