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Interactions between Fluctuating Steps on Vicinal Surfaces: Edge Energy Effects
in Reconstruction Induced Faceting
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Surface reconstruction can generate effective attractive interactions between steps on vicinal surfa
leading to the formation of step bunches. Modified repulsive interactions arise from the fluctuation
of a step in the asymmetric environment at the edge of the step bunch. These are determined b
mapping to the ground state energy of a quantum particle between two rigid walls in an external fie
This yields an edge energy term that controls the dynamics of faceting and causes wider step spac
at the edge of the bunch, in agreement with Monte Carlo simulations. [S0031-9007(97)03948-3]
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Theories used to explain step morphology and dyn
ics on vicinal surfaces often relate the velocity of a s
to changes in the local surface free energy expresse
a functional of the step positions [1,2]. Constraints
possible transverse step fluctuations arise because o
prohibitive energy cost arising from step overhangs. T
gives rise to an effective entropic repulsive interaction
tween steps at nonzero temperature that tends to keep
uniformly spaced [3]. The two-dimensional (2D) terrac
step-kink (TSK) model [4], which can be mapped onto
1D free-fermion model [5], provides a quantitative descr
tion of effects arising from the no-crossing constraint.

A simpler 1D description may be adequate
many vicinal surface problems that exhibit quasi-o
dimensional features. The 1D model can be obtai
by averaging the transverse step fluctuations in the
TSK model over a mesoscopic distanceLy along the step
edge direction, expressing the effective step interact
in terms of theaveragepositions of the steps. Retto
and Villain [6] proposed a 1Dlocal free energy mode
for surfaces with nonuniform step spacings, summ
separate contributions from each terrace, or equivale
from individual steps with effective repulsive interactio
between nearest-neighbor (NN)pairs of steps only.
In the 1D NN approximation, the effective step pa
interaction must vary as1yw2, with w the average width
of the terrace separating them, so that the known res
for the equilibrium free energy of a uniform vicina
surface [3,5,7] can be recovered. This model and var
generalizations have proved very useful in a numbe
different applications [8–12].

However, the simple NN description fails to descri
some essential features of the physics in certain c
where competing interactions exist that favor very nonu
form step configurations. We study here one such
ample, the reconstruction induced “phase separat
into wide reconstructed facets and unreconstructed
bunches as seen on vicinal Si(111) and many other
faces [13–15].
0031-9007y97y79(9)y1694(4)$10.00
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While reconstruction can lower the free energy of a
flat terrace on which it occurs, it generally makes defec
such as steps that disturb the reconstruction energetica
more costly [3,16]. This suggests that reconstructio
should occur on a stepped surface only for sufficientl
wide terraces above some “critical” terrace widthwc, as
seen in many experiments [11,13,14]. To take accou
of this physics, we use a simpletwo state critical width
model [10], which assumes that each terrace region
either reconstructed or unreconstructed, depending on
on the local terrace width. This model seems particularl
appropriate when steps are “stiff,” with reconstruction
occurring more rapidly than the step movements, an
when the average step spacings are smaller than
on the order of the size of the critical nucleus for
growth of reconstruction on the flat surface. We will
use this idea in the TSK model to yield a microscopic
2D model incorporating both reconstruction and entropi
confinement effects, as discussed below. However, f
faceted surfaces with relatively straight steps but widel
differing terrace spacings, a 1D treatment may suffice.

