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We develop a uni�ed and generally applicable theory of solvation of small and large apolar species

in water. In the former, hydrogen bonding of water is hindered yet persists near the solutes. In the

latter, hydrogen bonding is depleted, leading to drying of extended apolar surfaces, large forces of

attraction, and hysteresis on mesoscopic length scales. The cross over occurs on nanometer length

scales, when the local concentration of apolar units is su�ciently high, or when an apolar surface is

su�ciently large. Our theory for the cross over has implications concerning the stability of protein

assemblies and protein folding.

Introduction

It has long been accepted that hydrophobic interac-

tions | the e�ective attractions between apolar groups

in water | play a central role in the stability of meso-

scopic assembly and biological structure in aqueous en-

vironments [1,2]. Yet, a quantitative understanding of

this role has been elusive. One obstacle to this under-

standing is the multifaceted nature of hydrophobic inter-

actions that we focus upon in this paper. In particular,

we show how hydrophobic interactions between small ap-

olar groups at low concentrations in water are very dif-

ferent from those between large assemblies or relatively

high concentrations of hydrophobic groups in water. The

former is pertinent when considering, say, the aqueous

solvation of a butane or butanol molecule. The latter is

relevant to the solvation of macromolecules such as pro-

teins. In this paper, we present a quantitative theory for

these two regimes and show that the cross over between

them occurs on nanometer length scales.

Figure (1) juxtaposes hydrophobicity on small and

large length scales. Hydrophobic units do not hydrogen

bond to water and create excluded volume regions where

the density of water molecules vanishes. When these

units are small enough, water can reorganize near them

without sacri�cing hydrogen bonds. The entropic cost

of this structural change leads to low solubility for small

apolar species in water. The cost and corresponding sol-

ubility are readily understood and computed in terms

of properties of homogeneous bulk water, such as its ra-

dial distribution function [3{6]. There is, however, no

strong inducement for small numbers of small hydropho-

bic groups to associate in water. It is more likely that

water will separate such species rather than drive them

together [4,6,7].

On the other hand, close to a large hydrophobic object

| perhaps an assembly of several apolar units possibly

interspersed with a few hydrophilic units | the persis-

tence of a hydrogen bond network is geometrically impos-

sible. The resulting energetic e�ect can induce drying, as

envisioned by Stillinger [3]. Further, this drying can lead

to strong attractions between large hydrophobic objects,

as observed in surface force measurements [8]. For ex-

ample, the loss of hydrogen bonds near the two extended

hydrophobic surfaces depicted in Fig. (1b) causes water

to move away from those surfaces, producing thin vapor

layers. Fluctuations in the interfaces formed in this way

can de-stabilize and expel the remaining liquid contained

between these surfaces. The resulting pressure imbalance

will cause the surfaces to attract. If the liquid is close to

coexistence with the vapor phase, as is the case for wa-

ter at ambient conditions, this phenomenon occurs with

widely separated surfaces.

For the geometry pictured in Fig. (1b), macroscopic

considerations provide an estimate of when the inter-

surface separation, D, is su�ciently small for this desta-

bilization to occur. The bounded liquid has an unfavor-

able surface energy proportional to the net surface area,

where the surface tension, 
, is the constant of propor-

tionality. This energy is counteracted by the favorable

bulk free energy proportional to the average number of

molecules in the bounded liquid, where the proportion-

ality constant is the di�erence between liquid and gas

chemical potential, �` � �g. For large enough D, pro-

vided �` � �g < 0, the bulk energy dominates over the

surface energy, and the bounded liquid is stable. On the

other hand, when D is less than the critical separation

Dc �
2


n` j�` � �gj
; (1)

surface energy is dominant, and the bounded liquid is

de-stabilized with respect to the vapor. Here, n` is the

molecular density of the bulk liquid (the average number

of molecules per unit volume). Accordingly, for water

at room temperature and atmospheric pressure [9], Dc �
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100 nm. At this large length scale, the evaporation of wa-

ter induced by drying surfaces would seem to be a generic

and well understood phenomenon [10{12], and its perti-

nence to hydrophobicity at large length scales has not

gone without attention [13{16]. However, since drying

is a non-linear phenomenon, its manifestation at large

length scales is a�ected by small length scale structure.

Self consistency between small and large length scale ef-

fects is missing in these earlier treatments.

