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In this dissertation, integer programming models are applied to combinatorial

problems in air tra�c ow management. For the two problems studied, models

are developed and analyzed both theoretically and computationally. This disser-

tation makes contributions to integer programming while providing e�cient tools

for solving air tra�c ow management problems.

Currently, a constrained arrival capacity situation at an airport in the United

States is alleviated by holding inbound aircraft at their departure gates. The

ground holding problem (GH) decides which aircraft to hold on the ground and

for how long. This dissertation examines the GH from two perspectives. First,

the hubbing operations of the airlines are considered by adding side constraints

to GH. These constraints enforce the desire of the airlines to temporally group



banks of ights. Five basic models and several variations of the ground holding

problem with banking constraints (GHB) are presented. A particularly strong,

facet-inducing model of the banking constraints is presented which allows one to

solve large instances of GHB in less than half-an-hour of CPU time.

Secondly, the stochastic nature of arrival capacity is modeled by an integer

program that provides the optimal trade-o� between ground delay and airborne

delay. The dual network properties of the integer program allow one to obtain

integer solutions directly from the linear programming relaxation.

This model is designed to work in close conjunction with the most recent

operational paradigms developed by the joint venture between the FAA and the

airlines known as collaborative decision making (CDM). Both these paradigms

and the impact of CDM on the decision making process in air tra�c ow man-

agement are thoroughly discussed.

The work on banking constraints analyzes several alternative formulations. It

involves the use of auxiliary decision variables, the application of special branch-

ing techniques and the use of facet-inducing constraints. The net result is to

reduce by several orders of magnitude the computation time and resources nec-

essary to solve the integer program to optimality. The work on the stochastic

ground holding problem shows that the model's underlying matrix is totally uni-

modular by transforming the dual into a network ow model.
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Chapter 1

Introduction

This dissertation develops innovative techniques in the �eld of integer program-

ming while providing practical solutions to some of today's most problematic

areas of air tra�c ow management (ATFM). Because ATFM problems are com-

binatorial in nature, they lend themselves nicely to modeling by integer programs.

However, integer programming is a di�cult �eld in its own right and the mod-

els developed here have raised issues of theoretical importance that transcend

the original applications. These issues are resolved with both new and existing

techniques of integer programming.

Two major problems of ATFM are solved by this dissertation. Each is an

extension of the ground holding problem (GH) in which a decision maker at the

FAA (Federal Aviation Administration) must determine the optimal amount of

ground delay to assign to each of the ights bound for a common airport with

limited arrival capacity.

In the �rst problem, the banking operations of the major airlines are consid-

ered. As it stands, there is no provision made by the FAA for holding banks of

ights together in time. Several means are provided for the addition of banking

constraints to an existing formulation of the ground holding problem.
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The integer program used to solve the ground holding problem with bank-

ing constraints (GHB) serves as a prime example in which the addition of side

constraints can transform an integer program from one that is readily solved to

one that is computationally very di�cult. It is becoming increasingly evident

in the �eld of integer programming that tractability can be greatly enhanced by

reformulation of constraints. This fact is dramatically accentuated by the em-

pirical work of Chapter 3. The �ve formulations proposed run the full spectrum

of computational performance varying, in some instances, by several orders of

magnitude.

In any integer program, one seeks a formulation for which the solution set of

its linear programming relaxation �ts tightly around the convex hull of integer

solutions. The closeness of �t is reected in the value gap, meaning the di�erence

between the function values of the integer program (IP) and the linear program

(LP) relaxation. The strongest formulations are those that de�ne facets of the

convex hull of integer solutions.

The challenge of GHB is to write a facet-inducing model that yields integer

solutions in real time using modest computing power and readily available IP

solvers. This was achieved through the \ghost ight" model, XGF. XGF provides

an e�cient means by which to solve the underlying ATFM problem.

The outstanding performance of XGF is chiey attributable to the establish-

ment of auxiliary variables to create an extended formulation. The augmentation

of the original problem with new variables runs counter to the mathematical \in-

tuition" that the simplest formulation of a problem is the best. The combination

of variable augmentation and constraint reformulation demonstrates the need in

integer programming for creative formulations.
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GHB can be generalized to a job-scheduling problem in which a batch of jobs

are to be processed sequentially on a single machine subject to the constraint that

certain categories of those jobs must be scheduled closely together. Therefore,

the applications of XGF extend beyond ATFM.

In the second problem solved by this dissertation, the stochastic nature of

arrival capacity in the ground holding problem is addressed. The FAA currently

employs �rst-come, �rst-served allocation schemes to assign ground delay to each

ight bound for an airport su�ering from constricted arrival capacity. The opti-

mality of these assignments is contingent upon advanced knowledge of the airport

acceptance rate for each time period over the planning horizon. Unfortunately,

these rates are rarely known with certainty in advance, since they are (in most

cases) dependent upon weather. The stochastic ground holding problem seeks to

quantify this uncertainty and to achieve a balance between deterministic ground

holding and expected airborne delay.

In Chapter 4, a ow model is introduced to solve the stochastic ground holding

problem. The greatest challenge in the design of this model was to avoid the

complexities arising from an explicit computation of the length of time that each

ight is held in each of the two states, ground holding and (expected) airborne

holding. This di�culty was surmounted by treating ights on an aggregate level.

In fact, the output of the model is simply the number of ights that should be

released from a ground-holding state at each time period. It is shown that this

is su�cient to solve the overall problem. Moreover, this can be extended to

other stochastic production models in which goods can be held in two forms of

inventory and a natural ordering is imposed on them.

Network ow problems are desirable for two reasons. First, they can be
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e�ciently solved by known algorithms that are, in many cases, faster than the

simplex method. Secondly, the constraint matrix is totally unimodular (TU),

meaning that every square submatrix has determinant 0; 1 or �1. Therefore,

integer solutions can be obtained directly from the LP relaxation. Although the

stochastic model presented in Chapter 4 is a ow model, it is shown not to be a

(primal) network ow model because of the coupling constraints required at each

time component. It can be directly shown, however, that the matrix is TU.

To date, every TU constraint matrix arising out of a natural application has

proven to be a network or have a dual network. Having shown that the primal of

the constraint matrix for the stochastic ow model is non-network, the possibility

that the dual is a network is thoroughly explored. The positive �ndings give

insight into the ow model and provide an alternative proof that the primal and

dual matrices are TU.

In contrast to the variable augmentation technique performed on the banking

constraint problem, the preprocessing technique applied to the stochastic ow

model shows that the elimination of certain variables from a formulation can also

expedite solution procedures. In this instance, a recursive procedure is used to

�x a priori the values of those variables corresponding to ights exempted from

delay.

Over the last two decades, the increase in air tra�c at the major airports in

the United States has vastly outgrown the increase in airport resources. Reduced

arrival capacity at an airport is currently the leading source of air tra�c delays.

Inequities between capacity and demand are met by the FAA with ground de-

lay programs (GDP's) in which inbound ights are held on the ground at their

departure gates in lieu of costly and hazardous airborne holding. The equitable
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and e�cient management of these GDP's has become a burden to the FAA and

a bone of contention with the airlines.

The old paradigm in which the FAA acts as a centralized authority and de-

cision maker is giving way to a new age of collaboration in which the primary

users of the National Airspace System (NAS), the airlines, are given more control

over their operations. In particular, they will work more closely with the FAA on

those decisions that are more economic in nature and less concerned with safety.

The collaborative decision making group is largely responsible for this shift to a

more collaborative setting in air tra�c management.

The improvement of ground delay programs run by the FAA was the original

focus of the Collaborative Decision Making (CDM) working group but they are

turning their e�orts toward other aspects of air tra�c management such as the

routing or aircraft around severe weather conditions. CDM e�orts are rapidly

reshaping cultural behavior in ATFM and are bound to have a dramatic impact

on ATFM and air tra�c research. This dissertation presents the philosophies

and methodologies of this inuential group and provides a careful analysis of

their heuristics for the allocation of arrival slots during a ground delay program.