To that end, let us describe the energetics for reco
struction on the surface as the sum of energies from ea
terrace in the form

Eswd ­ s f0
r w 1 brdQsw 2 wcd 1 s f0

uw 1 budQswc 2 wd

­ f0
r w 1 br 2 er swc 2 wdQswc 2 wd . (1)

Heref0
rsud is the free energy density of a flat terrace,brsud

is the creation energy per unit length of an isolated ste
when the surface is completely reconstructed (unreco
structed), andQswd is the Heaviside step function. Both
the flat surface energy gainer ; f0

u 2 f0
r and the step

energy costes ; br 2 bu on reconstruction should be
positive for phase separation to occur; the critical terrac
width wc above which reconstruction is favored is given
by wc ; esyer in this model. Since the total terrace area
and number of steps are conserved for vicinal surface
the first two terms on the right-hand side of Eq. (1) con
tribute only a constant to the total energy when summe
© 1997 The American Physical Society
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over all terraces and will be ignored in what follows. I
effect, we measure the reconstruction component of
energy relative to that of a surface in which every terra
is reconstructed. Thus reconstruction effects generate
effective negative (attractive) interaction proportional to
wc 2 w between pairs of steps with spacingw , wc.

The simplest treatment [10] incorporating both reco
struction and the step repulsions adds toEswd the repul-
sive term gyw2 as in the Rettori-Villain model above.
The total free energy functional is then a sum of effe
tive interactions

V NNswd ; Eswd 1 gyw2 (2)
between NN pairs of steps. This simple NN model h
been applied successfully in several cases [10,11] and
many appealing features: it reduces to the exact Grub
Mullins form [7] for the free energy of a uniform vicinal
surface, and it correctly reproduces the thermodynam
of phase separation into macroscopic regions with fac
and step bunches.

However, a more careful treatment of the interpla
between reconstruction and the repulsive interactions
required to understand important aspects of the coarsen
dynamics and the step spacings in a bunch. While
seems reasonable to treat the reconstruction energyEswd
on a local terrace-by-terrace basis as in Eq. (1), t
effective entropic repulsions have a very different origi
These arise from the constraints on possible transve
fluctuations of a given step fromboth its neighbors due to
the no-crossing condition. When transverse fluctuatio
of a step occur in a very asymmetric environment, such
that encountered at the boundary between a step bu
and a facet, their distribution is quite different from
that found when a step is in a symmetric environme
like the middle of a bunch. This generates addition
nonlocal contributions to the free energy ignored b
the NN approximation that turn out to have importa
consequences.

Since many essential features arising from asymme
fluctuations can be captured by a model with only thr
steps, we assume the local free energy depends on
positions ofthree adjacent stepsrather thanpairs as in
the NN model. The total free energy of a system withNs

steps can thus be written as

F ­ Ly

NsX
n­1

L sxn21, xn, xn11d 1 F0 , (3)

where F0 is a constant andL sxn21, xn, xn11d describes
a general three-step interaction between stepn with
average positionxn and both its nearest neighbors a
average positionsxn21 and xn11. Following Gruber
and Mullins [7], we approximate the effect of the no
crossing condition on the fluctuations of stepn by two
hard walls atxn21 and xn11. However, we consider the
generalasymmetriccase where the average position o
step n is specifiedas some particularxn, differing in
general from the unconstrained symmetric valuex̄n ­
he
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sxn21 1 xn11dy2. In practice, it is easier to generat
this asymmetry by using a grand canonical picture, w
step n coupled to a conjugate linear external fieldh
of appropriately chosen strength, rather than by direc
imposing the constraint of a fixed average positionxn.

The transfer matrix description of step fluctuations [
leads to a well known mapping [5] to the properties
a 1D quantum particle that satisfies the time-independ
Schrödinger equation∑

2
h̄2

2me

d2

dx2 1 Fsx j x1,x3d
∏

c0sxd ­ E0c0sxd , (4)

whereme is the effective mass (controlling the stiffnes
of the step), andc0sxd and E0 are the ground state
wave function and energy, respectively.Fsx j x1,x3d is
the potential field for the quantum particle. It incorporate
the following ingredients: two infinite hard walls [17] a
x1 andx3, the energy change from reconstruction, and t
linear external field. Using Eq. (1), we can write

Fsx j x1, x3d ­ fV dsx 2 x1d 1 V dsx3 2 xdgy2 1 hx ,

(5)

whereV dswd ­ ` for w , 0, and otherwise has the form

V dswd ­ 2er swc 2 wdQswc 2 wd . (6)