(a)

(b) D>Dc D<Dc

FIG. 1. a. Schematic view of local water structure

near a small hydrophobic sphere. Dashed lines indicate

hydrogen bonds. b. Schematic view of water structure

near large parallel hydrophobic plates. Shaded area indi-

cates regions where water density is essentially that of the

bulk liquid; vacant regions indicate where water density

is essentially that of the bulk vapor.

Depletion of water near extended hydrophobic surfaces

was not observed in early computer simulation studies be-

cause the large density 
uctuations that would produce

it could not be generated in these calculations [17{19].

Recently, however, Wallqvist and Berne [20] succeeded

in observing the phenomenon by simulating nanome-

ter sized hydrophobic units contained within a signi�-

cantly larger constant pressure bath of water. Thus, it

is clear that experimental probes of hydrophobicity on

small length scales (such as measuring relative solubili-

ties of alkanes in water) determine something very di�er-

ent from those that probe on large length scales (as done

in surface force experiments). Further, Wallqvist and

Berne's work [20] suggests that the cross over (or size of

the critical nucleus where oil and water might separate)

is on the scale of nanometers. Thus, neither extreme of

a small length scale or a large length scale description

is by itself su�cient to apply to biological assembly. A

satisfactory treatment of hydrophobicity must describe

both regimes simultaneously.

In this paper, we provide such a treatment. We do so in

a way that applies rather generally, not just to water with

hydrophobic solutes. The theory �rst focuses on a com-

ponent of the 
uid density that varies slowly in space.

This component sustains interfaces, liquid-vapor phase

equilibria and drying, and can be determined very gen-

erally in terms of only a few macroscopic parameters like

the surface tension. The molecular scale detail that dis-

tinguishes the local structure of one liquid from another

enters the theory explicitly in a second step, where the

e�ects of small length scale 
uctuations about the slowly

varying component are estimated. This step takes proper

account of excluded volume regions where the density

vanishes.

This two step treatment has been developed in de-

tail from a rigorous statistical mechanics perspective by

Weeks, Katsov and Vollmayr [21] for the special case of

a simple 
uid interacting with a pair potential. Here,

we describe a more heuristic but qualitatively accurate

method that can be applied more generally, in particu-

lar to water. The result of this analysis is a theory with

mathematical similarities to dielectric continuum theory.

It reduces to Pratt-Chandler theory [4,6] for small apolar

units, but crosses over to something very di�erent when

hydrophobic surfaces extend over a nanometer.

Theory

The 
uctuating molecular density �eld �(r) at position

r, with average value h�(r)i � n(r), provides a conve-

nient measure of the microscopic con�gurations. This

�eld gives the local concentration of centers of water

molecules. (For the purposes of speci�city, the "center"

can be, for example, the position of the oxygen nucleus.)

Since water is a 
uid of polyatomic molecules, a com-

plete description of its instantaneous structure requires

more than just this scalar quantity. The primary e�ect

of hydrophobic units in water, however, is to expel water

molecules from the regions occupied by those units. Once

the consequences of this expulsion are understood, other

e�ects, such as those due to solute-solvent attractions,

can be treated either as �rst order perturbations [4,22{24]

or by mean �eld theory [21], as described below. Thus,

in this paper our primary focus is on estimating the free

energy cost or reversible work to make �(r) = 0 for r in

a hydrophobic volume v. With this focus, other details

about local water structure play no explicit role. Orien-

tational structure appears only implicitly in the way it

in
uences the statistics of �(r). It is a remarkable fact

that over small length scales, this statistics is essentially

Gaussian [5,6], a fact we make use of shortly.
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For the homogeneous 
uid, n(r) is simply the con-

stant bulk density, n`. Excluded volume, however, cre-

ates gradients in the average density n(r) and in many

cases can induce rapidly varying components analogous

to the oscillations in the 
uid radial distribution func-

tion, manifesting molecular scale granularity of the liq-

uid [25]. Since molecules in the liquid attract one another

with some �nite range of interaction, �, any such spatial

variation of n(r) must be accompanied by a gradient in

the energy density �eld arising from the attractive inter-

molecular interactions. This produces a net force from

the unbalanced attractive interactions directed towards

the region of higher density [26]. The attractive energy

density �eld can be written as �2a�n(r), where the over-

bar indicates a normalized average or coarse graining of

the 
uid density n(r) over the length scale �, and �n2a

is the adhesive energy density of the homogeneous 
uid

of density n [27]. We will see that for water, � � 0.3 nm.