Although CDMmethodologies for ground delay programs will be implemented

within the coming months at two major airports, they have not yet been o�cially

embraced. The researcher in ATFM �nds himself straddling two worlds: the

current world, under the paradigm in which resources are allocated by a central

decision maker, and the new world, in which decisions (not totally safety related)

are made in a collaborative setting.

The banking constraint models presented in this dissertation assumes a cen-

tral authority who tries make maximally e�cient use of airport resources while
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minimizing the economic impact of a ground delay on the hubbing operation of

an airline. These models are designed to be used in conjunction with the current

paradigm of ATFM. The stochastic ow model presented in Chapter 4 is designed

to be an integral part of the iterative cycle of decision-making currently being

developed by CDM. Using the optimal acceptance rates output by the model, the

FAA can make initial arrival slots assignments for incoming ights and which the

airlines can then modify according to the ground rules they have established.

The remainder of this dissertation is organized as follows.

Chapter 1 (remainder): Background information on air tra�c ow man-

agement is provided along with an encapsulation of the key issues in integer

programming.

Chapter 2: This chapter describes ground-holding strategies and paradigms

employed by the FAA for dealing with limited arrival capacities. These strategies

are heuristic solutions to the static, deterministic ground-holding problem. A

brief review of the literature on all versions (e.g., dynamic, multi-airport) of the

ground-holding problem is provided. Also, Chapter 2 discusses the goals and

current scope of CDM, the motivating forces behind its development, and the

methodologies that have been developed by CDM.

Chapter 3: Both the single airport ground-holding problem (SAGHP) and

the multi-airport ground-holding problem (MAGHP) can be extended by the

addition of banking constraints to allow for the hubbing operations of major

airlines. In this chapter, �ve di�erent models and several variations of the (single-

airport) ground holding problem with banking constraints are presented. The

models are evaluated on both an analytic and empirical level.

Chapter 4: The main tool employed by the FAA for controlling ights bound
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for an airport with restricted arrival capacity is a Ground Delay Program (GDP).

The e�ectiveness of a GDP is entirely dependent upon advanced knowledge of

airport capacity and demand. Since the bulk of airport demand consists of sched-

uled ights, demand is generally predictable. Airport capacity, however, varies

with meteorological conditions and is, therefore, highly stochastic in nature. In

this chapter, an integer programming model of the stochastic ground-holding

problem is presented. The model �nds the optimal trade-o� between airborne

delay and ground delay in the formulation of a GDP. Proof is provided that the

model yields the integer solution directly from its linear programming relaxation

and the network structure of the dual of the linear programming relaxation is

revealed. Using a commercial solver, six realistic test cases of the stochastic

ground-holding problem are solved to optimality, each in a fraction of a second.

Chapter 5: The closing remarks cite the major contributions of the disser-

tation and point toward areas of future research.

Appendices: Appendix A contains a formal discussion of two algorithms

presented in Chapter 2. Appendix B contains details of the proofs of lemmas and

theorems found in Chapters 3 and 4. Appendix C contains computational results

from Chapter 3. Appendix D contains a glossary of acronyms, mathematical

terms and notation used throughout the dissertation.

1.1 Background: Air Tra�c Flow Management

The airspace in the continental United States is partitioned into 22 sectors. As-

sociated with each sector is an Air Route Tra�c Control Center (ARTCC) op-

erated by the FAA and a number of waypoints used for monitoring air tra�c.

Each ARTCC guides aircraft from waypoint to waypoint until they have passed
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into another sector or arrived within 200 miles of their respective destination

airports, at which point control of the aircraft is assumed by the airport control

tower. Air tra�c for the entire airspace in the United States. is coordinated by

the Federal Aviation Administration's (FAA) central control facility in Herndon,

Virginia, known as the Air Tra�c Control Systems Command Center (ATCSCC).

The ight paths, control facilities, airports, and waypoints comprise the National

Airspace System (NAS).

The problem of managing the safe and e�cient ow of air tra�c ow through-

out the NAS is known as the (air) tra�c ow management problem (TFMP). If

the capacity for air tra�c in the NAS were in�nite, TFMP would be reduced

to collision avoidance. However, in a given unit of time, there are limitations

imposed upon the number of aircraft that can

� pass through a waypoint

� reside in a sector of airspace while maintaining separational distances

� be safely monitored by the crew of air tra�c controllers on duty

� depart from an airport

� arrive at an airport

For a given component of the NAS, the capacity of the component is the

number of aircraft that can be processed in a given unit of time, while demand

is the number of aircraft that are scheduled (or predicted) to be processed in a

given unit of time. Throughout this dissertation, the term capacity-demand

inequity (CDI) refers to a situation in which capacity is below that of demand,

the reverse case not being problematic. A CDI can occur at any one of three
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components in the NAS: a waypoint, terminal facility (airport), or in the airspace

itself. The occurrence of a CDI within the airspace is rare - the airspace in the

United States is large relative to the volume of tra�c it generally supports. The

occurrence of a CDI at a waypoint or terminal facility, however, is quite common.

A CDI at a waypoint is an unfortunate by-product of the monitoring paradigm

used by the FAA. Aircraft are passed from waypoint to waypoint by the air

tra�c controllers, hence, tend to accumulate at those waypoints. Vast strides

have been made in the tracking capabilities for both ight crews and air tra�c

controllers. The precise location of aircraft can now be maintained throughout

ight duration by means of a Global Position System (GPS). Also, aircraft can

detect each others presence long before (human) visual contact is possible. These

technological innovations, though not yet implemented, are paving the way for

free ight, in which planes would be allowed to y the path of their choice

between city pairs provided that it meets constraints disseminated by the FAA

at the time of travel. A version of free ight is currently in e�ect for aircraft

ying at altitudes of more than 22,000 feet.

Over 90% of the delays in air travel are caused by a CDI and subsequent

congestion at one of only 22 of the 18,224 airports in the country [23]. Not

surprisingly, these 22 locations coincide with the major metropolitan areas, which

are prime destinations and points of origin for passengers. Air tra�c demand is

projected to grow. For these reasons, limited airport capacity is a major concern

to the airlines, the FAA and the public.

One view to take on these CDI's is that there is simply too much demand at

the major airports, particularly at morning and evening hours. This uneven dis-

tribution of demand is further aggravated by the fact that many of the commercial
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carriers operate a hub-and-spoke system in which ights tend to originate at or

depart from a common location (hub). There would be little support, however, for

any demand redistribution plan that asks the airlines to curtail well-established

operational paradigms or that asks the general public to travel at odd times of the

day to unpopular locations. For these reasons, it seems more promising to focus

e�orts on increasing airport arrival capacity rather than decreasing demand.

Long range plans to increase airport arrival capacity include the construc-

tion of new facilities and the expansion of existing ones. Unfortunately, these

plans are impeded by the fact that real estate in major metropolitan areas is

often unavailable or prohibitively expensive. Also, expansion of facilities is often

blocked by surrounding communities, who are concerned with noise and automo-

tive tra�c congestion. Until such a time that there are su�cient resources to

meet demand at all times of the day, there needs to be maximally e�cient use of

airport resources.

Insu�cient airport capacity a�ects both arrivals and departures. In this dis-

sertation, however, only instances of limited arrival capacity are addressed. Al-

though limited departure capacity leads to passenger delay and added crew costs

for the airlines, limited arrival capacity has both of these undesirables plus air-

borne holding. Airborne holding is more dangerous than ground holding, incurs

extra fuel costs for the airlines, and increases the stress level for air tra�c con-

trollers.

