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Interactions between Fluctuating Steps on Vicinal Surfaces: Edge Energy Effects
in Reconstruction Induced Faceting
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Surface reconstruction can generate effective attractive interactions between steps on vicinal surfaces,
leading to the formation of step bunches. Modified repulsive interactions arise from the fluctuations
of a step in the asymmetric environment at the edge of the step bunch. These are determined by a
mapping to the ground state energy of a quantum particle between two rigid walls in an external field.
This yields an edge energy term that controls the dynamics of faceting and causes wider step spacings
at the edge of the bunch, in agreement with Monte Carlo simulations. [S0031-9007(97)03948-3]

PACS numbers: 68.35.Md, 64.60.—i, 68.35.Rh

Theories used to explain step morphology and dynam- While reconstruction can lower the free energy of a
ics on vicinal surfaces often relate the velocity of a stefflat terrace on which it occurs, it generally makes defects
to changes in the local surface free energy expressed asch as steps that disturb the reconstruction energetically
a functional of the step positions [1,2]. Constraints onmore costly [3,16]. This suggests that reconstruction
possible transverse step fluctuations arise because of tebould occur on a stepped surface only for sufficiently
prohibitive energy cost arising from step overhangs. Thigvide terraces above some “critical” terrace width, as
gives rise to an effective entropic repulsive interaction beseen in many experiments [11,13,14]. To take account
tween steps at nonzero temperature that tends to keep stegfsthis physics, we use a simpte/o state critical width
uniformly spaced [3]. The two-dimensional (2D) terrace-model [10], which assumes that each terrace region is
step-kink (TSK) model [4], which can be mapped onto aeither reconstructed or unreconstructed, depending only
1D free-fermion model [5], provides a quantitative descrip-on the local terrace width. This model seems particularly
tion of effects arising from the no-crossing constraint.  appropriate when steps are “stiff,” with reconstruction

A simpler 1D description may be adequate foroccurring more rapidly than the step movements, and
many vicinal surface problems that exhibit quasi-onewhen the average step spacings are smaller than or
dimensional features. The 1D model can be obtainedn the order of the size of the critical nucleus for
by averaging the transverse step fluctuations in the 2[@rowth of reconstruction on the flat surface. We will
TSK model over a mesoscopic distancgalong the step use this idea in the TSK model to yield a microscopic
edge direction, expressing the effective step interactionD model incorporating both reconstruction and entropic
in terms of theaveragepositions of the steps. Rettori confinement effects, as discussed below. However, for
and Villain [6] proposed a 1Docal free energy model faceted surfaces with relatively straight steps but widely
for surfaces with nonuniform step spacings, summingdiffering terrace spacings, a 1D treatment may suffice.
separate contributions from each terrace, or equivalently, To that end, let us describe the energetics for recon-
from individual steps with effective repulsive interactions struction on the surface as the sum of energies from each
between nearest-neighbor (NN)airs of steps only. terrace in the form
In the 1D NN approximation, the effective step pair g(y)=(fow + B,)O(w — we) + (fow + B)O (we — w)
interaction must vary a$/w?, with w the average width 0
of the terrace separating them, so that the known results = frw + B, — er(we = w)@(we — w). (1)
for the equilibrium free energy of a uniform vicinal Hereff(u) is the free energy density of a flat terragk,,)
surface [3,5,7] can be recovered. This model and various the creation energy per unit length of an isolated step
generalizations have proved very useful in a number ofvhen the surface is completely reconstructed (unrecon-
different applications [8—12]. structed), andd (w) is the Heaviside step function. Both

However, the simple NN description fails to describethe flat surface energy gaig. = f0 — f° and the step
some essential features of the physics in certain casemnergy coste; = 8, — B, on reconstruction should be
where competing interactions exist that favor very nonunipositive for phase separation to occur; the critical terrace
form step configurations. We study here one such exwidth w. above which reconstruction is favored is given
ample, the reconstruction induced “phase separationly w. = €,/€, in this model. Since the total terrace area
into wide reconstructed facets and unreconstructed stegnd number of steps are conserved for vicinal surfaces,
bunches as seen on vicinal Si(111) and many other suthe first two terms on the right-hand side of Eqg. (1) con-
faces [13-15]. tribute only a constant to the total energy when summed
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over all terraces and will be ignored in what follows. In (x,—; + x,+1)/2. In practice, it is easier to generate

effect, we measure the reconstruction component of thtéhis asymmetry by using a grand canonical picture, with

energy relative to that of a surface in which every terracestep n coupled to a conjugate linear external fietd

is reconstructed. Thus reconstruction effects generate af appropriately chosen strength, rather than by directly

effective negative dttractive interaction proportional to imposing the constraint of a fixed average positign

w. — w between pairs of steps with spacing< w.. The transfer matrix description of step fluctuations [7]
The simplest treatment [10] incorporating both recon-eads to a well known mapping [5] to the properties of

struction and the step repulsions addstfov) the repul-  a 1D quantum particle that satisfies the time-independent

sive termg/w? as in the Rettori-Villain model above. Schrédinger equation

The total free energy functional is then a sum of effec- B2 42

tive interactions [— -— + P |X1,X3)}¢0(3€) = Eopo(x), (4)