Averaging over the length scale of attractive interactions

smooths out quickly varying oscillatory components of

n(r). Thus, the resulting �n(r) is relatively slowly vary-

ing, even when n(r) itself might be rapidly varying. We

call �n(r) the coarse grained density and will exploit its

relatively slow variation in our calculation of the full n(r).

To that end, let us �rst recall the usual square gradi-

ent theory for a slowly varying free liquid-vapor interface

[10,28]. This theory applies only when the density �eld

varies little over the length scale �: In that case, the

statistical weight for a given �(r) in the grand canoni-

cal ensemble is proportional to expf��F0[�(r)]g , where

F0[�(r)] is the e�ective Hamiltonian or free energy func-

tional

F0 [�(r)] =

Z
dr

�
w (�(r)) +

1

2
mjr�(r)j2

�
: (2)

Here, ��1 = kBT is Boltzmann's constant times temper-

ature, w(�(r)) = w(�(r);�) is a local free energy density

parameterized by the ambient chemical potential �, and

m = a�2 [29]. [The subscript \0" indicates the absence

of any imposed excluded volume that would induce rapid

spatial variation in �(r).]

In mean �eld theory, the equilibrium n(r) = h�(r)i

is the function that minimizes this free energy, i.e.,

0 = �F0=�n(r). This condition yields the well known

di�erential equation for n(r) [28]

w0(n(r)) = mr2n(r)

= 2a[�n(r)� n(r)] ; (3)

where w0(n) = @w=@n. At phase equilibrium, where a

liquid of homogeneous density n` coexists with a gas of

homogeneous density ng, the conditions of constant pres-

sure and chemical potential correspond to w(n`) = w(ng)

and w0(n`) = w0(ng) = 0; respectively and there ex-

ists a slowly varying solution to Eq. (3) describing the

liquid-vapor interface. In the second line of Eq. (3), the

Laplacian term has been rewritten in terms of the coarse

grained density �n(r); the expressions are equivalent by

second order Taylor expansion of n(r0) about n(r) in the

integration that de�nes the coarse grained density. [See,

for example, Eq. (14) below.]

In general, however, excluded volume regions or other

perturbations can induce rapidly varying components in

n(r) that cannot be described by Eqs. (2) and (3). Never-

theless, even in such cases, the associated coarse grained

density, �n(r), remains slowly varying. This observation

allows us to determine a slowly varying component of the

full density [21]. The rapidly varying component will be

treated in a second step as discussed below and the self-

consistent combination of both components will give an

accurate description of the full n(r).

We denote the slowly varying component by ns(r) and

require that it satisfy Eq. (3) when the coarse grained

density arising from the full n(r) is used:

w0(ns(r)) = 2a[�n(r)� ns(r)] : (4)

The relation to the usual free interface theory becomes

clearer if we add and subtract the coarse grained density

of the slowly varying component, �ns(r), and expand as

before. This yields our �nal result:

w0(ns(r)) = mr2ns(r) + 2a[�n(r)� �ns(r)] : (5)

Equation (5) is the general formula for a slowly vary-

ing density �eld ns(r) in the presence of the (self con-

sistent) potential, �2a[�n(r) � �ns(r)]. This �eld takes

account of the extra unbalanced attractive energy den-

sity arising from the rapidly varying component of the

density, n(r) � ns(r). In general, ns(r) contains most

of the long wavelength variation of the full density, and

in the absence of rapid spatial variation of the density,

n(r) = ns(r): In that case, Eq. (5) reduces to the stan-

dard theory for slowly varying inhomogeneous density

�elds, Eq. (3). The theory is altered, however, by the

presence of rapidly varying components in n(r), such

as those induced by excluded volume. The last term

in Eq. (5) is then not negligible. This term permits

interface-like solutions for ns(r) over a continuous range

of temperature and density. Without it, spatially varying

solutions exist only at liquid-gas coexistence, where w(n)

has two equal minima located at the coexisting liquid and

gas densities.