1.2 Background: Integer Programming

An integer program (IP) is a problem in which one wishes to optimize a linear

functional f(x) subject to the conditions that (i) the vector x satis�es a system of
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linear inequalities Ax � b (or Ax � b), (ii) each component of x be non-negative

and (iii) each component of x be integer. If this last condition is relaxed, then

one obtains a linear program (LP), which is called the LP relaxation of IP.

Consider the LP below.

min f(x) (1.1)

subject to

Ax � b

x � 0

Let P be the polyhedron de�ned by the system Ax � b, x � 0: Using the fact

that P is convex, (1.1) can be solved very e�ciently by algorithms such as the

simplex method.

If the constraint that x must be integral is added to (1.1), then one obtains

an IP with a set F of feasible points. F is a discrete set of lattice points within

P but, unless F consists of a single point or no points at all, F is not convex.

This renders useless many traditional optimization procedures. For this reason,

integer programming is, in general, more di�cult than linear programming.

In any practical application of an IP, one can �nd some upper bound on the

integer values that can be assumed by the variables. Therefore, there is always

an algorithm that will �nd the optimal value to the (bounded) IP in a �nite

number of steps: simply enumerate all the feasible points and select the one with

the optimal function value. However, this is highly impractical for all but the

smallest problems. Consider that a problem with just 100 binary variables could

have 2100 feasible solutions.
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The algorithms employed by commercial solvers for solving integer programs

or mixed integer programs (in which both integer and non-integer variables ap-

pear) are based on a branch-and-bound (B&B) strategy. In B&B, the set of fea-

sible points is enumerated implicitly by exploring the tree of solutions in which

each branch represents a restriction of the set of feasible points. At each node,

a solution is evaluated and a decision is made as to whether or not the optimal

solution could lie in the subtree below the current node. The pruning criteria

are based on the solution to the LP relaxation that is obtained after imposing

the restrictions implied by the current path through the B&B tree. When min-

imizing, for instance, if the LP relaxation value is higher than the current best

integer value, then the optimal solution could not possibly lie in the subtree and

the subtree is pruned. In practice, the success of any B&B algorithm lies in its

ability to do a great deal of pruning.

When solving an IP, the number of integer solutions that need to be explored

can be greatly reduced by relaxing the integer constraint on some of the variables.

In Chapter 3, an instance of an IP will be presented in which only a small portion

of the variables need to be declared integer before solving the problem. In fact,

these auxiliary variables were added to the problem speci�cally to expedite the

solution process.

Often, much can be done to simplify an IP after it is formulated but before

it is solved. It might be possible to �x some of the variables �a priori or even

eliminate variables altogether. Bounds can be examined for potential tightening

and constraints can be examined for elimination. Any such steps fall under the

category of preprocessing. Preprocessing plays a crucial role in the work in

Chapter 4.
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Every polytope (bounded polyhedron) P has a minimal description meaning

that, up to multiplication by constants, there is a unique set of linear inequalities

that describe it. Given an inequality �x � b (or �x � b), the set of points in P

that satisfy � at equality is called a face of P . A facet of P is a face of dimension

n � 1, where n is the dimension of P . If � is one of the inequalities necessary

to the description of P , then the face de�ned by � is a facet of P . Since the

convex hull of integer points feasible to an IP is a polyhedron, it has a minimal

description.

A major technique in integer programming is to produce a formulation in

which as many as possible of the inequalities represent facets of the convex hull

of integer solutions, PC . In the best of circumstances, the solution to the IP

can be obtained directly from its LP relaxation. This is possible whenever each

of the facets of PC is represented by at least one of the inequalities. Since a

minimal description of PC is rarely known, a greater number of constraints might

be preferable to a lesser number so that PLP is as close to PC as possible; this

increases the chances of solving the problem quickly.

Let PLP be the set of points feasible to the LP relaxation of the integer

program, IP . If an integer point is feasible to IP , then it is feasible to the LP

relaxation and, therefore, PC is contained in PLP . If PLP �ts tightly around PC ,

then the formulation at hand is said to be a strong formulation. Let IP 0 be

an equivalent formulation of IP , meaning that the set of integer points feasible

to IP 0 is the same as those integer points feasible to IP . Let P 0
LP be the set

of points feasible to the LP relaxation of IP 0. If P 0
LP is contained in PLP , then

PC � P 0
LP � PLP and IP 0 is said to be a stronger formulation than PLP . IP 0 is

the strongest formulation possible if PLP = PC .
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It will be demonstrated in Chapter 3 that the ability to solve an integer pro-

gram can vary enormously with the choice of the formulation. Therefore, it is

important to compare both analytically and empirically a number of alternative

formulations and choose the strongest one. A valuable experimental metric used

for determining the stronger of two models is value gap, meaning the di�er-

ence between the LP relaxation optimal function value and the optimal integer

function value. A lower value gap generally indicates a stronger model.

In the event that each of the corner points of (non-empty) PLP is integral,

there will always be an integral optimal solution x� to the LP relaxation. We

call such a polyhedron an integral polyhedron. Every integer point feasible to IP

is contained in PLP . Since x� yields the best function value of all points in PLP ,

in particular, it yields the best function value of all integer points in PLP , so x
�

must be the optimal integer solution. The ideal formulation of an IP is one for

which the LP relaxation is integral for, then, the IP can be solved by applying

an LP optimization algorithm such as the simplex method to the LP relaxation

of the IP.

Let Ax � b be the linear system that describes the set PLP . One way to

ensure that PLP is integral is to show that the matrix A is totally unimodular

(TU), meaning that every square submatrix of A has determinant 0, 1, or �1.

In Chapter 4, a formulation of the Stochastic Ground-Holding Problem will be

presented which yields a TU matrix. Moreover, the dual of the LP relaxation of

this formulation can be transformed into a network ow problem and solved by

specialized network algorithms that are, in many case, faster than the simplex

procedure.

In this dissertation, the aforementioned techniques of integer programming
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are applied toward the formulations of problems in air tra�c ow management.
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Chapter 2

New and Existing Strategies for

Ground-Holding

2.1 The Ground-Holding Problem

The Air Tra�c Control Systems Command Center (ATCSCC) monitors airports

throughout the United States for capacity-demand inequities. Whenever it is

predicted that the number of ights arriving at an airport within a 15-minute

time interval will exceed the number of ights scheduled to land, the ATCSCC is

required by FAA regulation to take some form of action.1 Short-term periods of

capacity-demand inequities are alleviated by airborne tactics such as re-routing

and variations in airborne speed. Longer-term periods of capacity-demand in-

equities are met by the ATCSCC with ground-holding strategies in which aircraft

are held at their departure gates in lieu of costly and dangerous airborne delay.

In some cases, the ATCSCC will issue a ground stop in which all ights incom-

ing to an a�icted airport are held on the ground at their departure gates until

1Much of the information in this section concerning the opertation of the ATCSCC was

obtained through meetings with ATCSCC personnel.

17



airport arrival capacity rises above demand. These ground stops are reserved for

extreme cases in which arrival capacity was severely underestimated or dropped

suddenly without warning.

The primary tool of the ATCSCC for addressing arrival capacity-demand

inequities is a ground delay program (GDP). In a GDP, each ight scheduled to

arrive at an a�icted airport over a �xed time period is held at its departure gate

long enough to ensure that it will be able to land without delay. For instance,

if ight f is due to arrive at airport A at 12:00 and it is known that f will not

be able to land until 12:30 due to limited arrival capacity at A, then f would be

held at its departure gate for 30 minutes. The construction of a GDP requires

the assignment of both a controlled time of departure (CTD) and a controlled

time of arrival (CTA) to each incoming ight . Since en route travel times can

be predicted with reasonable accuracy, the CTD of each ight is easily calculated

once its CTA is known. The CTA is set once the ight has been assigned an

arrival slot.

