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Chapter 1

Spacetime

We begin by introducing the concept of spacetime, and the structures it is
assumed to possess. First the discussion will use just words and pictures, to
give a feeling for what is going on. Afterwards, these ideas will be given a
precise mathematical formulation.

Spacetime is the collection of all events. An event is a “place and time”.
Nothing special has to happen there and then in order for an event to be an
“event”. In any case, physics today is based on quantum field theory, and quan-
tum fields permeate all of spacetime with, if nothing else, vacuum fluctuations.
So something is always “occurring” at an event. Moreover, as we shall see, the
spacetime metric tensor is a dynamical field that takes values at every event.

1.1 Differential structure

It is assumed that the events form a 4-dimensional continuum, or manifold.
That is, they can be put into 1-1 correspondence with 4-tuples of real numbers,
called coordinates. Coordinates that are related by smooth invertible functions
are all on the same footing. The spacetime need not be covered by any single
coordinate system. Rather, it may be covered by more than one patch, as long
as where the patches overlap, the coordinates are related by a smooth, invertible
transformation. A maximal collection of smoothly related coordinate patches is
called a differentiable structure.

We have so far assumed that spacetime can be equipped with a 4-dimensional
differentiable structure. Actually, the relevant assumption is that spacetime
possesses a particular differentiable structure. This is an important distinction,
since a given set of points can be given many different differentiable structures,
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even with different dimensions. For instance, the set of 4-tuples of real numbers
can be put into 1-1 correspondence with the set of n-tuples for any n.

As an example of a physically defined coordinate system, consider an ide-
alized form of the global positioning system. Adopt four satellites with precise
clocks on board that orbit the earth, and continuously transmit signals coded
with the time on the clock at which they were sent. Within some spacetime
region, every event E will be reached by a signal from each of the four satellites,
and E can be labeled by the four times at which those signals were sent. Within
some open range of clock times, every 4-tuple of clock times will determine a
unique event. Thus these four times provide a coordinatization of spacetime,
at least in some region.1 (The coordinate system will break down somewhere if
there is enough spacetime curvature to ruin the 1-1 nature of the labeling.)

This example was designed to illustrate the fact that the four coordinates
of spacetime need not be thought of as one time and three space coordinates.
There is a sense in which 4=1+3, but it arises from the nature of the causal
structure in spacetime.

1.2 Spacetime diagrams

Pictures illustrating relationships in spacetime can be drawn in perspective or
in a plane, by suppressing one or two spacelike dimensions respectively. These
pictures can be very helpful in appreciating spacetime relationships.

As an example, Figure 1.1 depicts the earth with a satellite in orbit around
it, and another satellite with a thruster rocket, hovering without orbiting at
the altitude of the orbiting satellite. The curve indicating the history of each
satellite is called the world line of the satellite.

As another example, Figure 1.2 illustrates the 4-time coordinate system
discussed above. Suppressing one spatial dimension, only three satellites are
required. The world lines of three satellites are indicated, together with an

1To go from these four times to the latitude and longitude of a receiver on the earth
involves a calculation that takes into account a model of the orbital dynamics of the
satellites and the rotation of the earth, and involves important contributions from both
gravitational and relative motion effects of general and special relativity. As a further
aside, it is amusing to note that a similar (but redundant) coordinate system has been
chosen in an attempt to communicate, to extraterrestrials, where and when we are located:
On a plaque carried by the Pioneer 10 and 11 spacecrafts, which left the solar system in
the 1970’s, our location was specified by indicating the then current rotation periods of
fourteen pulsars. As these periods are very stable, but gradually lengthening, they provide
good clocks for this purpose.
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Figure 1.1: earth

event E. Emanating down from E is a cone composed of those events that are
connected to E by light signals. The clock times t1, t2, t3 where this cone cuts
the satellite world lines are the coordinates of the event E.

Figure 1.2: 4times

1.3 Causal structure

Perhaps more fundamental than the differential structure is the causal structure
of spacetime. The causal structure specifies for every pair of events A and B
whether A can influence B, or B can influence A, or neither. These three
possibilities are mutually exclusive.2 The causal order is transitive, in the sense
that if A can influence B, and B can influence C, then A can influence C.

Because of transitivity, it is not necessary to specify the causal relations
between all pairs of events. Rather, from relations bewteen events in localized
neighborhoods covering the spacetime, relations bewteen more widely separated
events are determined by transitivity. In the continuum model of spacetime, it

2Unless, of course, there are closed timelike loops in spacetime, which is a possibil-
ity that is sometimes considered. For a recent review see, for example, K. S. Thorne,
in General Relativity and Gravitation 1992, eds. R. J. Gleiser, C. N. Kozameh, and
O. M. Moreschi (Institute of Physics Publishing, 1993), p 295.
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suffices to know the causal relations between each event E and the events in
an infinitesimal neighborhood E.

In relativistic spacetime, the causal structure in a neighborhood of each event
E is determined by a 3-dimensional surface having the topology of a double cone
whose vertex is E. This cone is called the causal cone or light cone at E. One
half of the cone is called the future cone, and the other, the past cone. Only
events lying inside or on the future cone can be influenced by E, and E can
only be influenced by events inside or on the past cone. The collection of these
cones for all events defines the causal structure in the spacetime. Actually, the
causal structure itself really consists of the collection of light cones extending
out only to an infinitesimal neighborhood of each event, since the global causal
relations can be built up from these by repetition.

Figure 1.3: cone

Figure 1.3 depicts an event and the light cone in a neighborhood of the
event. Event A is future timelike, A′ is past timelike, B and B′ are spacelike,
C is future lightlike, and C ′ is past lightlike related to E.

It is instructive to contrast relativistic causal structure with the Newtonian
one. Newtonian spacetime is also a 4-dimensional continuum. Each event E
in Newtonian spacetime lies in a 3-dimensional subspace consisting of all the
events that occur “at the same time” as E. That is, the spacetime is “layered”
into spatial surfaces of absolute simultaneity. (See Figure 1.4.) In Newtonian
physics, an event E can have a causal influence on any other event that occurs
to the future of the simultaneity surface in which E lies, and can be influenced
by events to the past. Events simultaneous with E are not causally related to
E; these are the spacelike related events.

Note that the collection of events timelike related to E is 4-dimensional
in both relativistic and Newtonian spacetime. By contrast, the collection of
spacelike related events is also 4-dimensional in the relativistic case, whereas it
is 3-dimensional in the Newtonian case.

Curves or world lines are said to be timelike, spacelike, or lightlike, according
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Figure 1.4: newton

as (infinitesimally) nearby events along them stand in those relations. Some-
times a timelike curve is referred to as an observer, since it is an idealized
representation of a history of “here and now”’s.3 Note that a timelike curve at
an event must always extend into the interior of the light cone at that event,
whereas a spacelike curve must remain outside the light cone. This is illustrated
in Figure 1.5.

Figure 1.5: curves

Just as the surfaces of simultaneity have an observer-independent status in
Newtonian spacetime, so do the light cone surfaces in relativistic spacetime.
However, whereas the Newtonian spacetime is layered or “foliated” by the si-
multaneity surfaces, the light cones of all the events of a relativistic spacetime
are mutually intersecting. This is also true even if only the future cones are
included. (See Figure 1.6).

One can, however, foliate a region of spacetime with future cones by select-
ing a particular timelike world line, and including only those cones whose vertex
lies along that world line. This is depicted in Figure 1.7.

One can suggest how a nonrelativistic causal structure arises from a relativis-
tic one by reference to Figure 1.7. If light travel times are very short compared
with other timescales of interest, then it is as if the cones are opened up and

3George Gamow’s autobiography is called My World Line.

6



Figure 1.6: tangle

Figure 1.7: bondi

flattened out. The relativistic, observer-dependent foliation of spacetime illus-
trated in Figure 1.7 then goes over into the observer-independent Newtonian
type foliation of Figure 1.4.

1.4 Metrical structure

Along any segment of a timelike worldline, a definite elapsed time exists. This is
sometimes called the proper time along the worldline. It is the time that would
be measured by an ideal clock with no spatial extension, moving along the
worldline. (The nature and properties of this temporal structure are discussed
a little bit more in section 2.5 below.) Actually, since the time intervals are
additive, it suffices to specify the time intervals along the infinitesimal timelike
displacements.