The small length scale di�erences between ns(r) and

the full density �eld n(r) are determined in a second step

by averaging ��(r) = �(r)�ns(r), taking proper account

of excluded volume regions. To the extent that ��(r) is

a Gaussian random �eld, the method for carrying out

such an average is well known [5]. Moreover, Hummer

et al. [6] have established that small length scale density


uctuations in water are indeed Gaussian. With such

statistics, we �nd that n(r) is given by
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n(r) = h�(r)iv

= ns(r)�

Z
dr0c(r0)�(r0; r); (6)

where angled brackets labeled with the subscript \v" in-

dicates the presence of the solute excluding solvent from

the volume v. The function

�(r; r0) = h��(r) ��(r0)i0 (7)

is the variance for the Gaussian statistics with a speci-

�ed ns(r), but in the absence of the solute (or any other

source of inhomogeneities that vary quickly in space).

The function c(r) is nonzero only for r contained in the

excluded volume v, and in that region c(r) is determined

by the requirement that n(r) = 0 for all r in v [30].

Equation (6) is a generalization of Eq. (2.8) of Ref. [5].

For the case of long length scale homogeneity, i.e., when

ns(r) = n, Eq. (6) is the Pratt-Chandler integral equa-

tion for the distribution function of water surrounding

an apolar solute [4]. This occurrence of homogeneity is

obtained from Eq. (5) when the hydrophobic solute (i.e.,

when the excluded volume) is relatively small.

Equations (5) and (6) provide a self consistent the-

ory for water density near hydrophobic solutes [31]. In

addition to this structural property, free energies of sol-

vation are also of interest. For ideal hydrophobic units,

i.e., species that simply exclude water from speci�ed vol-

umes, solvation free energies are related to the probabil-

ity of �nding these volumes empty in the unperturbed


uid [6]. Such a probability is a ratio of partition func-

tions. Speci�cally, the excess chemical potential for a

hydrophobic object excluding the volume v is

��v = �kBT ln

"
Zv(0)P

N�0 Zv(N)

#
; (8)

where Zv(N) is the partition function when N solvent

molecules occupy the volume v. Using Gaussian statistics

to estimate the probability, we �nd that this partition

function is given by [32]

Zv(N) = exp

(
�F0[ns(r;N)]=kBT

�

�
N �

Z
v

drns(r;N)

�2
=2�v � (ln �v)=2

)
;

(9)

where

�v =

Z
v

dr

Z
v

dr0 �(r; r0) : (10)

In these relationships, the integrals labeled with a sub-

script \v" are over the excluded volume v; and ns(r;N)

is computed from Eq. (5), but Eq. (6) is replaced by

n(r;N) = ns(r;N)

�

Z
v

dr0
Z
v

dr00 [ns(r
0;N)�N=v]��1

v �(r00; r) :

(11)

In the limit of small excluded volumes, Eq. (11) will

predict a small unbalanced force, and the resulting

ns(r;N) will be close to the bulk liquid density, n`: In

that case, Eqs. (9) and (10) reduce to the free energy of

hydrophobic hydration developed and used by Hummer

et al. to successfully interpret the solvation of small apo-

lar species in water [6,24]. In general, however, the main

physical e�ect of the unbalanced attractive forces taken

into account in the �rst step of our method is to reduce

the density near the excluded volume region, thus per-

mitting a lower solvation free energy.

Applications

The theory presented above is a relatively general

treatment of solvation excluded volume e�ects. To char-

acterize the long wavelength properties of the water sol-

vent determined in the �rst step of our theory, we must

give a prescription for carrying out the coarse graining

implied by the over-bars in Eq. (5) and values for w(n)

and m. Since this step is essentially independent of the

local structure, any reasonable form of these quantities

is su�cient provided it is �t to the macroscopic proper-

ties of water over the thermodynamic range of interest.

Therefore, we adopt the simplest possible van der Waals

forms [28]

w(n) = nkBT ln

�
bn

1� bn

�
� an2 � �n: (12)

When the chemical potential � is such that liquid and

gas coexist,


 =

Z n`

ng

dn

q
2m[w(n)� w(ng)] (13)

where ng and n` are the bulk gas and liquid densities, re-

spectively, at the liquid-gas coexistence implied by w(n).

We �t the molecular volume parameter, b, and the energy

density parameter, a, so that i. n` has the value of the liq-

uid water's density at phase coexistence when T = 298K;

and ii. the compressibility implied by w(n) has the same

value as that for water at normal conditions. These con-

ditions yield a �230 kJ cm3/mol2 and b �15 cm3/mol.