Currently, the ATCSCC assigns arrival slots by a �rst-come, �rst-served al-

gorithm known as Grover Jack. A list of incoming ights is formed, ordered by

the most recent estimated time of arrival (ETA) of each ight. The time horizon

for the GDP is divided into hourly periods t = 1; 2; :::; T . Usually, T = 4. The

arrival acceptance rate (AAR) of a time period t; denoted Xt, is de�ned as the

number of aircraft that can be accepted during t. (Strictly speaking, this is not

a rate. None the less, it is the established terminology in the air tra�c commu-

nity.) A value of Xt is set for each time period t by a specialist at the ATCSCC.

In spirit, at least, the Grover Jack algorithm assigns controlled arrival times as

follows. The �rst X1 ights on the list are assigned to the �rst time period, the
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next X2 ights are assigned to the second time period, and so on, preserving

order of the list. The net e�ect of the Grover Jack algorithm is to stretch out the

list of incoming ights over time.

In actuality, there are several complications that need to be addressed in the

Grover Jack algorithm. Since a ight cannot be assigned to a time slot earlier

than its ETA, some time slots will be passed over during the assignment process

and have no ight assigned to them. International ights, general aviation, and

ights airborne at the time of formulation of a GDP are exempt from the program,

meaning that they cannot be issued a ground delay. In addition, the specialist

may choose to exclude other categories of ights from ground delay, usually based

on geographical location of point of origination. The arrival of these ights must

be taken into account when assigning CTA's to ights.

Although the airlines agree that a �rst-come, �rst-served algorithm is an eq-

uitable method for distribution of arrival slots, they object to the use of ETA

as the criterion for `�rst-come'. They have cited the following scenario, known

as the double penalty issue. Suppose that ight f is scheduled to arrive at

airport A at 10:00 hours. If f is delayed for 30 minutes with, say, mechanical

failures, then the ETA of f would be updated to 10:30. If a GDP is implemented

in which f is assigned a 30 minute delay, then f would be given a CTA of 11:00.

Overall, f has su�ered a total delay 30 + 30 = 60 minutes. The airlines feel that

f has been penalized twice: the 30-minute mechanical delay, they feel, should

have served as the program delay for f and f should have been assigned a CTA

of 10:30, not 11:00. In essence, the airlines argue that the original scheduled time

of arrival, not ETA, should dictate landing order in a GDP.

No matter what criterion is used for �rst-come in the formulation of a GDP,
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it is highly unlikely that any simple ordering of ights will be preserved when the

program is �nalized. One reason, already mentioned, is that a signi�cant portion

of the ights are not subject to the ordering criteria because they are exempt or

excluded from the program. Also, ights can be delayed (or cancelled) by the

airlines for reasons such as mechanical di�culties.

The problem of assigning ground delay to ights bound for a single airport

can be mathematically modeled as an assignment problem known as the ground-

holding problem (GH). The model requires the following assumptions.

Assumption 1: (Discrete time horizon) There is a �xed time horizon which

has been discretized into T equally-sized contiguous time periods, t = 1; 2; :::; T .

Assumption 2: (Deterministic demand) The number of incoming ights is

known in advance; for each ight f , there is a scheduled time (period) of arrival,

denoted af (this is the earliest arrival time that can be assigned to the ight):

Assumption 3: (Deterministic capacity) For each time period, t, let bt be

the arrival acceptance rate (AAR) of the airport, meaning the maximum number

of ights that can be accepted by the airport during that time interval. Then

we assume that bt is known in advance for each time period t. Strictly speaking,

this does not hold in practice because the AAR's are dependent upon weather

conditions and runway con�gurations, which are stochastic in nature. However,

the specialist who formulates the GDP �xes these numbers in accordance with

the current best estimate, so, for purposes of this formulation, we will assume

that they are deterministic and known in advance.

Let F be the set of incoming ights that require arrival slots. We de�ne for
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each f and each t, a binary variable, Xf t, such that

Xf t =

8>><>>:
1; if flight f is assigned to time interval t

0; otherwise:

Each ight must be assigned to exactly one time interval so for each f we

have one constraint of the form
PT

t=af
Xf t = 1: The number of ights that are

assigned a CTA within time period t cannot exceed the capacity bt, so for each

time interval t there is one capacity constraint of the form,
P

f Xf t � bt:

Let Cf be the cost of delaying ight f for one time period and let � > 1 be

a �xed parameter. Then the expression Xf t Cf (t� af)
� represents the cost of

assigning ight f to time t and the summation of this term over all t and all f is

the total delay cost. The parameter � yields super-linear growth in the tardiness

of a ight as t increases. This favors the assignment of a moderate amount of

delay to each of two ights rather than the assignment of a small amount of delay

to one and a large amount to the other.

In all, we have the following integer program.

(GH)

Minimize
X
f2F

TX
t=1

Xf tCf (t� af )
� (2.1)

subject to

TX
t=af

Xf t = 1 (2.2)

X
f

Xf t � bt (2.3)
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0 � Xf t � 1 (2.4)

Xf t 2 f0; 1g (2.5)

Let GHLP be the LP relaxation of GH, that is, the problem that results from

relaxing constraint set (2.5). GHLP is a transportation problem. Since it can be

shown that there is an integer optimal solution to every transportation problem,

LP solvers or specialized transportation codes can be applied to GHLP to rapidly

obtain the (integer) solution to GH.

GH was �rst systematically described by Odoni in [18]. Andreatta and Romanin-

Jacur [3] treated the stochastic version of GH for an airport with constrained ar-

rival capacity in (at most) one time period. In [25], Terrab and Odoni developed

a dynamic programming formulation for the stochastic version of GH as well as

heuristics to handle the larger cases. Using stochastic linear programming with

recourse, Richetta and Odoni expanded this work to include the dynamic case, in

which ground-holdings are updated as time progresses (see [21]). Although their

dynamic solution yielded considerable savings over the static solution, the speed

of solution proved to be too slow for realistic cases. See [7].

Ideally, the ground-holding problem should be solved on a network-wide level,

taking into account the connectivity of ights. Flights can be connected in one

of three ways: by passenger, crew or aircraft. In the former sense, passengers are

scheduled to travel from airport A to C by taking a ight from A to B, then B

to C. The arrival of the �rst ight should coincide (roughly) with the departure

of the second ight. In the latter two senses, a single crew or aircraft may be

scheduled to traverse many ight legs, e.g., from city A to cityB to city C, and so
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on. The delay of even a single ight can propagate throughout the entire system.

Both GH and air tra�c ow management in general have been treated on a

network-wide level (taking multiple airports and ight connectivity into account)

in Attwool [5], Sokkapia [24], Andreatta and Romanin-Jacur [3], Wang [32] and

by Vranas, et. al., in [29] and [30], and, more recently, by Bertsimas and Stock

[8].

In practice, there are several problems associated with applying network mod-

els of air tra�c ow. The �rst is that the models are generally di�cult (NP-hard),

integer programs. Only greatly simpli�ed versions have been solved in real time.

Secondly, the models require extensive, timely information on all ights in the

system. The airlines are not prepared and not always willing to supply such in-

formation. Nor is there presently a communications system capable of handling

all the information. Third, and most importantly, the airlines and the FAA are

moving away from the type of centralized control of air tra�c that is assumed by

such a model. Only single-airport scenarios are considered in this dissertation.

2.2 Collaborative Decision Making in Air Traf-

�c Flow Management

2.2.1 A Time for Change

The implementation of a GDP is generally met with trepidation by the airlines

because it represents government intervention and exposes airline operations to

inaccurate estimations on the part of the ATCSCC. For instance, if the future

arrival acceptance rate of an airport is overestimated, then arrival demand will
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exceed capacity and planes will absorb delay in costly airborne holding patterns

rather than on the ground at their departure gates. On the other hand, if future

AAR's are underestimated, then arrival capacity will exceed demand, arrival slots

become a wasted resource, and ights absorb unnecessary ground delay. The

airlines �nd it particularly aggravating when a GDP is aborted in mid-operation.