The time interval between two events depends on the world line along which
it is defined. (The twin “paradox”.) For example, a clock on the orbiting
satellite in Figure 1.1 advances less between events A and B than a clock on
the hovering satellite.4 Newtonian physics this is not the case, since each event
occurs at some absolute time, and the time interval between the events is just

4What is the timelike path with greatest elapsed time connecting A to B? See problem
??.)
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the difference between the corresponding absolute times.
There is also a spatial metric structure in spacetime, but it is determined

by the structures already discussed. Spatial distances can be defined by “light
cone radar” and timing measurements. For instance, the “distance” from A to
B in Figure 1.8 can be defined as half the time CC ′ as measured by an observer
for whom the times CA and AC ′ are equal. Although this definition depends

Figure 1.8: dist

on the observer world line, it becomes unique, to first order in displacements,
as B approaches A. Infinitesimal distances are uniquely determined in this way,
and from them the spatial lengths of finite spacelike curves can be built up by
integration. In view of this construction, and the fundamental role played by
the causal structure, a much better name for spacetime would be “timespace”.

Note that a significant rearrangement of structure has occurred in the tran-
sition from Newtonian to relativistic spacetime. In the Newtonian case, an
absolute time function defines both the causal structure (surfaces of simul-
taneity) and the temporal structure, and the spatial metric is an independently
specified piece of structure which adorns the surfaces of simultaneity. In the
relativistic case, the spatial metric can be constructed from the causal and tem-
poral structures, with no additional input. On the other hand, it takes much
more information (ten functions as opposed to one) to specify the causal and
temporal structures in the relativistic case.
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Chapter 2

Mathematical Formulation of
Spacetime Structure

In this chapter we give a precise formulation of the structures of spacetime
sketched in the previous chapter. The key idea is that, because of the transitivity
of the causal relation and the additivity of time intervals, and because one adopts
a continuum model of spacetime, it suffices to introduce structure only in the
“infinitesimal neighborhood” of each event. This neighborhood is conveniently
and precisely described by the concept of the “tangent space” at each event.

2.1 The tangent space

Suppose xµ (µ = 0, 1, 2, 3) are generic coordinates for some patch of spacetime
(with no particular metrical significance). An infinitesimal displacement at a
given point (event) is specified by differentials dxµ. In terms of a different set
of coordinates x′µ, the same displacement is specified by other differentials dx′µ.
The relation between the differentials is given, to first order in dx, by the chain
rule:

dx′µ =
∂x′µ

∂xν
dxν . (2.1)

(Here the Einstein summation convention has been employed, according to
which repeated indices are summed over their four numerical values.) To first
order, it doesn’t matter whether the partial derivatives are evaluated at the
beginning or end of the displacement, since the difference between these would
also be of first order, and hence would make a second order contribution to
(2.1).) Thus, for a given infinitesimal displacement, the differentials in one
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coordinate system are linearly related to those in another by the Jacobian matrix
∂x′µ/∂xν of the transformation. It is to be understood here and below that
terms of higher order in the displacements are neglected. Thus the relations are
strictly valid if used in the limit where the displacement goes to zero.

The linearity of the relationship 2.1 means that it makes sense to talk about
the addition of two infinitesimal displacements, independently of the choice of
coordinates used to describe them. If two such displacements are labeled by
(dxµ)1 and (dxµ)2 in one coordinate system, and by (dx′µ)1 and (dx′µ)2 in
another, then we have

(dxµ)1 + (dxµ)2 =
∂xµ

∂x′ν

(
(dx′µ)1 + (dx′µ)2

)
.

That is, the differential (dxµ)1 + (dxµ)2 is related to (dx′µ)1 + (dx′µ)2 in ex-
actly the way (2.1) required for them to label the same displacement. Thus the
addition of infinitesimal displacements is well defined. Similarly, scalar multipli-
cation of displacements is well defined. Thus, the infinitesimal displacements
at each point of spacetime constitute a vector space. This vector space is four
dimensional since, for example, dx0, dx1, dx2 and dx3 form a basis.

It should be emphasized that while the infinitesimal displacements at a point
form a vector space, the spacetime itself is not a vector space. For suppose two
points are labeled by (xµ)1 and (xµ)2 in one coordinate system, and by (x′µ)1

and (x′µ)2 in another. Then in general the point labeled by (xµ)1 + (xµ)2 is
different from the point labeled by (x′µ)1 + (x′µ)2, because the transformation
relating the coordinates xµ and x′µ is in general not linear. Unless there is a
preferred set of coordinates in terms of which the addition of points can be
defined, the addition of points remains meaningless. The same goes for finite
displacements.

The concept of infinitesimal displacements at a point can be expressed with-
out the use of infinitesimal quantities as follows. Suppose xµ(λ) describes a
curve, parametrized by a real number λ. Then the four numbers dxµ/dλ|λ=0

transform under a coordinate change by the same linear transformation law as
do the differentials (2.1),

dx′µ

dλ
=
∂x′µ

∂xν
dxν

dλ
. (2.2)

Thus the collection of such curve derivatives also forms a 4-dimensional vector
space, called the tangent space at xµ(0). The members of the tangent space
are called tangent vectors.

Multiplying the tangent vector dxµ/dλ by the infinitesimal parameter incre-
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ment dλ yields an infinitesimal displacement,

dxµ =
dxµ

dλ
dλ. (2.3)

In this sense, the tangent space at a point can be thought of as an infinitely
magnified copy of the space of infinitesimal displacements from that point. It
should be emphasized however that the tangent vectors do not lie “in” the
manifold. Rather, they live in the tangent space, which may perhaps be usefully
pictured as “hovering over” the corresponding point in the manifold.

2.2 The line element

The causal and metrical structures are both characterized by the line element
ds2. The line element is a quadratic form that assigns to every infinitesimal
displacement dxµ a number,

ds2 = gµν dx
µdxν . (2.4)

Equivalently, we can think of the quadratic form as assigning to each tangent
vector vµ a number, v2 ≡ gµνv

µvν . v2 is called the squared norm of vµ.
(Sometimes we are sloppy and call v2 the norm.)

Displacements with ds2 = 0 (or vectors vµ with gµνv
µvν = 0) are called

lightlike or null. This is how the line element specifies the causal structure.
The null vectors comprise the light cone or null cone, which is assumed to be
a 3-dimensional double-cone that falls apart into two disconnected pieces if the
origin (zero vector) is removed. The null vectors will comprise a cone of this
nature provided the quadratic form is nondegenerate and has signature +2, as
will be explained below.

The light cone separates the tangent space into the timelike vectors that
lie in the interior of the lightcone, and the spacelike vectors that lie in its
exterior. For a timelike displacement,

√
−ds2 gives the time elapsed along that

displacement, also called the “proper time”. For a spacelike one,
√
ds2 gives the

spatial length. This definition of spatial length agrees with that defined by the
“radar timing” described above in section 1.4. (This is easily demonstrated by a
computation in the tangent space. See problem 5.) In a limiting sense, along a
lightlike displacement the elapsed time and the spatial length both vanish. The
physical interpretation of this statement is not clear however, since a physical
clock cannot travel along a lightlike worldline.
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The line element is also sometimes called the spacetime interval or the
metric, although the latter term more commonly refers to the array gµν . The
metric is assumed to be symmetric (gµν = gνµ), since only the symmetric part
would enter ds2 anyway. It therefore amounts to 10 independent numbers at
each spacetime point. In general, these numbers depend on the spacetime
point, so it is really 10 functions. These functions are usually assumed to vary
smoothly.

The line element has an invariant physical significance, so it must not change
if the coordinates are changed. Thus, to compensate the change (2.1) of the
differentials, the functions gµν must change as well. In particular, if the coordi-
nates are changed to x′µ, we have

g′µν dx
′µdx′ν = gµν dx

µdxν = gµν
∂xµ

∂x′α
∂xν

∂x′β
dx′αdx′β. (2.5)

Since (2.5) holds for all displacements dx
′α one evidently (Problem 6) must

have1

g′αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν . (2.6)

Thus, under a change of coordinates, the metric components transform linearly
via contraction of each index with the inverse of the Jacobian of the transforma-
tion xµ → x

′µ. The linear relation (2.6) between g′αβ and gµν is an example of
a tensor transformation law, generalizing the vector transformation law (2.2),
and the metric gµν is an example of a tensor.