The average position of the fluctuating step can
obtained by x2 ­

R
xc

2
0 sxd dx. The presence of the

external fieldh will shift x2 away from the center. Since
x2 is a monotonic function ofh, we can expressh as a
function ofx2. WhenLy ! `, the appropriate “intrinsic”
free energy in terms of step positions is given by th
following Legendre transformation:

L sx1, x2, x3d ­ E0sssx1, x3; hsx2dddd 2 x2hsx2d . (7)

We can solve forL either numerically or analytically.
Even in the absence of reconstruction effects (i.e.,

er ! 0d, L obtained in this way differs quantitatively
from the predictions of the NN model, where from
Eq. (2),

L NNsx1, x2, x3d ­ fV NNsx2 2 x1d 1 V NNsx3 2 x2dgy2 .

(8)

For convenience, we definev ­ sx3 2 x1dy2 as the av-
erage terrace width and̃s ; s2x2 2 x1 2 x3dy2v as the
relative shift of the middle step. Rewriting Eq. (4) in
terms of these variables, we see that aser ! 0, L can be
expressed in the scaling form:L sx1, x2, x3d , v22fss̃d.
Similarly, the NN approximation givesL NNsx1, x2, x3d ,
v22fNNss̃d, with a different scaling functionfNN. Nor-
malizing so that both functions have the same depe
dence on the average width wheñs ­ 0, we find that
the quantum mechanical scaling function increases m
rapidly than the simple NN approximation as̃s devi-
ates from zero. As̃s ! 0, fss̃d ­ 1 1 5.771s̃2, while
fNNss̃d ­ 1 1 3s̃2. As s̃ ! 1, fss̃d ­ 0.7674ys1 2

s̃d2, and fNNss̃d ­ 0.5ys1 2 s̃d2. These differences,
1695
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while conceptually important, produce only relative
small quantitative corrections to most predictions of t
simple NN approximation in the absence of a drivin
force producing very nonuniform configurations.

However, in the presence of reconstruction effects,
differences become much more significant. First we ta
h ­ 0 and look at the symmetric ground state energy
the quantum particle in the presence of the potential
from reconstruction. Figure 1 plotsESsvd ; E0sv, h ­
0d for different er and afixed wc. When the entropic
repulsions dominate (at smaller), this will decrease
monotonically asv increases and have its minimum valu
at v ­ `. However, there is a critical value forer above
which ESsvd has its minimum at afinite width vmin.
We can interpretESsvd as the metastable Helmholtz fre
energy, expressed here as a function ofv rather than
the slopes ­ 1yv as is the usual practice [13]. Whe
er is larger than the critical value, it is favorable fo
the system to phase separate, with coexistence of
unreconstructed step bunch with average terrace w
vmin and a reconstructed flat terrace. Similar results h
been shown by Burkhardt [18] in systems with a squa
well potentialV d.

The free energy for nonuniform step configurations c
be obtained by applying the external fieldh. For small
shiftss ; x2 2 sx1 1 x3dy2 away from the center,L is
quadratic ins with a coefficientg1 satisfying

L sv, sd ø ESsvd 1 g1s2y2 . (9)

If we impose a small perturbation on the positions of ste
in a uniform 1Dstep train with spacingv0, the change in
the total free energy is

DF ø
1
2

X
q

f2g0s1 2 cosqd

1 sg1 2 g0d s1 2 cosqd2g juqj2, (10)

FIG. 1. The dependence of the ground state energy on
average width for differenter with fixed wc ­ 2. From top to
bottom the value forer is 0, 1y2, 1, 3y2, 2 times the critical
value.
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to leading order in the displacementsu, where um ;
xm 2 mv0 ­ N

21y2
s

P
q uqeiqm and

g0 ­ ≠2ESsvdy≠v2jv­v0 (11)

For smallq, the coefficientg0 of the q2 term in Eq. (10)
measures the resistance or stiffness of the step train
long wavelength changes in its spacings. Note fro
Fig. 1 that this decreasesas er increases [19]. The
inflection point, given byg0 ­ 0, describes thespinodal
in the classical theory for phase separation.