2m, dx?
NN/ \ 2 e
VEw) = E(w) + g/w (@) \wherem, is the effective mass (controlling the stiffness

between NN pairs of steps. This simple NN model hasf the step), andyo(x) and E, are the ground state
been applied successfully in several cases [10,11] and hggve function and energy, respectivelyb (x | x; x3) is
many appealing features: it reduces to the exact Grubethe potential field for the quantum particle. It incorporates
Mullins form [7] for the free energy of a uniform vicinal the following ingredients: two infinite hard walls [17] at
surface, and it correctly reproduces the thermodynamicg, and.;, the energy change from reconstruction, and the
of phase separation into macroscopic regions with facetgnear external field. Using Eq. (1), we can write
and step bunches. d d

However, a more careful treatment of the interplay Dlxlx,xs) = [V —x1) + Vi = 0))/2 + hx,
between reconstruction and the repulsive interactions is (5)
required to understand important aspects of the coarsenin
dynamics and the step spacings in a bunch. While i
seems reasonable to treat the reconstruction engtgy Viw) = —e.(we — w)O(we — w). (6)
on a local terrace-by-terrace basis as in Eqg. (1), the
effective entropic repulsions have a very different origin.
These arise from the constraints on possible transver
fluctuations of a given step frofvothits neighbors due to
the no-crossing condition. When transverse fluctuation
of a step occur in a very asymmetric environment, such
that encountered at the boundary between a step buntf.
and a facet, their distribution is quite different from
that found when a step is in a symmetric environment L (x1,x2,x3) = Eo(x1, %35 h(x2)) — x2h(x2). (7)

like the middle of a bunch. This generates additionalye can solve for either numerically or analytically.
nonlocal contributions to the free energy ignored by Even in the absence of reconstruction effects (i.e., as
the NN approximation that turn out to have importante —, o), £ obtained in this way differs quantitatively

consequences. _ o from the predictions of the NN model, where from
Since many essential features arising from asymmetrigq (2),

fluctuations can be captured by a model with only three
steps, we assume the local free energy depends on t MW x,x5) = [V = x1) + V(5 - 0))/2.
positions ofthree adjacent stepgather thanpairs as in (8)
the NN model. The total free energy of a system with
steps can thus be written as

ereV4(w) = « for w < 0, and otherwise has the form

The average position of the fluctuating step can be
obtained byx, = [x¢3(x)dx. The presence of the
Sxternal fieldr will shift x, away from the center. Since
x> iS @ monotonic function of:, we can expresé as a
function ofx. WhenL, — <, the appropriate “intrinsic”
ee energy in terms of step positions is given by the
llowing Legendre transformation:

For convenience, we define = (x3 — x;)/2 as the av-

N, erage terrace width an@l = 2x, — x; — x3)/2w as the
F=1L, Z L (Xp—1,%n, Xnt1) + Fo, (3) relative shift of the middle step. Rewriting Eq. (4) in