As mentioned above, a spacetime line element must have the property that
ds2 = 0 determines a cone. It turns out that this condition on the metric
tensor gµν is equivalent to the requirement that, in the neighborhood of each
spacetime point, one can find coordinates (t, x, y, z) such that at that point
(but not in general anywhere else) the line element takes the form

ds2 = −dt2 + dx2 + dy2 + dz2, (2.7)

i.e., the metric components take the values ηµν := diag(−1,+1,+1,+1). A
metric having this property is called a Lorentzian metric, and ηµν is called the
Minkowski metric. We use here “geometrical units,” in which the speed of
light is equal to unity, and time and length are measured in the same units.

The Lorentzian condition on the metric is also equivalent to the requirement
that in each tangent space, the quadratic form defined by g(v, v) ≡ gµνvµvν be

1In order to obtain (2.6), the dummy indices µ, ν are traded for α, β in the leftmost
member of (2.5). Such index substitutions are a common procedure in computations with
tensors.
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nondegenerate and have signature equal to 2. That is, for any “orthonormal”
basis {ei} satisfying g(ei, ej) = ±δij , the number of positive norm vectors minus
the number of negative norm ones is 2. (That is, there is exactly one negative
norm vector in an orthonormal basis.) That there always exists an orthonormal
basis, and that the signature is independent of the choice of this basis, is proved
in problem 3.

A useful diagnostic for testing whether a metric has signature 2 in four
dimensions is to compute its determinant. Although the determinant is not
basis independent, its sign is basis independent. (Problem 4.) The sign of the
determinant is positive for signatures 0 and ±4, and negative for signatures ±2.
To distinguish signature 2 from −2 one can further check, for example, whether
there exist at least two orthogonal positive norm vectors.

Important properties of a Lorentzian metric in the tangent space are devel-
oped in the problems at the end of this chapter.

2.3 Local inertial coordinates and curvature

It may seem that by coordinate transformations one can make the metric have
any form at all, however this is clearly not the case. There are 10 independent
functions in the metric, but only 4 free functions in coordinate transformations.
Thus, while there is indeed alot of freedom to alter the components of the
metric tensor by coordinate transformations, there are 6 functions of invariant
information coded into the metric tensor.

As stated above in section 2.2, one can always find coordinates around any
given point x0 such that a Lorentzian metric takes the Minkowski form (2.7) at
x0, gµν(x0) = ηµν . If one begins with gµν given in arbitrary coordinates xµ, the
Minkowski condition g′µν = ηνµ can be viewed as 10 equations on the 16 partial
derivatives in the Jacobian matrix ∂xµ/∂x′α appearing in the transformation
law (2.6). As long as the signature of g′µν is +2, the Minkowski form can be
achieved at x0 by a coordinate transformation with 6 degrees of freedom in the
first partials to spare (and total freedom in the higher partials).

One thus expects that there is a 6 parameter family of Jacobian matrices that
leave any given gµν invariant under the tensor transformation law (2.6). This
6 parameter family of linear transformations in the tangent space that preserve
the metric is called the local Lorentz group. In terms of local coordinates in
which the metric takes the Minkowski form (2.7), the Lorentz group consists of
combinations of rotations amongst the spatial coordinates (x, y, z), and boosts,
which mix t with the other coordinates and correspond to transformations to a
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relatively moving reference frame.
Let us now systematically try to find coordinates in the neighborhood of

x0 that give the line element the Minkowski form. This will show us where
the obstruction occurs. Suppose that in the coordinate system xµ we have
gµν(x0) = ηµν . Any coordinate transformation x → x′ whose Jacobian is a
Lorentz transformation at x0 will preserve this Minkowski form. Now, using
some of the remaining freedom in the choice of coordinates, one can always
arrange for all of the first partial derivatives of gµν to vanish at x0. Indeed, the
condition g′µν,γ = 0 is 10× 4 = 40 equations, where the comma notation “, γ”
denotes partial differentiation with respect to x′γ . Using the transformation law
(2.6) this condition becomes 40 equations on the quantities ∂2xµ/∂x′γ∂x′α,
which are also effectively 40 in number due to the commutivity of of partial
derivatives. These 40 equations are linear and can always be solved uniquely for
the second partials. Thus, the vanishing of g′µν,γ completely fixes the second
partials of the coordinate transformation, once the first partials are fixed.

A coordinate system in which gµν(x0) = ηµν and gµν,γ(x0) = 0 is called a
local Minkowski coordinate system at x0, or a local inertial coordinate sys-
tem. The existence of such coordinates expresses the fact that any Lorentzian
manifold looks, “up to one derivative of the metric”, like Minkowski space in
the neighborhood of each point.

Can we further specify the coordinates to that the second partial derivatives
gµν,αβ also vanish at x0? These partials amount to 10 × 10 = 100 indepen-
dent quantities. On the other hand, the new functions that will appear in the
transformation law for the second partials are ∂3xµ/∂x′α∂x′β∂x′γ , and these
comprise only 4× 20 = 80 independent numbers. (The number of independent
components of a totally symmetric, three index object Tαβγ is n(n+1)(n+2)/3!
if each index ranges over n values. See Problem 7.) This means that in gen-
eral one cannot arrange for all the second partials gµν,αβ to vanish at a given
point. In the generic case, at least 20 of these second partials must remain
non-vanishing.

Suppose that around every point, a coordinate system (which depends on
the point) exists in which all of the first and second partials of gµν vanish at
that point. Then, although it is not at all obvious, it turns out that there exists
a single coordinate system in which gµν = ηµν everywhere. More precisely, this
is true at least in a coordinate patch of finite size. In this case the spacetime is
said to be flat. If a single such coordinate patch covers all of spacetime, this is
the spacetime of special relativity, called Minkowski space.

If, on the other hand, there are points at which the first and second partials
of gµν cannot be simultaneously set to zero by a choice of coordinates, then
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the metric is said to be curved. The fundamental idea of general relativity is
that curvature of the metric corresponds to gravitational tidal forces.

As a simple example, consider the line element

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (2.8)

which describes a spatially flat and homogeneous cosmology, in which the flat
spatial metric has a time-dependent scale factor a2(t). Since a(t) is only one
function, and there are four free functions worth of coordinate transformations
available, one might suspect that the line element (2.8) is a flat line element in
disguise. However, this is not the case. If a(t) depends on t, then in fact one can
not find a change of coordinates that will put (2.8) into the Minkowski form (2.7)
everywhere. This is the case for our universe which, to some approximation,
can be described at large scales by a line element of the form (2.8), with a
increasing approximately as t2/3, where t is the time measured by a clock at
rest with respect to the microwave background radiation.

Another example, involving the Riemannian signature metric on the unit
sphere, is given in Problem 10.

2.4 Relation between causal and metrical struc-
tures

It is profoundly beautiful how the line element combines the causal and metrical
structures into one. By contrast, in Newtonian physics, the causal and temporal
metric structures are specified by the absolute time function t or, equivalently,
by the differential dt. But this leaves completely unspecified the spatial metric.
Thus, in addition to dt, Newton must specify a spatial metric dl2 = hijdx

idxj ,
where xi, (i = 1, 2, 3) are spatial coordinates.

It may seem that more than one function on spacetime is required to specify
the temporal metric in relativity, since the ten independent components of the
metric are needed to assign a time interval to all possible timelike displacements.
In fact, once the causal structure has been specified, only one additional function
is required to pin down the metric. To see why this is true, first note that
two metrics gµν and Ω2gµν related by an overall positive factor Ω2 define the
same light cones. (The two metrics are said to be conformally related by the
conformal factor Ω2.) Conversely, if two metrics define the same light cones
they are necessarily conformally related. To verify this, it suffices to analyze the
situation in the tangent space at a point as follows.
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Let us adopt the dot product notation v · w := gµνv
µwν . The dot product

v ·w is also called the inner product of v with w, and v · v is called the squared
norm or sometimes (sloppily) just the norm of v. All inner products v · w can
be expressed in terms of norms via v ·w = 1

2 [(v+w) · (v+w)−v ·v−w ·w], so
it suffices to determine all norms. Suppose we are given the light cone, i.e., all
the vectors n for which n ·n = 0. Fixing any timelike vector t, we will determine
all other norms in terms of t · t.