Then, with surface tension given by that for liquid water

at normal conditions, i.e., 
 �72 mJ/m2 �18 kBT/nm
2,

the second van der Waals relation gives �2 � m=a �

(0:38 nm)2. Finally, for the coarse graining prescription,

we use a simple Gaussian weight:

�n(r) =

Z
dr0 n(r0)

�
2�2�

�
�3=2

exp(�jr� r
0j2=2�2) :

(14)
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The unique local structure of water enters explicitly in

the second step of our theory through the speci�cation

of �(r; r0) in Eq. (6). Here too we use experimental data,

setting

�(r; r0) ' ns(r) �(r � r
0) + ns(r)ns(r

0)h(jr� r
0j); (15)

where h(jr� r
0j)+ 1 is the radial distribution function of

liquid water at the bulk density n` [33]. Approximation

(15) becomes exact in the limit of homogeneity, ns(r) =

n`, and in the limit of low density. It is well-de�ned at

intermediate densities and serves as a computationally

practical interpolation formula.

Our choices for these quantities are rather arbitrary,

but still consistent with the most important physical as-

pects of hydrophobicity. For instance, to correctly pre-

dict the onset of drying, it is important that the prox-

imity of liquid-gas coexistence is accurately represented.

To correctly estimate �(r; r0) in the drying regime where

density is low, it is also important that this function is

consistent with the exact low density form, ns(r) �(r�r
0).

When drying does not occur and short length scale ef-

fects dominate, it is important that �(r; r0) is consis-

tent with the exact form for the homogeneous liquid,

n`�(r � r
0) + n2` h(jr � r

0j). All these features are cap-

tured by our choices, and other details have relatively

small e�ects on numerical results derived from the the-

ory. For example, in the applications reported below, no

qualitative changes are found on altering the value of 


by 20%, or on altering the coarse graining prescription,

Eq. (14), to some other reasonable choices. An equation

of state more accurate than (12) might help in making

predictions over a wide range of temperatures, but for

the use we make of it here, Eq. (12) seems satisfactory.

With these ingredients in hand, we have carried out a

series of calculations to illustrate the predictions of the

self consistent structural Eqs. (5) and (6), and the corre-

sponding free energy relations (9) and (11).

Hydration of hard spheres

Our �rst application concerns the hydration of a hard

sphere excluding water from a volume of radius R cen-

tered at the origin. Figure (2) shows the excess chemical

potential, ��v , as a function of R computed from the the-

ory. In the �eld of structural biology, it is often assumed

that hydrophobic solvation energies are proportional to

exposed hydrophobic surface area [34{36]. As such, one

might expect that ��v would be proportional to R
2. For

R >
� 2 nm, the theory shows that the ratio ��v=4�R

2

does reach an approximate plateau with a value similar

to that of the surface tension, 
. For smaller R, how-

ever, ��v=4�R
2 is a rapidly varying function of R: This

variability explains why there is no consensus over the

appropriate hydrophobic energy per unit area governing

nanometer assemblies, such as protein structures. On a

nanometer length scale, there is no unique value.
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FIG. 2. Excess chemical potential for a hard sphere of

radius R in water. The solid lines indicate the results of

Eqs. (5), (9) and (11). The circles are the results of computer

simulations [6]. The dashed line is the result of the Gaussian

model, namely Eq. (9) with ns(r) = n` [6]. The dotted line is

a continuum theory estimate (see text for description). The

arrow indicates the value for the surface tension of water.

For small spheres (R < 0:4 nm), ��v has been es-

timated by computer simulation [37]. Figure (2) shows

that theory is in good accord with the simulation results.

In this small sphere regime, the full theory also di�ers

little from the predictions of simple Gaussian statistics,

namely Eq. (9) with ns(r;N) = n`. Gaussian statistics

is the basis for the Pratt-Chandler theory of hydropho-

bicity [5], both in its traditional form [4], and its recent

extension [6]. The agreement between theory and simu-

lation in this regime is consistent with the successes of

that theory in predicting, for example, free energies of

transfer and solubilities of small hydrophobic molecules.

For R >
� 1 nm, however, the predictions of the Gaussian

model diverge from those of the full theory. The diver-

gence is due to drying. This phenomenon is predicted by

the full theory, but it is outside the scope of the Gaussian

model. In view of the disparity, it may be inappropriate

to use the Gaussian model to interpret temperature and

pressure e�ects on the stability of protein structures [24].

For large R; one might consider employing a simpli-

�ed continuum theory based upon Eq. (5), but replacing

the self consistent �eld term with boundary conditions

ns(r;N) = N=v for r � R and ns(r;N) = n` for R!1.