This happens whenever the ATCSCC has clear evidence that the original capacity

and weather forecasts were overly pessimistic. Estimates vary between the airlines

and the FAA as to the percentage of GDP's that are aborted, but these estimates

are as high as 60%.

To a large degree, a GDP is based upon the economic premise that ground-

holding is cheaper than airborne-holding. While this is certainly true on average,

it does not hold for every aircraft in every delay situation. Certainly, the airlines

recognize the need for centralized control of air tra�c into an airport with limited

arrival capacity but these situations serve as a prime example of a major objection

of the airlines to the current procedures. The objection is that the FAA is making

economic decisions on behalf of the airlines. These are generally well intending

but it has been well established that the FAA does not have the expertise or

timely data on daily airline operations for e�ective decision making.

The responsibility of the FAA is to maintain the safety of the users of the NAS

and to manage air tra�c ow within the NAS in a manner that makes e�cient

and equitable use of resources. The current structure imposed on the system

stems from the belief that the FAA and its agencies should act as a centralized

authority and decision maker. This paradigm, as well as the procedures and

standards for air tra�c management, were developed just after World War II.

Despite the enormous growth in air tra�c in the United States in the last �fty
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years, this paradigm remains in e�ect today, largely unaltered.

A joint e�ort between government agencies and the airline industry known

as Collaborative Decision Making (CDM) has arisen. The driving philosophy

behind CDM is that improved data exchange and communication between avia-

tion transportation organizations will lead to better decision making in air tra�c

ow management and that, whenever practical, those decisions which have po-

tential economic impact on airline operations should be decentralized and made

in collaboration with the airlines

The roots of CDM can be traced back to informal meetings of airline rep-

resentatives in 1992 who were concerned with Ground Delay Programs. In the

summer of 1993, the FAA program called FAA-airline data exchange (FADE) be-

gan. FADE was a short-term experiment to determine if air tra�c management

decisions would be a�ected by schedule updates from the airlines. The �ndings

were positive. In the mean time, the Mitre Corporation was commissioned by the

Air Tra�c Management Integrated Products Team division of the FAA to �nd

alternative processes by which airlines substituted ights into time slots �lled by

their own ights. The positive �ndings of the FADE program and the Mitre Cor-

poration merged to form the two main components of CDM, data exchange and

the development of tools and methodologies to improve air tra�c management

decisions.

As CDM has grown, so has its participation. The passenger airlines and FAA

have been joined by the package carriers such as Federal Express and United

Parcel Service (UPS), who have a vested interest in the outcomes of new method-

ologies being established by CDM. The technical challenges posed by CDM have

solicited the expertise of a scienti�c consulting �rm, Metron Inc., Mitre Corpo-
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ration and a host of contractors. In 1995, Congress created a National Center of

Excellence for Aviation Operations Research (NEXTOR) which centers around

a consortium of four universities, one of those being the University of Mary-

land. (See [27] for a reference on NEXTOR.) Representatives from the CDM

participating organizations, which now includes NEXTOR, gather monthly for

working-group meetings. Many of the airlines have devoted full time representa-

tives to CDM.

A novel relationship between the scheduled carriers and the FAA was for-

malized in the document, \Roles and Responsibilities", written by the FADE

program manager and airline representatives in early 1995. It speci�es that the

ATCSCC should remain a neutral party and act as a service provider to the users

of the NAS. The responsibility of the ATCSCC is to alert the users to situations

within the NAS that place constraints upon their operations. The users are re-

sponsible for responding to those constraints with actions, intents and preferences

that lie within those constraints. At least with respect to GDP's, the e�orts of

CDM have pushed air tra�c management in the direction of decentralized deci-

sion making, thus giving the scheduled carriers input to air tra�c management

and greater control over their operations.

2.2.2 CDM Methodologies and Tools (appended by Ap-

pendix A)

The primary focus of CDM has been ground delay enhancements and the im-

provement of the cancellation and substitution process used by the airlines. At

the time of this writing, CDM methodologies have not been put into place. Pro-

totype operations involving ground delay program enhancements are scheduled to
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go in e�ect at San Francisco and Newark airports in early 1998. CDM e�orts are

extending to any constrained situation in the NAS. Given the current momentum

of CDM and its growing support, it seems inevitable that CDM methodologies

will have a major impact on air tra�c ow management, particularly in the

context of ground-holding strategies. It is appropriate that the current body of

aviation research should reect, if not be tailored to, the CDM philosophy. In

this section, we examine the procedures and technologies that have arisen out of

CDM e�orts.

The ubiquitous operational procedure for handling a constrained situation in

the NAS is a cycle of feedback between the service provider and the users of the

NAS. For example, suppose that the service provider (ATCSCC) announces that

at JFK airport the arrival acceptance rate will drop from 50 to 30 ights per

hour over a two-hour time period and that the scheduled demand (of incoming

ights) over those two hours is 45 ights per hour. A GDP is issued and each

non-exempted ight bound for JFK is issued a controlled time of arrival (CTA)

and a controlled time of departure (CTD). This throws the users (airlines) into a

state of irregular operations and internal compensations must be made. The users

are then given the opportunity to respond with ight cancellations, substitutions

or diversions.

In a typical round of cancellation/substitution, each airline is given a list of

their ights. Associated with each ight is an arrival slot, assigned under the

GDP. Each airline is said to own its slots and can redistribute its ights over

those slots. For instance, suppose that ight AL100 is a lightly loaded ight

with few connecting passengers and a CTA (controlled time of arrival) of 12:00

and that AL500 is a fully loaded ight with many connecting passengers and a
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CTA of 12:45. Since the timely arrival of the cargo plane is not so crucial, airline

AL might want to cancel (or divert) AL100 and substitute AL500 into the 12:00

time slot, thus saving AL500 45 minutes of delay. This opens the 12:45 time slot

and AL can consider other ights for substitution into that time slot. Another

allowable operation is the exchange of time slots between two ights so that one

is moved earlier in time and the other is moved later. This is useful whenever

the minimization of delay of one of the ights is paramount. See [31] for a more

detailed treatment of cancellations and substitutions.

Next, the service provider processes the information provided by the users (the

new arrival times), and revises the forecasts on arrival capacities and demands.

A new set of operational constraints (in this case, revised CTA's) is issued. The

users are again given the opportunity to respond, and the cycle repeats, probably

in time blocks of 30-60 minutes per cycle.

The overall procedure assumes a constrained situation that can be anticipated

an hour or more in advance, such as reduced airport capacities or re-routing

around severe weather patterns. Fortunately, most CDI's (capacity-demand in-

equities) in the NAS arise from bad weather and fall into this category.

Note that the service provider can make an accurate situational assessment at

each iteration of a data exchange cycle only if the airlines are supplying updated

data in the form of cancellations, revised ETA's, and so on. Up until now, there

has been little incentive for the airlines to do so. In fact, one of the impediments

to e�ective air tra�c management has been the reluctance of the airlines to

supply data to the FAA. Their concern has been that information would be

(inadvertently) used against them, as in the double penalty issue (see section

2.1).
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The incentives for the airlines to provide timely data to the FAA during

the formulation of a GDP have been housed in the two algorithms, ration-by-

schedule (RBS) and compression. We now give brief descriptions of those

algorithms and their purpose. More detailed analyses and formal presentations

can be found in Appendix A.

The RBS algorithm: The purpose of this algorithm is to ration arrival slots

according to original scheduled arrival times of ights and to serve as an initial

assignment of CTA's for subsequent rounds of collaboration between the airlines

and the FAA. The original scheduled arrival time of a ight is determined by the

original gate time of arrival (OGTA) minus a standard ten-minute taxi time.