Let v be any vector. The plane formed by v and t is spanned by a basis of
two null vectors l and n that add up to t, t = l+n. (See Figure 2.1.) Thus we

Figure 2.1: vtplane

can always express v as v = αl+βn for some numbers α and β. Then we have

v · v = (αl + βn) · (αl + βn) (2.9)
= 2αβ l · n (2.10)
= αβ (l + n) · (l + n) (2.11)
= αβ t · t, (2.12)

where linearity of the inner product and l · l = 0 = n · n have been used.
We have shown that all inner products are determined by the light cone plus

the norm of one timelike vector, t · t. This number just determines the overall
scale of the metric. That is, we have the equation

metric = causal cone + scale.

Thus, although we call gµν the “metric”, it is in large part ( 9
10) just the causal

structure!

2.5 Deep background

Our attribution of differential, causal and metric properties to spacetime is
based ultimately on the possibility of making certain kinds of measurements.
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The physical processes by which these structures are determined have some
fundamental limits of resolution imposed by their quantum nature, if nothing
else.

It is an idealization when we extrapolate these notions to infinitesimal re-
gions of spacetime. Even the assumption that spacetime is a continuum with
a differentiable structure is an idealization whose validity is surely limited. A
c-number coordinate defined by a physical process is ony meaningful in some
classical approximation. The true coordinates, one would think, must be q-
numbers if they are fundamentally meaningful at all. Nevertheless, it is this
classical, continuum idealization that we make in setting up the foundation for
doing physics.

Having accepted the idealization, it is still interesting to attempt to char-
acterize its assumptions in as fundamental a manner as is possible. One such
attempt appears in a classic paper by Ehlers, Pirani and Schild2 (EPS), which
develops a system of axioms for spacetime structure in terms of topological and
differential axioms about the properties of freely falling massive and massless
point particles.

One deep question is why the causal cone is given by a quadric in the tangent
space. After all, one can easily imagine a partial ordering relation that arises
from an infinitesimal conical structure which is not a quadric. In the EPS paper,
the quadratic nature of the light cone is derived from their axioms. This is not
very satifying however, since one of the axioms is not particularly physically
natural.3

Aside from any axioms, there is a special property of quadrics that might
underlie the fact that the causal structure is given by one. Namely, quadrics
have the largest possible symmetry group of any conical subset of the tangent
space.4 This is the Lorentz group, together with the conformal rescalings, a
group with 7 continuous parameters.

From time to time people try to generalize the notion of the spacetime
metric to allow for non-quadratic line elements. These go under the rubric

2J. Ehlers, F.A.E. Pirani, and A. Schild, “The Geometry of Free Fall and Light Prop-
agation,” in General Relativity; Papers in Honor of J.L. Synge, Oxford, Clarendon Press,
1972.

3The axiom in question can be described with reference to Fig. 1.8. Fixing the timelike
curve through A and an arbitrary smooth parameter λ along the curve, the axiom states
that the function f(B) = λ(C)λ(C′) is a twice differentiable function on spacetime. (See
Axiom L1 of the EPS paper.)

4I should have a reference for this but I don’t know of one. Perhaps Herman Weyl
proved it. Perhaps it is not even true (see Problem 11).
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“Finsler metrics”.5 It seems that in order to generalize known physical theories
to non-quadratic Finsler metrics one must introduce further structure (e.g. a
spacetime volume element) and the result is not nearly as simple or “natural”
as it is when a quadratic metric is the sole structure. Nevertheless, of course,
it might be that the simple, quadratic metric is only an approximation that can
be improved by Finslerian corrections.

Another deep question is what is the origin of the differential structure of
spacetime? As remarked in section 1.1, as a point set, the same set of events
could be given many different differential structures, even of different dimension.
So the differential structure is real physical input in the theory. Where does it
come from? In the EPS paper it is put in in the axioms, in a way that refers to
the behavior of particle world lines and light rays.

Further insight into the origin of differential structure is provided by a rather
remarkable fact: It turns out that not only does the causal structure determine
the metrical structure up to a function, but it determines the differential struc-
ture of spacetime as well! Stated more precisely, it has been shown6 that if two
manifolds with Lorentzian metrics (M, g) and (M ′, g′) are causally isomorphic
as causal sets, then they are necessarily diffeomorphic as manifolds (via a dif-
feomorphism that is a conformal isometry.) There is thus a stunning economy
of structure in relativity, since the causal structure determines all spacetime
structure except the conformal factor.

In view of the above observations, it would seem extremely natural to build
up the theory of spacetime structure beginning not with a differentiable mani-
fold, but with just a set of events, together with a causal partial ordering relation.
There is a catch however. An arbitrary partial order on a set of events will not in
general be the causal order induced by a Lorentzian metric on a manifold, even
if the set of events is uncountably infinite. Nevertheless, the study of discrete
(“locally finite”) causal sets as a possible foundation for a quantum theory of
spacetime and gravity is being actively pursued.7

The existence of an intrinsic time interval associated to any timelike displace-

5See, e.g., Finsler geometry, relativity and gauge theories, G.S. Asanov (Reidel, 1985).
6It follows from a pair of theorems proved in S.W. Hawking, A.R. King, and P.J. Mc-

Carthy, “A new topology for curved space-time which incorporates the causal, differential,
and conformal structures,” J. Math Phys. 17, 174 (1976), and D. Malament, “The class of
continuous curves determines the topology of spacetime”, J. Math Phys. 18, 1399 (1977).

7See, for example, G. ’t Hooft, “Quantum Gravity: A Fundamental Problem and Some
Radical Ideas,” in Recent Developments in Gravitation, Cargèse 1978, edited by M. Levy
and S. Deser (Plenum, New York, 1979); L. Bombelli et al, “Spacetime as a Causal Set,”
Phys. Lett. 59, 521 (1987); Comment and reply, 60, 655-56; R.D. Sorkin, “Spacetime and
Causal Sets,” in Proceedings of SILARG VII Conference, Mexico City, 1990.
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ment is another deep mystery. The fact is that, in Nature, there are systems that
can serve as clocks. It seems to be the case that fundamental systems all march
to the beat of the same drummer, in the following sense: there is a large class
of physical systems that mark time in a commensurate fashion. For instance,
an atomic clock, a lump of decaying Carbon-14, and a rapidly spinning neutron
star all “sitting next to each other” will indicate the same time interval between
two given events along their common world line (once perturbing effects and the
finite extent of the clocks are taken into account). It is truly remarkable that
such a large collection of commensurate clocks exists in nature, and also that
there seems to be only one such mutually commensurate collection. Perhaps
the existence of a unique set of commensurate clocks should be traced to the
existence of a common volume element in spacetime, as described below.

We have remarked already that the metric can be determined by the causal
structure together with the norm of any one timelike vector. Instead of selecting
a timelike vector however, a more symmetrical piece of information that can
serve just as well to set the scale of the metric is the spacetime volume element.
Mathematically, this is given by

√
−detg dx0dx1dx2dx3 in a given coordinate

system. Since it seems somewhat less direct to measure the spacetime volume
of a region than it does to read a clock, one may be disinclined to think of the
volume element as fundamental. On the other hand, the volume element plays
a crucial role in writing down the action functionals which, it may be said, are
the cornerstone of contemporary physical theory. In the context of the discrete
causal sets mentioned above7, a discrete notion of volume is defined simply by
counting the finite number of events in a given region. Thus the extra piece of
information needed to go from causal structure to metric is inherently present
in a discrete causal set. In this sense, all of the elements of spacetime structure
are embodied in the notion of a discrete causal set.

2.6 Problems

1. Show graphically and confirm algebraically that

(a) the sum of two future pointing timelike or non-parallel null vectors
is a future pointing, timelike vector.

(b) the sum of two timelike or null vectors can also be spacelike or null;

(c) the sum of two null vectors can be null only if they are parallel;

(d) the sum of two spacelike vectors can be timelike, spacelike, or null;
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(If you wish you may choose coordinates so that any given timelike, null,
or spacelike vector is in one of the standard forms (a,0,0,0), (a,a,0,0),
or (0,a,0,0) respectively, for some number a. These forms can always be
achieved by a Lorentz transformation. This entails no loss of generality,
since the properties in question are Lorentz-invariant.)

2. Show that

(a) the sum of any two orthogonal spacelike vectors is spacelike;

(b) a timelike vector and a null vector cannot be orthogonal;

(c) a spacelike vector and a null vector can be orthogonal;

(d) two null vectors cannot be orthogonal, unless they are parallel.