In general, the ns(r;N) constructed in this way will vary

rapidly near the surface of the volume v. This contin-

uum theory is therefore not self consistent. Moreover,

Eq. (5) shows that the self consistent �eld is non-zero

outside the surface and cannot be represented by a sin-

gle boundary condition. Indeed, the predictions of the
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continuum model are unsatisfactory in the physically in-

teresting cross-over regime, as shown in Fig. (2).

The solute-water radial distribution function, g(r +

R) = n(r + R)=n`, as a function of the distance r + R

from the center of an excluded volume region of radius R,

directly illustrates the nature of the drying phenomenon.

This function is shown in Fig. (3). For small spheres,

g(r+R) exhibits oscillations manifesting the microscopic

granularity of liquid water. For R >
� 1 nm, density de-

pletion is evident, and the magnitude of the oscillations

decreases. For large R, g(r + R) rises smoothly with in-

creasing r. Evidently, a ball of oily groups with radius

larger than 1 nm, e.g., a spherical cluster of about 20

methyl groups, is large enough to induce drying. Signi�-

cantly smaller assemblies will not induce this e�ect.
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r(Å)

0.0

1.0

2.0

g(
r+

R
)

R=88ÅR=10Å

R=4Å

R → ∞

R=4Å

R → ∞R=10Å
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(r

+
R
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n l

FIG. 3. Upper part: Slowly varying component ns(R+ r)

of the average water density as a function of the distance

R + r from the center of excluded volume regions with

varying radii R: Lower part: Radial distribution function

g(R+ r) � n(R+ r)=n` giving the net average water density

around the same excluded volume regions. The inset graph

focuses on the contact value of that function. Solid lines are

the results of Eqs. (5) and (6). Circles are the results of com-

puter simulations [37]. The dashed line is from the Gaussian

model, namely Eq. (6) with ns(r) = n` [4].

The behavior of n(r) for water near a large hard sphere

is thus much like that for the liquid near a free liquid-

gas interface, as Stillinger envisioned long ago [3]. Still-

inger also theorized that the contact value, i.e., g(R);

is a non-monotonic function of R. For small R; the re-

moval of water within the excluded volume is accommo-

dated by an increase in density adjacent to the volume.

For small R; g(R) is therefore an increasing function of

R. For large enough R; however, drying sets in, mak-

ing g(R) a decreasing function of R. Stillinger made

numerical predictions of this behavior, based upon an

algebraic interpolation formula connecting two regimes

of small and large hydrophobic spheres. His predictions

agree qualitatively with the results of our theory shown in

Fig. (3). These theoretical results also agree reasonably

well with computer simulation results, over the limited

regime where these simulation results are available. Bet-

ter agreement would probably require better estimates of

w(n) and � (r; r0) than those we have used as input for

the calculations.

Hydration of two parallel hard plates

As discussed in the introduction, drying of extended

hydrophobic surfaces can lead to strong attractions be-

tween pairs of such surfaces. As a second application, we

therefore consider the solvent induced interactions be-

tween a pair of two in�nite hard plates. The plates lie

parallel to the x � y axis of a Cartesian coordinate sys-

tem, and they exclude water from the regions z < 0 and

z > D. With this arrangement, our calculations provide

an interpretation of surface force measurements. These

experiments reveal long ranged forces between hydropho-

bic surfaces in water. While disagreeing over quantita-

tive details [8], they show that an attractive force be-

comes measurable at large inter-surface separation, in

most cases up to tens of nanometers. Further, when

brought to separations of about 10 nm, two hydrated

parallel hydrophobic plates will jump into contact. Hys-

teresis is observed in the inward- and the outward-going

measurements, indicative of a kinetically frustrated �rst

order phase transition.

Hysteresis is predicted by our analysis in that over a

range of D values, there are two solutions to Eq. (5) and

thus two di�erent free energies. The resulting free energy

branches as a functions of D are shown in Fig. (4). In

agreement with the elementary estimate, Eq. (1), the �g-

ure shows that even for relatively large interplate separa-

tions, the con�ned liquid water is less thermodynamically

stable than its vapor. The liquid remains metastable over

a wide range of D. In this regime, the kinetic pathway

to evaporation involves 
uctuations of the water inter-

faces su�cient to create a vapor bridge between the two

plates [16,38]. Such large 
uctuations occur only rarely.