The primary di�erence between RBS and the Grover Jack algorithm currently

used by the FAA is that RBS uses OGTA�Taxi time as the ordering criterion

whereas Grover Jack uses ETA. Otherwise, the algorithms are very similar. De-

tails aside, virtual arrival slots are created over a time horizon based on AAR

predictions and the �rst ight is assigned to the �rst time slot, the second ight

is assigned to the second time slot and so on. Under the RBS algorithm, airlines

can e�ectively reserve slots at an airport by scheduling ights weeks ahead of

time in the OAG (o�cial airline guide). This removes the fear that of forfeiting

an arrival slot by reporting a delay, as in the double penalty issue.

The initial assignment of CTA's made by RBS plays an important role in the

subsequent cancellation/substitution process. Suppose that ight AL100 belong-

ing to airline AL has been assigned to the tth time slot. Then AL is said to \own"

slot t: During a round of cancellation/substitution, AL is free to move another

one of their ights, say AL200; from a less desirable time slot, (t + k); into t;

provided that t is a feasible arrival time for AL200. Flight AL100 will have to
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be cancelled, of course, or moved down into slot (t+ k), because the total num-

ber of slots owned by AL is �xed by RBS. By this process, each airline has the

opportunity to minimize the damages of ight delays in a GDP.

The Compression algorithm: After a round of cancellation/substitution,

the total number of ights in the program has probably been reduced through

cancellations. This creates \holes" in the assignment schedule, meaning there

are valid arrival slots with no ights assigned to them. The purpose of the

compression algorithm is to move ights up in the schedule (earlier in time) to

�ll these slots.

There are two ways for an arrival slot to become empty. Either (1) the airline

assigned control/ownership of the slot by RBS has simply declined to substitute

a ight into the slot or (2) the slot is too early for any ight to be assigned to it

by the controlling airline . In either event, the controlling airline would release

the time slot to the compression algorithm which tries to �ll the slot with another

ight of the controlling airline or to make an appropriate compensation.

The abbreviated version of the compression algorithm is as follows.

1. For increasing values of t, the status of time slot t is checked. If t is �lled,

the algorithm moves on to slot t+ 1:

2. If t is released, then it has a controlling airline, AL: The algorithm �rst

scans down a list of ights from AL for a feasible assignment. If no AL

ight is found, it searches for a feasible assignment on a list of all ights

not in AL. If a ight f from AL (or another airline) is found for t, then

f has been moved up from its current slot t0. Then, t0 is declared released

with controlling airline AL and the algorithm is applied to t0: This creates

a stream of substitutions (possibly none) of ights upward through the
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schedule. Eventually, this stream stops (see the full algorithm in Appendix

A for stopping criteria) and the algorithm resumes at slot t + 1, where it

left o�.

The algorithm terminates when every slot has been �lled with a ight or

declared unusable.

The important features of the compression algorithm are that (i) arrival slots

are �lled whenever possible, (ii) ights from the controlling airline of a slot t

are considered before all others when t is released, (iii) if the controlling airline

cannot use a slot it is (eventually) compensated since it receives control of the

slot vacated by the ight which moves into its slot and (iv) there is no way for

an airline to involuntarily lose a slot reserved by RBS (provided that the criteria

for the termination of a substitution stream are properly set). Issues such as the

ordering of lists and the criteria for feasibility of a ight to be moved to a time

slot are discussed in Appendix A.

In order to coordinate all of the activities surrounding the cancellation/substitution

process and the foregoing algorithms, the participating airline operational centers

(AOC's) and the ATCSCC have been networked by the newly established \AOC

Net". The AOC Net carries the airline data to the ATCSCC and an aggregated

demand list to each airline .

Collaborative decision making and common situational awareness of airport

arrivals is made possible by a decision support tool called the Flight Schedule

Monitor (FSM). The major features of FSM are listed below.

� Common situation awareness: When used on-line, FSM displays to both

the NAS user and the ATCSCC the latest projections of airport arrival
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demand at the user-selected airport. The demand is displayed in a time line

fashion in which each tick mark is a minute of time and incoming ights are

represented by icons on the time line. The position of the icon corresponds

to the most recent ETA of the ight. Airlines can be distinguished by an

icon coloring scheme.

� Analytical tools and strategy evaluations: To explore alternative ground-

holding strategies, both the NAS user and the ATCSCC can formulate hy-

pothetical ground delay programs to generate delay statistics and measure

equity amongst the airlines. Also, FSM has an (o�-line) historical mode in

which the user can conduct analyses on archived ight data.

� Information processing: FSM (1) executes both the RBS and Compression

algorithms, (2) allows users to make cancellations and substitutions and (3)

processes an updated demand list together with user-speci�ed parameters

such as AAR's to generate a complete ground-holding strategy (such as

GDP or ground stop). In particular, controlled times of arrival and depar-

ture are output for each ight in the program. However, only the ATCSCC

has the capability to institute a program.

� Compliance monitoring: FSM allows the NAS users and service provider

(ATCSCC) to verify compliance with established rules of conduct within

the system. For instance, an alarm is tripped whenever a ight departs

that was reported cancelled by an airline.

Although FSM was developed as the primary ow tool for the FAA, the

airlines have made signi�cant contributions and improvements to FSM through

experimental sessions (war games), user feedback and concept design. FSM is in
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the �nal stages of testing and development and is now operating on-line at the

ATCSCC and 14 airlines.

One can see that, from beginning to end, the CDM process for addressing

degraded arrival capacity at an airport is rather involved. It promises to be

an improvement, however, on the current system in which the ATCSCC acts as

sole decision maker operating with incomplete information. By making the users

aware of their own role in a constrained situation, it is possible that the need for

government intervention can be greatly diminished or eliminated altogether.

CDM practices are just on the verge of implementation. For the remaining two

chapters of this dissertation, we diverge into two perspectives. In Chapter 3, the

addition of banking constraints to the ground-holding problem is considered, but

under the old system, prior to CDM methodologies. In Chapter 4, the stochastic

nature of airport arrival capacity is addressed in a manner compatible with CDM.
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Chapter 3

The Addition of Banking Constraints to the

Ground-Holding Problem

3.1 Hubbing Operations

Each major airline in the United States has chosen at least one airport as a hub of

its operation. The hub acts as a base of operation and a central point of transfer

for passengers, thus simplifying the enormous scheduling problem that confronts

the airline. From an aerial view, the pattern formed by the ight paths resembles

the spokes of a wheel with the hub at the center, hence, this type of operation

has been dubbed \hub-and-spoke".

The hub-and-spoke system allows an airline to pool at a central location those

passengers with geographically diverse points of origin but a common destination

(or the reverse). For instance, some of the passengers from ights A, B and C

can be scheduled to transfer at the hub to a ight D with a destination common

to all of them. But in order for this to work, the arrival of ights A, B and C

need to be coordinated with the departure of D. Flights A, B and C form what

is known as a bank, meaning, a group of ights whose arrival times must fall
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within a speci�ed time window.

In the solution to the ground-holding problem (GH), the assigned arrival times

of the ights tend to spread out over time because the number of ights that can

be accepted per time period is less than in the original schedule. For instance, if

240 ights were scheduled to land over a four-hour time period and the arrival

capacity of the airport were cut in half, then it would take eight hours to land

those 240 ights. This tends to spread out the arrival of ights within a bank as

well, often beyond an acceptable level.

Banking constraints can be added to the formulation of the GH to keep the

ights of each bank temporally grouped. For each bank b, let �b be the set of

ights in bank b and let wb be the width of b, meaning the maximum number

of time intervals over which the ights of bank b are allowed to land. Note that

the di�erence between the sums
TP
t=1

tXft and
TP
t=1

tXgt is the di�erence between

the arrival times of the ights f and g. Then the following constraint set, for

instance, will ensure that the ights of b land in a time window of desired length.