(As in the previous problem, you may assume a standard form for any one
vector.)

3. Prove that the signature of the metric is a true invariant, i.e. it is inde-
pendent of coordinates (or basis in the tangent space). This is a problem
in linear algebra. One way to solve it is to generalize the problem some-
what as follows. Let V be an n-dimensional vector space, and let g be a
quadratic form on V , i.e., a symmetric, bilinear map from V × V to the
real numbers.

(a) Show that one can always find an orthonormal basis e1, ..., en of V ,
i.e. a basis such that g(ei, ej) = ±δij . (Hint: Use induction.)

(b) The signature of g is defined as the number of positive norm ba-
sis vectors in an orthonormal basis minus the number of negative
norm ones. Show that the signature is independent of the choice of
orthonormal basis.

4. Show that while the magnitude of the determinant of the metric depends
on the coordinate system, the sign does not.

5. Show that
√
ds2 for infinitesimal spacelike intervals is the same as the

distance defined by “radar timing” in section 1.4. This seems to be most
clearly formulated as a property of the metric in the tangent space: if a
spacelike vector s is related to a timelike vector t and two null vectors n
and n′ by n = t + s and n′ = t − s as shown in Figure 2.2, then the
squared length s2 = g(s, s) assigned to s by the metric is equal to the
“radar-distance” −t2.
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Figure 2.2: radar

6. Show that if Tαβ V
αV β = 0 for all V α then the symmetric part T(αβ) ≡

(Tαβ + Tβα)/2 of Tαβ must vanish.

7. Show that number of independent components of a totally symmetric k
index object Tα1...αk is n(n + 1) · · · (n + k − 1)/k! if each index ranges
over n values. (This implies in particular that the number of independent
components of ∂3x

′µ/∂xα∂xβ∂xγ is 4×20 in four spacetime dimensions.

8. Show that the cosmological line element (2.8) gives a flat spacetime if
and only if a is a constant. (Note: The two dimensional submanifold at
fixed y and z is also flat if a is proportional to t.)

9. The two-dimensional line element ds2 = −dt2 + t2 dx2 is actually flat.
Show this by finding a coordinate transformation to new coordinates τ and
σ in terms of which one has ds2 = −dτ2 + dσ2. Draw lines of constant t
and x on a rectangular τ -σ spacetime diagram. What region of the τ -σ
Minkowski space is covered by the t-x coordinate patch?

10. In standard spherical coordinates (θ, φ) on the unit sphere, the line ele-
ment takes the form ds2 = dθ2 + sin2θ dφ2.

(a) Show that (θ, φ) provide a local Euclidean coordinate system (gij =
δij and gij,k = 0) at every point on the equator (θ = π/2), but not
anywhere else on the sphere.

(b) Show that, even at the equator, the second partial derivatives of the
metric components in (θ, φ) coordinates do not all vanish.

(c) Argue that no change of coordinates can transform the line element
into the Pythagorean line element ds2 = dx2 + dy2 in any finite
patch of the sphere.
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11. Prove or disprove the statement that any non-quadric cone would have
a smaller symmetry group in the tangent space than the 7 parameter
(Lorentz transformations plus scalings) of a quadratic cone.
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Chapter 3

Free-fall and Geodesics

According to general relativity, if a particle is not acted upon by any (non-
gravitational) forces, it is said to be in free-fall, or inertial motion. Different
gravitational fields are described by different spacetime metrics, and the possible
inertial motions of a particle are determined by the metric. If true gravitational
effects are present, the metric has curvature, which manifests itself via the rela-
tive accelerations of freely falling objects. Such gravitationally induced relative
acceleration is said to be caused by “tidal forces”, even though, from the per-
spective of general relativity, there are no “forces” acting. In this chapter we will
characterize the inertial motions of idealized test particles that follow timelike
curves and idealized light rays that follow lightlike curves.

3.1 Curves

A curve in spacetime is a smooth function xµ(λ). Smoothness implies that
the curve has a well-defined tangent vector dxµ/dλ at each point along the
curve. A curve is timelike, spacelike, or lightlike according as its tangent vector
is everywhere timelike, spacelike, or lightlike respectively. A lightlike curve is
also called a null curve.

The elapsed proper time along a timelike curve is given by
∫ √
−ds2, which

can be expressed as
∫

(−gµν ẋµẋν)1/2 dλ, where ẋµ denotes the tangent vector
dxµ/dλ to the curve. A similar expression without the − sign gives the proper
length of a spacelike curve. Note that, as required, these length integrals are
independent of the parametrization of the curve (Problem 1). A lightlike curve
has vanishing proper time/length along it.

If a timelike curve is parametrized by proper time, the norm of the tangent
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vector is everywhere equal to −1:

gµν ẋ
µẋν = (gµνdxµdxν)/dτ2 = −dτ2/dτ2 = −1. (3.1)

(Similarly, a spacelike curve parametrized by its own length has a tangent vector
of unit norm.) Thus it is often convenient to parametrize a timelike curve by
the proper time along it.

3.2 Inertial motion

The inertial or free-fall world lines xµ(τ) parametrized by proper time τ can be
characterized by the following property:

An inertial world line is one for which the coordinate accelera-
tion d2xµ/dτ2 at each point p vanishes when evaluated in a local
inertial coordinate system at p.

The metric determines these free-fall motions, since it is the metric that selects
out the local inertial coordinates from among all possible coordinates.

It is important to understand that this condition of vanishing acceleration
does not depend on which local inertial coordinate system is used at p. To see
why, note that under a coordinate change xµ → x′µ, the velocity transforms as
in eqn. (2.2), hence the acceleration transforms as follows:

d2x′µ

dτ2
=
∂x′µ

∂xα
d2xα

dτ2
+

∂2x′µ

∂xα∂xβ
dxα

dτ

dxβ

dτ
(3.2)

A transformation from one inertial coordinate system at p to another must have
vanishing second partial derivatives at p in order to preserve the condition that
gµν,ρ(p) = 0. (See section 2.3.) Thus the coordinate acceleration transforms
linearly as a 4-vector at p under a change from one inertial coordinate system
to another. In particular, the condition that it vanish at p is independent of
the choice of local inertial coordinates at p. On the other hand, in an arbitrary
coordinate system, the coordinate acceleration will certainly not vanish.

The characterization of inertial world lines given above is almost totally im-
practical since, in a general curved spacetime, it necessarily refers to a different
local inertial coordinate system at every point. It would be much better to be
able to identify inertial motion in an arbitrary coordinate system. One way to
find such a characterization is to begin with a coordinate invariant description
as follows.
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Recall the twin effect of special relativity. The proper time between two
events is maximized by the inertial (i.e., straight in inertial coordinates) world
line that connects them. Since an inertial world line in a general curved space-
time looks (to second order) like a straight line in a local inertial coordinate
system in the neighborhood of each point, it should maximize the proper time
between infinitesimally separated points along it. Therefore the total proper
time connecting the fixed endpoints of the curve should be stationary under
a large class of infinitesimal variations of the curve. In fact, as will now be
shown, the total proper time is stationary under all infinitesimal variations.1

Furthermore, since this stationarity condition is manifestly independent of co-
ordinates, it will yield a characterization of inertial motion that is applicable in
any coordinate system.

The proper time along a word line can be written as

S =
∫ √
−Ldλ, (3.3)

with L is defined by
L ≡ gµν ẋµẋν , (3.4)

where the notation is as above. The condition that xµ(λ) be a stationary point
of the proper time (3.3) yields the Euler-Lagrange equations for the Lagrangian√
−L:

d

dλ

∂
√
−L

∂ẋα
− ∂
√
−L

∂xα
= 0. (3.5)

As long as L 6= 0, (3.5) is equivalent to

(
d

dλ
+

1
2
L−1L̇)

∂L

∂ẋα
− ∂L

∂xα
= 0. (3.6)

In order to simplify (3.6) let us now specify that the originally arbitrary
parameter λ is in fact τ , the proper time along the curve. Then, since with
that parameter L = −1 (cf. (3.1)), we have L̇ = 0, and the Euler-Lagrange
equation for the Lagrangian

√
−L becomes identical to that for L,

d

dλ

∂L

∂ẋα
− ∂L

∂xα
= 0. (3.7)

1Although the proper time is stationary, it is in general not a local maximum if the
endpoints are sufficiently separated. By analogy, on a sphere, a segment of a great circle
going more than halfway around the sphere is a geodesic, but it is not the shortest curve
between its endpoints.
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Using the definition (3.4) of L, (3.7) becomes

d

dλ
(gαν ẋν)− 1

2gµν,α ẋ
µẋν = 0. (3.8)

The stationarity condition δS = 0 leading to (3.8) is coordinate indepen-
dent, so (3.8) must hold in any coordinate system. That is, if it holds in one
coordinate system, it will necessarily hold in any other coordinate system. (This
can also be verified directly by expressing (3.8) in new coordinates using the
transformation rules for ẋµ (2.2) and gµν (2.6). See Problem 2.) If we choose
a coordinate system that is locally inertial at xµ(τ0) then, at τ = τ0, (3.8)
becomes simply ẍµ(τ0) = 0. Thus (3.8) is in fact equivalent to the statement
that xµ(τ) is an inertial world line as defined at the beginning of this section.
The important thing is that (3.8) holds in any coordinate system, so that local
inertial coordinates need not be invoked in order to characterize the inertial
motion.