One of the most important predictions of the quantu
calculation is that there is a nonzero value for the te
sg1 2 g0d s1 2 cosqd2 in Eq. (10). This term plays a role
analogous to the square gradient term in the Cahn-Hillia
free energy functional for liquid-vapor phase separatio
and to the edge energy(or corner energyby some
authors) in continuum models for surface dynamics [20
It increases asq4 for smallq and reaches its maximum fo
q ­ p (the step pairing mode). The NN approximatio
from Eq. (8) predicts thatg1 ­ g0 for any pair potential
V NN, and hence sets this term to zero. As a result,all
modes are unstable wheng0 , 0, with the step pairing
mode most unstable. The quantum mechanical calculat
using the potential in Eq. (5) givesg1 . g0. Thus, unlike
the NN approximation, a negative stiffnessg0 does not
necessarily yield negative energies for short wavelen
perturbations. This provides one possible explanation
the wavelength selection experimentally observed in t
spinodal regime [16].

Another important application of the new free energ
functional is to the spacing of steps in the step bun
induced by reconstruction. Because of the neglect
edge energy effects, the NN approximation predicts th
all terraces in the bunch have the same width, wh
the quantum free energy functional predictswider step
spacings at the edge of the bunch. It may be possible
test this prediction experimentally.

To provide a theoretical test, we carried out Mon
Carlo (MC) simulations of a generalized 2D TSK mode
The system consists ofM steps, each havingNy segments.
Steps with average orientation in they direction are mod-
eled by the absolute solid-on-solid model with kink en
ergy e. Interactions between steps are through segme
at the samey position only. Each segment interacts wit
its nearest neighbors usingV dswd in Eq. (6). We attempt
to move random segments forward or backward in thex
direction for one lattice unit; the move is rejected or a
cepted using the Metropolis algorithm. Whener is large
enough, the system facets into flat reconstructed terra
and an isolated step bunch. In Fig. 2 we show (in d
monds) the average widths of each of the terraces in
isolated bunch of eight steps. The dashed line is the re
from numerically minimizing the total free energy of a 1D
step train using the three-step interactions. The effect
massme in Eq. (4) was chosen to give the same terra
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FIG. 2. The relative average terrace widths of a step bun
from the numerical simulation (diamonds) and from th
minimization of the free energy functional (dashed line).M ­
8, Ny ­ 4096, e ­ 1kBT , wc ­ 10, ander ­ 0.16kBT . The
relative widths are insensitive to the parameters as longer
much larger than the critical value.

width in the middle of the bunch as that from the MC
simulation. The theory predicts an increase in the terra
widths near the edge of the bunch in excellent agreem
with the simulations.

In conclusion we have estimated the effective inte
actions between steps in the 1D step model of vicin
surfaces using a simple quantum mechanical approxim
tion. Application to the phase separation problem on vic
nal surfaces predicts anedge energyassociated with the
boundary between two phases, a 1D analog to the int
face free energy in liquid-vapor phase separation. As w
shown by Stewart and Goldenfeld [20] in their continuum
model, the edge energy is essential to many features
the phase separation. This is the first quantitative estim
tion of the edge energy based on a reasonable microsco
model treating steps as the fundamental unit. Althou
other physical effects (e.g., different bonding configur
tions at the edge of a step bunch) might be present a
could contribute significantly to the edge energy in som
specific systems, the step fluctuations are ubiquitous a
can serve as a generic source for the edge energy.

We are grateful to H.-C. Jeong and E. D. Williams fo
helpful discussions. This work was supported by NS
MRSEC Grant No. DMR96-3252.
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