Formulation 1: XTC (the time coe�cient model)

TX
t=1

tXft �
TX
t=1

tXgt � wb for all b; for all (f; g) 2 �b � �b (3.1)

By adding (3.1) to GH, we have a model (XTC) of the ground holding problem

with banking constraints (GHB). Unlike GH, the LP relaxation of the GHB rarely

yields optimal integer solutions.

The ease with which an integer program is solved can vary dramatically with

the formulation, so, it is important to �nd the best formulation possible. Often

times, the most direct approach is not the best approach. Two formulations of

an integer programming problem are said to be equivalent if and only if they
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have the same set of feasible solutions. Equivalent formulations can be derived by

reformulating the constraints, selecting new variables, or augmenting the existing

ones.

The purpose of this chapter is to �nd a strong formulation of GHB that can be

solved rapidly using a commercial solver. In sections 3.2 and 3.3, several models

of GHB are derived and the intuition behind them is explained. In section 3.4,

the polyhedra induced by some of the more promising models are analyzed and,

in section 3.5, we test the computational performance of each model on both real

and arti�cially constructed data sets.

3.2 Alternate Models of GHB

Formulation 2: XW (the Window model)

Intuitively, it seems that the solving of GHB would be greatly facilitated by

advanced knowledge of the time window in which each bank will arrive in an

optimal solution. Each such window can be uniquely identi�ed by its �rst time

interval (i.e., the one with the lowest index value, t). This is the earliest time

interval to which any of the ights of bank b can be assigned. So, for each bank,

b, we establish a set of binary \marker" variables as follows.

Zb
t =

8>><>>:
1; if t is the first time intervalopen to bank b

0; otherwise:

The marker variables can be used to write a constraint that says, \if t is the

earliest time interval open to the ights of bank b, then the arrival time of ight

f in bank b must be no later than wb units after t". We need one such constraint

for each ight in each bank.
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Zb
t �

t+wb�1X
s=t

Xfs � 0 for all t; for all b; for all f 2 �b (3.2)

The following set of assignment constraints ensures that the �rst time interval

open to each bank is unique.

TX
t=1

Zb
t = 1 for all b (3.3)

The model XW is obtained by adding constraint sets (3.2) and (3.3) to GH.

This model yields at most one banking constraint of type (3.2) for each pair (f; t),

where f 2 F and t 2 f1; 2; : : : ; Tg, and one banking constraint of type (3.3) for

each b. Thus, the total number of banking constraints is O(nT ), where n is the

number of bank ights and T is the number of time intervals.

Formulation 3: XMM (the Monotone Markers model)

An alternate formulation of the window constraint (3.2) can be written by

directly translating the statement \if ight f (in bank b) arrives in time interval

t, then one of the wb intervals prior to t must be marked as the �rst interval open

to bank b". This is the converse of the statement that generated (3.2) in the

model XW. Rather than mark the �rst time interval by Zb
t = 1, and Zb

t = 0 for

all other time intervals (as in XW), we choose to mark all time intervals strictly

preceding the start of the window by the assignment Zb
t = 1 and all subsequent

intervals by Zb
t = 0. (In essence, we are transforming the marker variables into

Bertsimas-Stock variables - see section 3 for an explanation of these variables and

why they might help).

Xft �
t�1X

s=t�wb

Zb
s � 0 for all t; for all b; for all f 2 �b (3.4)
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Constraint set (3.5) precludes the possibility that both Xf t = 1 and Zb
t = 1 for

a �xed t while constraint set (3.6) forces the marker variables to be monotonically

non-increasing.

Zb
t +Xft � 1 for all t; for all b; for all f 2 �b (3.5)

Zb
t � Zb

t�1 � 0 for all t; for all b (3.6)

The model XMM is obtained by adding (3.4), (3.5) and (3.6) to GH. The

number of banking constraints increases quadratically with the size of the problem

and has an asymptotic bound of O(nT ).

Formulation 4: XSS (the Double Sum model)

The following simple constraint states that if ight f arrives in time interval

t, then ight g cannot arrive in time interval s and vice-versa.

Xft +Xg s � 1 (3.7)

If we write one constraint of type (3.7) for each pair of bank ights f and g

and for each pair of time intervals t and s such that jt � sj > wb, then all the

ights of bank b must arrive within a window of wb units.

We can write a stronger version of (3.7), which states that if f lands in time

interval t or earlier, then g cannot land in time interval t+wb or later, as below.

tX
s=1

Xfs +
TX

ss=t+wb

Xg ss � 1 for all t; for all (f; g) 2 �b ��b (3.8)

The �nal model, XSS, is obtained by adding (3.8) to GH. We extend the

notion of \arrival" to fractional solutions by saying that if Xf t > 0 , then f has
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partially arrived at time t and f has fully arrived at the earliest time interval t

for which
tP

s=1
Xfs = 1 . For each bank b, let Ab = fXft : f 2 bg . Then in any

solution to the linear relaxation of the GHB, one can compute the minimum and

maximum values of t for which at least one of the variables in Ab is non-zero.

We de�ne the range of the bank in a given solution to be the di�erence of those

numbers.

The strength of our latest formulation, XSS, lies in its ability to keep this

bank range as small as possible in the LP. As an example of a fractional solution

that is feasible to constraints of the type (2.2), (2.3) and (3.5) but not to (3.8),

consider two ights, f and g, in bank b, with a speci�ed bank width of wb = 2

time intervals. Below are feasible assignments for the variables Xf t and Xg t for

t = 1; 2; : : : ; 8.

t = 1 2 3 4 5 6 7 8

Xf t = 1=2 1=2 0 0 0 0 0 0

Xg t = 0 0 1=2 0 0 0 1=2 0

The model XSS has the undesirable feature that it produces a tremendous

number of constraints for large problems. In fact, the number grows cubically

with the size of the problem; it's asymptotic behavior is O(n2T ). On the largest

data set that we tested, 114,855 of the 115,174 constraints (i.e., 99.73%) were

banking constraints. For problems of this size, even the compilation time of the

C-program that writes the input for the solver CPLEX is signi�cant: on the order

of ten minutes. We now search for a model of equal strength that brings with it

fewer constraints.

Formulation 5: XGF (the Ghost Flight model)

So far in our formulations of banking constraints, we have made pair-wise
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comparisons of the arrival times of the ights within a bank. But if we knew

that, in every feasible solution to GHB, a \pilot" ight in the bank were going

to arrive before the other ights in the bank, then we could compare the arrival

of each bank ight to the pilot ight and cut down on the number of constraints

by an order of magnitude.

There is no reason to believe, �a priori, that every bank would naturally contain

a pilot ight but we can add a ghost ight to each bank and write a constraint

to enforce the arrival of the ghost ight before the other ights in the bank. For

each bank b, we de�ne a set of assignment variables, fZb
t : t = 1; 2; : : : ; Tg, to

mark the (�ctitious) arrival of the ghost ight. That is, Zb
t = 1 if the ghost ight

arrives at time t and Zb
t = 0, otherwise. The following constraint set will ensure

that the arrival of each ghost ight is unique.

TX
t=1

Zb
t = 1 for all b (3.9)

For each ight f in bank b, we write a constraint of the type (3.10) to ensure

that the ghost ight will arrive before ight f and a constraint of type (3.11) to

prevent the ights of each bank b from arriving more than wb units behind the

bank's ghost ight.

TX
s=t

Zb
s �

TX
s=t

Xfs � 0 for all t; for all b; for all f 2 �b (3.10)

tX
s=1

Zb
s +

TX
ss=t+wb

Xf ss � 1 for all t; for all f 2 �b (3.11)

The �nal model, XGF, is obtained by adding (3.9), (3.10) and ( 3.11) to GH.