Note that equation (3.8) is a set of four coupled ordinary second order differ-
ential equations on the four functions xµ(τ). Thus the initial spacetime position
and 4-velocity of an inertial test particle uniquely determine its subsequent mo-
tion.

3.3 Lightlike free-fall and geodesics

Lightlike inertial motion cannot be characterized with reference to proper time
parametrization since the proper time along a lightlike curve vanishes. However
this does not prevent us from characterizing such motion in essentially as simple
a manner as in the timelike case. To this end, it is useful to generalize the
language slightly and introduce the concept of a geodesic. In all generality, a
geodesic is a curve xµ(λ) with the property that the coordinate acceleration
d2xµ/dλ2 at any point p is parallel to the velocity dxµ/dλ at p when expressed
in a coordinate system that is locally inertial at p. (It is assumed in this definition
that the parametrization is non-singular, in the sense that dxµ/dλ is everywhere
non-zero.) This definition of geodesics is independent of which locally inertial
coordinate system is used at p, for the same reason as explained above in the
timelike case. It is also independent of the parametrization of the curve, as can
easily be seen directly by examining the effect of reparametrizing a curve.

Under a change of parameter λ→ σ, the velocity and acceleration become

dxµ

dσ
=

dλ

dσ

dxµ

dλ
(3.9)
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d2xµ

dσ2
=

(dλ
dσ

)2 d2xµ

dλ2
+
(d2λ

dσ2

) dxµ
dλ

. (3.10)

If d2xµ/dλ2 and dxµ/dλ are parallel at a point, then d2xµ/dσ2 and dxµ/dσ
are evidently also parallel at that point, so the property of being a geodesic is
independent of the parametrization.

One can always reparametrize a geodesic so that the acceleration vanishes,
rather than just being parallel to the velocity. A geodesic parameter for which
the acceleration vanishes is called an affine parameter. If λ and σ are both
affine parameters, then the d2λ/dσ2 term in (3.10) must vanish, so they must
be linearly related as λ = aσ+ b for some constants a and b. That is, the affine
parameter along a geodesic is determined up to an overall scale and an additive
constant. For timelike geodesics the proper time is an affine parameter, as is
the proper length for spacelike geodesics.

Alternatively, a geodesic can be defined as a curve satisfying the “geodesic
equation” (3.8), with the “overdot” indicating derivative with respect to the
parameter of the curve (not necessarily the proper time). In a local inertial co-
ordinate system at p, the geodesic equation reduces to the statement that the
coordinate acceleration vanishes at p. Thus eqn. (3.8) should more explicitly
be called the geodesic equation for affinely parametrized geodesics. Under an
arbitrary reparametrization (3.8) will no longer hold and the coordinate acceler-
ation will no longer vanish. Nevertheless the acceleration will necessarily remain
parallel to the velocity, as was shown above.

Note that the timelike, null, or spacelike character of a geodesic is necessarily
preserved along the curve. To see this, evaluate the scalar d

dλ(gµν ẋµẋν) along
an affinely parametrized geodesic. In a local inertial coordinate system at a
point p the derivative of gµν will vanish and, since the parameter is affine, the
derivative of ẋµ will vanish. Thus the whole expression vanishes. Since it is
a scalar, it will vanish in any coordinate system, so the squared norm of the
tangent vector must be constant along an affinely parametrized geodesic.

The concept of affine parameter for a lightlike geodesic is somewhat elusive,
for a couple of reasons. For one thing, a general lightlike curve that is not a
geodesic has no preferred parametrization. Affine parametrization is meaningful
in the lightlike case only for curves that are geodesics, whereas any timelike (or
spacelike) curve has a proper time (or length) parametrization which is affine if
the curve happens to be a geodesic. For another thing, all overall scalings for
the affine parameter of a lightlike geodesic are on an equal footing, whereas in
the timelike (or spacelike) cases the proper time (or length) serves as a naturally
preferred affine parameter. It is perhaps helpful to note that one can think of the
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affine parameter along a lightlike geodesic as measuring the fraction of proper
time along an infinitesimally nearby timelike geodesic. Even though the proper
time is going to zero, one can fix initial and final points and then this fraction is
finite. The arbitrariness of the scale of the affine parameter then corresponds to
the arbitrariness of the choice of initial and final points used in this construction.

3.4 Conserved quantities along a geodesic

If the metric is independent the coordinate xα̂ in some coordinate system {xµ},
then the geodesic equation (3.8) immediately yields a conservation law,

d

dλ
(gα̂ν ẋν) = 0, (3.11)

where λ is any affine parameter for the geodesic. This is just a special case of the
familiar fact that if a Lagrangian L is independent of a particular coordinate xα̂,
then the Euler-Lagrange equations (3.7) imply that the conjugate momentum,
πα̂ := ∂L/∂ẋα̂, is a conserved quantity.

Associated with the symmetry of the spacetime under translations of xα̂

(while holding fixed the remaining coordinates {xµ}) there is a vector field
ξµ, called a Killing vector for the metric. ξµ is defined by specifying that,
in the coordinate system {xµ}, all components of ξµ vanish except for the
α̂-component which is unity. That is, in the coordinate system {xµ},

ξµ := δµα̂. (3.12)

In terms of ξµ, the corresponding conserved quantity can be written as

gµνξ
µẋν . (3.13)

That is, the conserved quantity is the inner product of the Killing vector with
the geodesic tangent vector.

3.5 Field theory in curved spacetime

In this chapter we have seen how a “gravitational field” affects the motion of
test particles and light rays. This will suffice for most of the elementary consid-
erations that are encountered in the initial study of general relativity. However,
if one wishes to describe the propagation of fields, such as the electromagnetic

28



field or even quantum fields, in a curved spacetime, it becomes necessary to for-
mulate the relevant field equations in a generic, curved spacetime. The guiding
principle here is the same as that which motivated the notion of a geodesic:
in an infinitesimal neighborhood of each event the field equations should agree
with those in flat Minkowski space. More precisely, when examined in local
inertial coordinates at a point, the field equations should agree. In fact this is
perhaps too strong a requirement, since it is a matter of observation to deter-
mine whether this correspondence is precise, or only approximate. It is possible
that there are local curvature “corrections” to the field equations that are not
detectable in flat, or nearly flat, spacetime.

3.6 Problems

1. Show that the proper time integral
∫

(−gµν ẋµẋν)1/2dλ is independent of
the parametrization of the curve.

2. Since the stationarity condition δS = 0 leading to (3.8) is coordinate
independent, (3.8) will hold in any coordinate system if it holds in one co-
ordinate system. Verify this directly by expressing (3.8) in new coordinates
using the transformation rules for ẋµ (2.2) and gµν (2.6).

3. Use the variational principle δ
∫
gij ẋ

iẋj = 0 to find the equation satisfied
by (affinely parametrized) geodesics on the unit 2-sphere. Show that the
solutions to this equation are precisely the great circles. (You may use
spherical symmetry to simplify your task.) Using the fact that spherical
coordinates are locally Euclidean on the equator (Problem 10), give an
independent argument showing that the equator is a geodesic.