To a good approximation, water will remain between the

plates until D is made so small that the con�ned liquid

becomes mechanically unstable. Figure (4) shows that

this limit of metastability (i.e., the spinodal) of con�ned

water is reached whenD � 5 nm. This length is compara-

ble to the distance where hydrated hydrophobic surfaces

jump into contact in surface force experiments. Accord-

ing to our theory, this jump distance will decrease as the

bulk liquid moves away from phase coexistence, for ex-
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ample, by decreasing temperature or adding salt to the

liquid. Further, the jump distance will increase with the

addition of kinetic pathways to evaporation, such as the

presence of gas bubbles in the solvent.
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FIG. 4. Free energy per unit surface area for water con-

�ned between two parallel hard surfaces separated a distance

D. The zero of free energy is taken as the D ! 1 limiting

value. The curves are computed from Eqs. (5), (9) and (11),

with N = 0. Solid lines refer to stable branches, dashed lines

refer to metastable branches, and the dotted line shows the

small D limit of stability for the liquid density phase.

Since mean �eld theory is used to describe large length

scale structure, capillary waves are not included in our

treatment. These small amplitude interfacial 
uctuations

adjacent to each plate surface give rise to weak long range

interplate attractions. A complete theory for large dis-

tance attractions between extended hydrophobic surfaces

must account for this capillary wave e�ect. Such long

ranged forces, however, are relatively small in compari-

son with the those produced by drying and evaporation.

Hydration of parallel cylinders

An array of four parallel cylinders provides another

instructive application, evocative of helix bundle mo-

tifs common in protein structures [39]. Speci�cally, we

have carried out calculations of water densities and free

energies in the presence of four in�nite cylinders, each

of radius R, where the axis of each cylinder is par-

allel to the z axis of a Cartesian coordinate system.

These axes form a square in the x � y plane with side

length D+2R. Thus, water is expelled from the regions

[x� (R+D=2)]
2
+ [y � (R+D=2)]

2
< R2.
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FIG. 5. Free energies per unit length for water interact-

ing with four parallel hard cylinders (pictured at top). The

distance of closest approach between cylinders is taken as

D = �0:27 nm. The zero of free energy is taken as the

D !1 limiting value. Curves are computed from Eqs. (5),

(9) and (11). Solid lines refer to stable branches, dashed

lines refer to metastable branches, dotted lines refer to small

D limit of stability for the high density solutions. The limits

of stability of the low density solution are o� the scale of this

�gure.

For this geometry of hydrophobic units, the computed

excess chemical potentials per unit length is shown in

Fig. (5) as a function of surface-to-surface separation, D.

For cylinders with R >
� 0:6 nm, there is a range of D

values where metastable high density states are found.

For smaller cylinders, there is no such metastability. For

all cases illustrated, the low density phase is stable for

D <
� 1 nm, and the stability or metastability of this

phase creates a powerful force favoring the assembly of

the four cylinders. For R >
� 0:7 nm, the free energy

barrier to association disappears, even in the metastable

branch. For this regime, one therefore expects both pow-

erful and relatively rapid association of the hydrophobic

units. Conversion to net free energies requires multipli-

cation of ��v per unit length by the actual length for the

cylinders. Thus, features illustrated in Fig. (5) reveal net

free energetic e�ects that can be very large compared to

kBT .

Figure (5) projects onto only one coordinate, D. The

absence of a free energy barrier to association in that di-

rection does not necessarily imply the actual pathway to

association is barrier free. The actual pathway can have

dynamical bottlenecks involving water density 
uctua-

tions such as described above for the case of two parallel

plates.
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For all cylinders considered in Fig. (5), mean �eld the-

ory predicts the low density phase remains metastable

for D >
� 10 nm. In this phase, the four cylinders are en-

capsulated by a vapor bubble of similar shape. Density


uctuations, i.e., thermal excursions of the liquid-vapor

interface, will break the bubble at values of D smaller

that those of the mean �eld stability limits.
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FIG. 6. Free energies per unit length for water interact-

ing with four parallel hard cylinders with hydrophilic outer

sides. The parallel cylinders are depicted at the top of the

�gure, the shaded area denotes the hydrophilic regions. The

distance of closest approach between cylinders is taken as

D = �0:27 nm. The zero of free energy is taken as the

D !1 limiting value. Curves are computed from Eqs. (9),

(11), and Eq. (5) modi�ed by subtracting the �eld �(r) from

its right-hand-side. Solid lines refer to stable branches, the

dashed line refers to the metastable branch, the dotted line

refers to small D limit of stability for the high density solu-

tions. The limits of stability of the low density solution are

o� the scale of this �gure.