n=1 terms of these variables, we see thakas~ 0, £ can be

where F, is a constant and’ (x,,—,x,, x,+;) describes expressed in the scaling fornf: (x;, x2, x3) ~ @ 2¢(5).
a generalthree-stepinteraction between step with  Similarly, the NN approximation giveg NN(x;, x5, x3) ~
average positiont, and both its nearest neighbors at w ~2¢NN(&), with a different scaling functiogp™N. Nor-
average positionsy,—; and x,+;. Following Gruber malizing so that both functions have the same depen-
and Mullins [7], we approximate the effect of the no- dence on the average width whén= 0, we find that
crossing condition on the fluctuations of stepby two  the quantum mechanical scaling function increases more
hard walls atx,—; andx,+;. However, we consider the rapidly than the simple NN approximation d@s devi-
generalasymmetriccase where the average position ofates from zero. A — 0, ¢(¢) = 1 + 5.77152, while
step n is specifiedas some particulax,, differing in ~ ¢"NN(G) =1 + 36%. Asd — 1, ¢(6) = 0.7674/(1 —
general from the unconstrained symmetric valje= )%, and ¢"N(g) = 0.5/(1 — &)>. These differences,
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while conceptually important, produce only relatively to leading order in the displacemenis where u,, =
small quantitative corrections to most predictions of they, — w, = NP > u e and
simple NN approximation in the absence of a driving
force producing very nonuniform configurations. 20 = 0°Es(0)/00°|0=0, (11)
However, in the presence of reconstruction effects, the
differences become much more significant. First we také&or smallg, the coefficientg, of the ¢g*> term in Eq. (10)
h = 0 and look at the symmetric ground state energy ofmeasures the resistance or stiffness of the step train to
the quantum particle in the presence of the potential (5)ong wavelength changes in its spacings. Note from
from reconstruction. Figure 1 plofss(w) = Eo(w,h =  Fig. 1 that thisdecreasesas €, increases [19]. The
0) for different €, and afixed w.. When the entropic inflection point, given byg, = 0, describes thepinodal
repulsions dominate (at smak,), this will decrease in the classical theory for phase separation.
monotonically asy increases and have its minimum value  One of the most important predictions of the quantum
atw = «. However, there is a critical value fe;. above calculation is that there is a nonzero value for the term
which Es(w) has its minimum at dinite width wni,. (g1 — go) (1 — cosg)? in Eq. (10). This term plays a role
We can interpreEs(w) as the metastable Helmholtz free analogous to the square gradient term in the Cahn-Hilliard
energy, expressed here as a functionepofrather than free energy functional for liquid-vapor phase separation,
the slopes = 1/w as is the usual practice [13]. When and to theedge energy(or corner energyby some
€, is larger than the critical value, it is favorable for authors) in continuum models for surface dynamics [20].
the system to phase separate, with coexistence of dnincreases ag* for smallg and reaches its maximum for
unreconstructed step bunch with average terrace width = 7 (the step pairing mode). The NN approximation
omin @nd a reconstructed flat terrace. Similar results havérom Eq. (8) predicts thag, = go for any pair potential
been shown by Burkhardt [18] in systems with a square/NN, and hence sets this term to zero. As a resllt,
well potential V<. modes are unstable whenp < 0, with the step pairing
The free energy for nonuniform step configurations carmode most unstable. The quantum mechanical calculation
be obtained by applying the external field For small  using the potential in Eq. (5) gives > go. Thus, unlike
shiftsoc = x, — (x; + x3)/2 away from the centerf is the NN approximation, a negative stiffnegs does not
guadratic ino with a coefficientg, satisfying necessarily yield negative energies for short wavelength
. 2 perturbations. This provides one possible explanation for
L(w,0) =~ Es(0) + g107/2. ©)  the wavelength selection experimentally observed in the
If we impose a small perturbation on the positions of stepspinodal regime [16].
in a uniform 1Dstep train with spacing,, the change in Another important application of the new free energy

the total free energy is functional is to the spacing of steps in the step bunch
1 induced by reconstruction. Because of the neglect of

AF = — Z[Zgo(l — €0sgq) edge energy effects, the NN approximation predicts that
249 all terraces in the bunch have the same width, while

+ (g1 — g0) (1 — cosg)*]lu,l*>, (10) the quantum free energy functional predietier step
spacings at the edge of the bunch. It may be possible to
test this prediction experimentally.

To provide a theoretical test, we carried out Monte
Carlo (MC) simulations of a generalized 2D TSK model.
The system consists of steps, each haviny, segments.

E Steps with average orientation in thealirection are mod-

E eled by the absolute solid-on-solid model with kink en-

] ergy e. Interactions between steps are through segments

3 at the same position only. Each segment interacts with

E its nearest neighbors usiikf (w) in Eq. (6). We attempt

to move random segments forward or backward in.xhe

direction for one lattice unit; the move is rejected or ac-

cepted using the Metropolis algorithm. Whenis large

enough, the system facets into flat reconstructed terraces

and an isolated step bunch. In Fig. 2 we show (in dia-
® monds) the average widths of each of the terraces in an

FIG. 1. The dependence of the ground state energy on th:eSOIated bunCh”Of el_ght §t§ps£hTTetdﬁshed line is t?e rféu“

average width for differen¢, with fixed w. = 2. From top to rom numerically minimizing the total irée energy ot a L

bottom the value for, is 0, 1/2, 1, 3/2, 2 times the critical Step train using the three-step interactions. The effective

value. massm, in Eq. (4) was chosen to give the same terrace
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