4. In Chapter 1 an example was mentioned involving two satellites, one orbit-
ing the earth (in free-fall) at fixed radius, and the other hovering without
orbiting (along an accelerated world line) at the same fixed radius and
constant angular position (Fig. 1.1). Suppose both satellites are in the
equatorial plane θ = π/2, with the hovering one fixed at φ = 0. Using
the line element for a static, spherically symmetric empty spacetime, show
that the proper time between two successive encounters (events A and
B in the figure) is longer along the world line of the hovering satellite.
Is the proper time a local maximum along the orbiting world line? Along
the hovering world line? Describe the world line along which the proper
time is an absolute maximum between events A and B.
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5. Show that conformally related metrics gµν and Ω2gµν (with Ω(x) any
nowhere vanishing function) determine the same null geodesics, but with
a different definition of affine parametrization. Show that the timelike
and spacelike geodesics are not the same for the two metrics.

6. A spacetime with line element ds2 = Ω2(−dt2 +
∑
i dx

idxi), i = 1, 2, 3
is called conformally flat. (Ω is any nowhere vanishing function.) Using
the coordinates in which the metric takes the above form,

(a) Find the geodesic equation for affinely parametrized geodesics in a
conformally flat spacetime.

(b) For timelike geodesics, find the equation for the spatial components
of the acceleration.

(c) Find the low velocity limit (dxi/dτ � 1) of the spatial acceleration,
assuming Ω is independent of t.

7. (a) Show that the affinely parametrized geodesic equation (3.8) is equiv-
alent to the equation

ẍβ + Γβµν ẋµẋν = 0, (3.14)

where the Christoffel symbol Γβµν is defined by

Γβµν := 1
2g
βγ(gγµ,ν + gγν,µ − gµν,γ), (3.15)

with gβγ defined as the inverse metric,

gβγgγσ = δβσ . (3.16)

Note that in a local inertial coordinate system at at point p one has
Γβµν |p = 0.

(b) Show that although ẍβ does not transform as a vector under a change
of coordinates, and neither does Γβµν ẋµẋν , the sum ẍβ +Γβµν ẋµẋν

is a vector. This vector is called the covariant acceleration vector
of the curve xβ(λ).

8. Rotation symmetry in the Euclidean plane about the origin gives rise
to a Killing vector field ξi defined up to an overall constant rescaling.

(a) Sketch ξi on the plane.

(b) Give the components of ξi in both polar and Cartesian coordinates.
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(c) Calculate the norm of ξi as a function of position. Explain geomet-
rically why the norm is not a constant.

(d) Evaluate in both polar and Cartesian coordinates the quantity gijξ
iẋj

that is conserved along affinely parametrized geodesics in the plane,
and show geometrically that it is indeed conserved.

9. Killing’s equation in general coordinates: Find a covariant equation
satisfied by any Killing vector ξλ by using the fact that d

dλ(gανξαẋν) = 0
along any affinely parametrized geodesic xµ(λ). Show that in a coordinate
system for which the components of ξλ are δλα̂ this equation reduces to
the simple statement that gµν,α̂ = 0, i.e., the metric components are
independent of xα̂.

10. Synchronous or Gaussian Normal Coordinates: For any spacetime met-
ric, one can always find coordinates (t, xi) such that the line element takes
the form

ds2 = −dt2 + gijdx
idxj (3.17)

(i, j = 1, 2, 3), although the coordinates will in general be singular beyond
some region. To construct such a coordinate system, start with an arbi-
trary 3-dimensional spacelike surface Σ0, labeled with coordinates xi. At
each point of Σ0 fire the geodesic orthogonal to Σ0 and use proper time
along these geodesics as the fourth coordinate. By construction on Σ0 we
have g00 = −1 and g0i = 0 so, on Σ0, the line element takes the above
form. Show that is has this form everywhere (until the geodesics cross)
by showing that ∂g0µ/∂t = 0 as a consequence of the geodesic equation.

11. Free-fall coordinates: Show that, given a geodesic γ, it is always possible
to choose a coordinate system that is locally inertial at every point along
γ. This is in general not possible for an arbitrary nongeodesic curve. (For
a discussion of this coordinate system see Gravitation, by C.W. Misner,
K.S. Thorne, and J.A. Wheeler (Freeman), section 13.6.

12. Kaluza-Klein theory: Imagine a 5-dimensional spacetime with line ele-
ment

ds2 = gµνdx
µdxν + (dx5 +Aµdx

µ)2, (3.18)

where µ, ν = 0, 1, 2, 3 and gµν and Aµ are independent of the coordinate
x5. Consider the equation for a geodesic (xα(τ), x5(τ)) in this metric.
Because the metric components are independent of x5, the momentum
p5 := ẋ5 + Aµẋ

µ is conserved. Show that xα(τ) satisfies the geodesic
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equation with an additional term of the form (e/m)Fµνẋν , where e/m ≡
p5 is the (conserved) momentum in the x5 direction, and Fµν = Aµ,ν −
Aν,µ is the usual electromagnetic field strength tensor corresponding to a
4-potential Aµ.
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Chapter 4

Special Relativity

4.1 Minkowski space

The spacetime of special relativity is a flat spacetime that can be covered by a
single coordinate system (t, x, y, z) in terms of which the line element takes the
Minkowski form

ds2 = −dt2 + dx2 + dy2 + dz2. (4.1)

This spacetime is called Minkowski space or Minkowski spacetime and the
metric is called the Minkowski metric. There is a 10-parameter family of
coordinate systems in which ds2 takes the Minkowski form. They are linearly
related to each other via some combination of translations (4), rotations (3) and
boosts (3). Coordinates for which the line element takes the Minkowski form
(4.1) are called inertial or Minkowski coordinates. In Minkowski coordinates,
the metric components have the values

gµν = ηµν = diag(−1, 1, 1, 1) (4.2)

The proper time along an infinitesimal displacement is given in terms of
inertial coordinates by

dτ =
√
−ds2 = dt

√
1− (dx/dt)2 − (dy/dt)2 − (dz/dt)2. (4.3)

Define γ by γ = (1 − v2)−1/2, with v2 = vivi and vi = dxi/dt, i = x, y, z.
Then one can write

dτ = γ−1 dt. (4.4)
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Note that dτ ≤ dt, since γ ≥ 1, and dτ = dt only when vi = 0. This leads
to the twin effect: The proper time along a timelike curve joining two events
A and B at time coordinates t1 and t2 is given by

∆τ =
∫ tB

tA

γ−1dt ≤ tB − tA.

If the inertial coordinates are chosen so that the coordinates of the two events
differ only in t, the curve with longest proper time joining then two events with
be the one with zero velocity, i.e., the straight line.

Figure 4.1: Twin Effect

Along any curve other than the straight one, the elapsed proper time is less
than tB − tA. In fact, ∆τ can be made arbitrarily small by traveling arbitrarily
“close” to the light cone, as suggested by path ACB in Fig. 4.1. 1

4.2 4-velocity and 4-acceleration

Along a timelike curve it is possible and convenient to use the proper time as a
parameter. With proper time parametrization, the tangent vector to the curve
ẋµ = dxµ/dτ , also called the 4-velocity or just velocity, is always a unit vector:

ηµν ẋ
µẋν =

ηµνdx
µdxν

dτ2
=
ds2

dτ2
= −1. (4.5)

1Of course an observer O′ along ACB would say it is the observer 0 along AB, and not
himself, that is “close” to the light cone. The situation is not symmetric however, since
O′ accelerates at C whereas O is unaccelerated everywhere.
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(In fact this holds in an arbitrary curved spacetime as well, as was already
discussed in section 3.1Using eqn. (4.4) the 4-velocity can be expressed in
terms of the coordinate velocity vi as

ẋµ =
dt

dτ

dxµ

dt
= (γ, γvi). (4.6)

With proper time parametrization, (4.5) implies that the 4-acceleration ẍµ

is always orthogonal to the 4-velocity:

0 =
d

dτ
(ηµν ẋµẋν) = 2ηµν ẋµẍν (4.7)

At each point P on the timelike worldline of a particle there is an inertial
coordinate system in which the particle is instantaneously at rest. In such a
co-moving coordinate system the time axis is tangent to the worldline at P (or
parallel to it), the 3-velocity vi of the particle vanishes at P , and the 4-velocity
is just ẋµ |P= (1, 0, 0, 0). According to the orthogonality relation (4.7), the
co-moving 4-acceleration thus takes the form

ẍµ |P= (0, ai),

where ai|P = ẍi|P The squared norm of the 4-acceleration is thus given by

ηµν ẍ
µẍν = aiai, (4.8)

where ai = ẍi is the “proper acceleration,” i.e. the 3-acceleration as measured
in the instantaneous rest frame.