Surfaces of helices assembling in actual protein struc-

tures are not entirely hydrophobic. The trends illustrated

in Fig. (5), however, depend mostly on the fact that the

interior surfaces of the assembled bundle are hydropho-

bic. To show this fact, we have considered modi�ed

parallel cylinders, where the outer halves of the cylin-

ders are hydrophilic, as illustrated in the upper part of

Fig. (6). In particular, we have carried out calculations

with Eq. (5) modi�ed by subtracting an attractive inter-

action �(r) from its right-hand-side, where

�(r) = �2an`

Z
dr0�(r0)

�
2�2�

�
�3=2

exp(�jr� r
0j2=2�2)

(16)

and �(r) is unity for r 2 v0 and zero otherwise. Here, v0

refers to a hydrophilic shell that coats the outer half sur-

face of each cylinder and extends 0.3 nm within. Other

choices for the strength and functional form of this po-

tential �eld are possible. The basic idea is to create a

water-like region within the solute. With Eq. (16), it is

as if a layer of water molecules of density n` lies inside

the outer-half surface of each cylinder.

Results obtained with this modi�cation of Eq. (5) are

plotted in Fig. (6). While details di�er, the trends ob-

tained for fully hydrophobic cylinders are indeed similar

to those obtained with partially hydrophobic cylinders.

For example, the size of free energy barriers are larger in

the latter than in the former, and the radius required for

high density metastable branches to appear is larger in

the latter than in the former.

Implications

Mesoscopic structures are stabilized by a variety of

forces. To the extent that hydrophobic forces are sig-

ni�cant, this paper illuminates a number of important

facts. First and foremost, hydrophobic e�ects of the type

that separate oily groups from aqueous solution appear

only when local concentrations of hydrophobic units are

large enough or extended enough to induce drying. Ex-

cess chemical potentials and transfer free energies of sin-

gle small apolar species, like alkane chains of moderate

length, reveal nothing of the powerful interactions cre-

ated by drying. Similarly, the structure of water near

small apolar species provides little or no hint of the phe-

nomenon that inevitably dominates for larger hydropho-

bic assemblies.

Even in the presence of hydrophilic surfaces, power-

ful hyrophobic forces of assembly can arise from drying

transitions. To the extent that these forces are relevant

to biological assembly, one can anticipate general trends

a�ecting the stability of such structures. Speci�cally,

changes in solvent that move the bulk liquid away from

liquid-gas phase coexistence (e.g., adding salt, increasing

pressure, lowering temperature) will shorten the range

and weaken these forces of assembly.

Since powerful hydrophobic interactions require the

onset of a phase transition, the dynamics of assemblies

stabilized by this interaction will depend, at least in part,

on the dynamics of the phase transition. Thus, for ex-

ample, aspects of water structure and drying may play

a signi�cant role in the kinetic pathways to protein fold-

ing for transitions between con�gurations of di�ering hy-

drophobic stabilization. This possibility would explain

directions of trends observed in the binding-unbinding

kinetics of helix pairs in Rop [40]. Indeed, the evapora-

tion kinetics of water con�ned by hydrophobic surfaces

is signi�cantly slowed by adding a low concentration of

hydrophilic spots to the surfaces [41] since water inter-

faces are pinned at these spots. Most standard models
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of protein folding include water only implicitly, through

its e�ect on free energy surfaces, and assume that water

is continually at equilibrium with the assembling solutes.

We believe that water plays a more explicit role in the

dynamics than can be captured with such implicit equi-

librium models.

Drying is a collective phenomenon. As such, pair po-

tentials of mean force between small apolar units are in-

su�cient for characterizing its onset. The onset or cross-

over to drying is found at the nanometer regime, the

length scale of pertinence to protein assembly. In this

regime, the phenomenon is too complex to be character-

ized by a single microscopic parameter, such as exposed

surface area. It seems likely, therefore, that most models

used thus far in theoretical studies of protein structure

oversimplify the true nature of the hydrophobic interac-

tions conceived of long ago by Kauzmann. In contrast,

the equations written in this paper could be used to pro-

vide a computationally convenient yet accurate means to

describe this nature.
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