4.3 4-momentum

Energy and momentum conservation are unified as conservation of the total 4-
momentum vector in special relativity. The vector sum of the 4-momenta of a
system of particles is conserved in collisions, absorption and emission processes.

The 4-momentum of a particle of rest-mass m 6= 0 is defined as

pµ := mẋµ, (4.9)

which is a timelike vector. From the unit normalization of ẋµ (4.5) it follows
that

ηµνp
µpν = −m2. (4.10)
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This invariant equation provides a more general definition of the rest mass that
generalizes to massless particles as well as to quantum theory, where there is no
particle trajectory and equation (4.9) is not applicable.

The energy E and momentum pi in a particular coordinate system are
defined by pµ = (E, pi). From (4.9) and (4.6) we have therefore

(E, pi) = (γm, γmvi) = (E,Evi), (4.11)

and the normalization equation (4.10) becomes

E2 = pipi +m2. (4.12)

Expanding γ = (1− v2)−
1
2 = 1 + 1

2v
2 + 3

8v
4 + · · · yields

E = γm = m+
1
2
mv2 +

3
8
mv4 + 0(v6). (4.13)

The first term is the rest energy, the second is the non-relativistic kinetic
energy, and the remainder is the relativistic “corrections.” Relativistically, the
“kinetic energy” is just E−m = (γ−1)m. Note that if a massive particle were
to move on a lightlike worldline, its 4-momentum would diverge since γ would
diverge.

For a massless particle mẋµ vanishes unless the particle worldline is lightlike,
in which case dτ = 0 along the worldine and mẋµ has the undefined value 0 ·∞.
Nevertheless, the normalization equation (4.10) has a fine limit as m2 → 0,
indicating that a massless particle has a lightlike 4-momentum vector. That
is, ηµνp

µpν = 0, or E2 = pipi. The 4-momentum of a massless point particle
following a geodesic world line can be written as pµ = dxµ/dλ, where λ is an
affine parameter scaled so as to yield the correct magnitude for pµ. Quantum
mechanically, for instance, a photon is a massless “excitation” with an energy
momentum 4-vector pµ = h̄kµ, where the wave-vector kµ = (ω, ki) is null.

4.4 Voyage to the galactic center

In this section we consider the twin effect in a quantitative example. This will
serve to illustrate how special relativistic kinematics and conservation laws can
be applied to accelerated motion.

Suppose a spaceship travels from the earth to the center of the galaxy, at
constant proper acceleration g = 9.8m/s2 to the halfway point, then at proper
deceleration g until the center is reached, with the same procedure on the trip
home. How much time elapses for the voyagers during the round trip?
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Figure 4.2:

First of all, let’s neglect gravitational effects, and the motion of the earth
relative to the center of the galaxy. In a spacetime diagram, the voyage is
depicted in Figure 3. The distance to the center of the galaxy is d = 30,000
ly, meaning that 60,000 years passes on the earth between events A and A′′,
where AA′ and A′A′′ are light-like lines.

In an inertial coordinate system at rest with respect to the earth, the world
line of the spaceship is given by a curve xµ(τ) = (t(τ), x(τ), 0, 0), if we line up
the x-axis with the direction of travel. We choose the origins of coordinates and
proper time at the departure from earth, so that (t(0), x(0)) = (0, 0).

If τ is the proper time along this curve, we have from (4.5) and (4.8) the
following two scalar equations:

ηµν ẋ
µẋν = −1 = −ṫ2 + ẋ2 (4.14)

ηµν ẍ
µẍν = g2 = −ẗ 2 + ẍ2 (4.15)

Equation (4.14) implies that (ṫ, ẋ) = (chα, shα) for some function α(τ). Sub-
stituting this into (4.15) then yields α̇2 = g2. On the first leg of the journey,
the relevant solution is α = gτ , and

(ṫ, ẋ) = (chgτ, shgτ) (4.16)

37



(t, x) = g−1(shgτ, chgτ − 1). (4.17)

This gives the coordinates of the spaceship’s accelerating worldine as a function
of its proper time.

Halfway through the outgoing trip we have

x = 1
2d = g−1(chgτ − 1),

or
chgτ = 1

2gd+ 1 (4.18)

If the acceleration lasts long enough so that the speed is close to that of light,
then gτ � 1 (and therefore also gd � 1), and the solution to (4.18) is well
approximated by

τ = g−1 ln gd. (4.19)

The dependence on d is therefore quite weak. As long as gd is not too huge,
the proper time for the trip is of the order of g−1, the time to accelerate to
close to the speed of light relative to the initial rest frame.

Now let’s put in the numbers. We have g = 9.8m/s2 = 1.03c/y, so it is
a cute accident that the surface gravity of the earth is just about 1y−1 in our
units. Thus for d = 30, 000 light-years we have gd = 30, 000, so for the first
half of the outgoing trip τ = ln 30, 000 = 10.3 years. From the symmetry of the
four segments of the trip we conclude that, during the round trip, the elapsed
time on the spaceship is τ ' 41.2years. Meanwhile, the elapsed time on the
earth is t = g−1shgτ = 60, 004 years, to the approximations we have made.

At the midway point, the ship has a γ-factor of γ = ṫ = 15, 001 relative to
the earth, and a speed of roughly (1 − 2 × 10−9)c.2 During most of the trip
(all but the first, last, and middle two years), the spaceship is moving at close
to the speed of light relative to the earth. This is why the total elapsed time
on the earth is only 4 years more than twice the light travel time to the center.

Finally, suppose that instead of traveling to the center of our galaxy the
voyagers wished to make a round trip to a destination, say, 3 billion light years
away, 105 times further than the center of the galaxy. According to equation
(4.19), this would lengthen the proper time required for the round trip by only
4× ln 105y ' 46years.

What are the fuel requirements for such a voyage? The most efficient
possible rocket (from the point of view of minimizing the mass of the fuel) is

2By way of comparison, a proton in the Tevatron accelerated up to an energy of 1 TeV
has a γ-factor of γ = E/m = 1TeV/939MeV ' 103.
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one that ejects exhaust at the speed of light.3 For instance, one can imagine
a matter-anti-matter annihilation rocket that ejects γ-rays out the back with
perfect collimation. For such a rocket it is particularly easy to determine the
mass of the required fuel.

The energy and momentum of the exhaust are equal to each other since
the exhaust is massless. Thus 4-momentum conservation on the first half of
the outgoing trip implies that the change in energy of the spaceship is equal
to minus the change in its momentum, Thus rest frame of the earth one has
E + p = constant = mi, where mi is the initial rest mass of the spaceship
plus fuel. At the halfway point of the outgoing leg, 2γ ' gd� 1, so E + p =
γmf (1 + v) ' 2γmf . Therefore m0/m ' 2γ ' gd.

The ratio mi/mf can also be computed in a slightly more “invariant” fash-
ion, as will now be shown for the sake of illustration. 4-momentum conservation
of ship-exhaust system is expressed by the 4-vector equation pi−pf = k, where
pi and pf are the initial and final 4-momenta of the ship plus fuel, and k is the
null 4-momentum of the exhaust. “Squaring” both sides of this relation (i.e.,
taking the squared norm) yields −m2

i −m2
f − 2pi · pf = 0. We can evaluate

the invariant pi · pf in the initial rest frame, where pi = (mi, 0) and pf =
(γmf , γmfv), yielding pi ·pf = −γmimf . We thus have m2

i +m2
f = 2γmimf .

Since 2γ ' gd� 1 is so large we therefore have mi/mf ' gd.
A similar computation applies to each of the other three parts of the round

trip. Thus, for a complete round trip, the initial mass of the ship plus fuel must
be (gd)4 times greater than the final mass of the returning ship. For the voyage
to the center of the galaxy this yields a mass ratio of (30, 000)4 = 8.1 × 1017

For a ship of mass 107 kg, the fuel must have a mass of 8 × 1024 kg, or just
about the mass of the earth. For a voyage to a destination 3 billion light years
away, the mass ratio would be greater by a factor of (105)4 = 1020. The initial
mass would therefore need to be about 1045 kg, or about 1015 solar masses. It
would clearly be a good idea to design a “ramjet” engine to eliminate the need
to carry all the fuel with the ship.

3Exercise: Formulate this statement precisely and prove or disprove it.
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