For every bank ight f and every time interval t, this model yields one banking

constraint of the type (3.11) and one of the type (3.10). For every bank b and

40



every time interval t, there is one constraint of the type (3.9). Thus, the total

number of banking constraints produced by this model is O(nT ), where n is the

number of bank ights. Contrast this with O(n2T ) for model XSS.

In section 4, we will show that XSS and XGF are of equal strength, meaning

that the optimal function value for the LP is the same for each model. Moreover,

we will see that for both XSS and XGF, every banking constraint is a facet of the

polyhedron formed by the set of integer solutions. This is most desirable because

it greatly increases the chances of yielding an integer solution directly from the

LP relaxation.

3.3 Variations on the Models

3.3.1 A Branching Technique

Recall that several of the formulations employ marker (Z) variables. If the (bi-

nary) value of each marker variables is �xed, then each banking constraint re-

duces to a trivial statement or is redundant to a non-banking constraint. The

subsequent LP relaxation is a transportation problem and will yield an integer

solution. Thus, we obtain a valid formulation by restricting only the Z variables

to be integer. The IP solvers will then branch only on the Z variables.

This branching technique was applied to models XW, XMM, XSS and XGF.

In Tables C.1-C.7, Appendix C, the reader will �nd rows marked \XWZ" and

\XMMZ". These formulations are MIP (mixed integer programs) versions of XW

and XMM, respectively, in which the integer constraints on the assignment vari-

ables (Xf t) have been relaxed. Neither XSS nor XGF model names are su�xed

with a \Z" because these models were always solved with these relaxations. In
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section 5, we will analyze the bene�ts.

3.3.2 Bertsimas-Stock variables: A linear transformation

The standard assignment variables can be replaced by Bertsimas-Stock (B-S)

variables, de�ned as follows.

Wft =

8>><>>:
1; if flight f arrives by time t

0; otherwise:

The assignment variables are de�ned so that for exactly one t, Xf t = 1. In

contrast, the B-S variables are de�ned so that for every s greater than some t,

Wf s = 1. Thus, every model that employs B-S variables requires the following

set of monotonicity constraints.

Wf t�1 �Wf t � 0 for all t; for all f (3.12)

One can see that the standard variables are linearly related to the B-S vari-

ables via

Xft =Wft �Wft�1 : (3.13)

In [8], Bertsimas and Stock found that the B-S versions of the multi-airport

ground holding problem (MAGHP) performed quickly and often o�ered optimal

integer solutions directly from the LP relaxation. According to Bertsimas and

Stock, the B-S variables conveniently captured the connecting constraints of the

MAGHP and were in many cases facetial in nature. Hoping for similar success

with respect to our banking constraints, the transformation (3.13) was applied

to models XSS and XGF to obtain models WSS and WGF, respectively.
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(WSS)

Min
X
f2F

TX
t=1

Cf (t� af )
� (Wf t �Wf t�1) (3.14)

subject to

Wf T = 1 ; Wf0 = 0 for all f (3.15)

X
f2F

(Wf t �Wf t�1) � bt for all t (3.16)

Wf t�1 �Wf t � 0 for all t; for all f (3.17)

Wf t �Wg t+wb�1 � 0 for; all t; for all (f; g) 2 �b (3.18)

Wft 2 f0; 1g for all f; for all t (3.19)

WGF is the same as WSS with the following exceptions: (i) one (ghost ight)

binary variable set
n
W b

t : t = 0; 1; :::; T
o
is added for each bank b; (ii) the mono-

tone constraint set below is added

W b
T = 1 ; W b

0 = 0 for all b (3.20)

W b
t�1 �W b

t � 0 for all t; for all f (3.21)

and (iii) constraint set (3.18) is replaced with the following two sets of banking

constraints.
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Wf t �W b
t � 0 for all t; for all b; for all f 2 �b (3.22)

W b
t �Wf t+wb

� 0 for all t; for all b; for all f 2 �b (3.23)

Since WSS and WGF are linear transformations of XW and XSS, they will

yield the same objective function values (in the LP's) as their assignment variable

counterparts. Moreover, since XSS and XGF are equivalent in the LP (see section

4 for proof), the LP optimal function value will be the same for all four models

in every problem instance. This fact is con�rmed empirically in Tables 1-7,

Appendix C.

3.4 Polyhedral Results

The set of integer feasible solutions is the same for each of the models we have

presented but the variations in the associated LP relaxations can drastically a�ect

the performance of solution methods based on a branch-and-bound algorithm.

Formulations are preferable in which the function value of the LP relaxation is

close to the function value of the integer program. In this section, we investigate

analytically the strength of the formulations XSS and XGF. We will employ

the notation and basic results of polyhedral combinatorics, which can be found

Nemhauser and Wolsey [17], and Pulleyblank [20]. We require the following

additional notation.

GH = set of integer solutions to constraints (2.2), (2.3) and (2.4), i.e., ground-

holding problem

GHB1 = set of integer solutions to constraints (2.2), ( 2.3), (2.4) and (3.8),
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i.e., model XSS

GHB2 = set of integer solutions to constraints (2.2), ( 2.3), (2.4), (3.9), (3.10)

and (3.11). i.e., model XGF

PC = convex hull of P , where P is a given set of points in Euclidean Space.

Then GH is the set of feasible solutions to the ground holding problem,GHB1

is the set of feasible solutions to the double-sum formulation (XSS) and GHB2 is

the set of feasible solutions to the ghost ight formulation (XGF). We will show

that, under mild assumptions, each of the banking constraints of the models XSS

and XGF represents a facet of its respective polytope. We will show that the

each capacity constraint (1.3) represents a facet of both GHBC
1 and GHBC

2 .

Finally, we will show that XSS and XGF are equivalent in the strength of their

LP relaxations. These results will be based upon the following assumptions.

Assumption 1. bT = F , where F = total number of ights. We assume

that the capacity of the last time interval is the same as the number of ights. In

would be true in practice to ensure feasible solutions. Our theoretical use of this

assumption will be to construct feasible solutions in which an arbitrary number

of ights has been assigned to the last time interval without a�ecting the optimal

solution to the problem.

Assumption 2.
i=t+wbP
i=t

bi > j�bj for all b and all t;where �b = desired width of

bank b. We assume that the capacities of the time intervals are su�cient to allow

for the landing of any bank, b, over any block of wb contiguous time intervals.

Combined with assumption 1, this will allow us to generate a feasible solution

in which bank b arrives in any chosen block of time intervals and all ights not

in bank b arrive in time interval T . The full strength of this assumption is not

required but the complexity of the weaker version would obscure the proofs.
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Assumption 3. For all t; bt � 2. In practice, a time interval would probably

represent 10 minutes or more, hence, could accommodate at least two ights. The

case in which bt < 2 for some or all of the t might be of theoretical interest.

Assumption 4. We assume that for each ight f , af = 1; where af =

scheduled arrival time of ight f . Thus ight f can be assigned to any one

of the time intervals, t = 1; 2; : : : ; T . This assumption eliminates pathological

interactions between the ight arrival times and the bank structure and allows us

to index the components of a feasible solution (vector) in the following uniform

fashion.

X = (X11; X12; :::;X1T ; X21; X22; :::;X2T ; XF1; XF2; :::;XFT ): (3.24)

For notational convenience, let N = TF and n = TF � F . We begin by

establishing the dimensions of the ambient polytopes.

Lemma 1. For each constraint C of the form (3.8), there are at least n a�nely

independent points of GHBC
1 that meet C at equality.

Proof. See Appendix B.

Lemma 2. Dim(GHBC
1 ) � n .

Proof. See Appendix B.

Theorem 3. Dim(GHBC
1 ) = dim(GH) = n.

Proof. We have already shown that dim(GHBC
1 ) � n. Note that GHBC

1 �

GH and that the constraint set (2.2) contains F linearly independent equations.

Therefore, n � dim(GHBC
1 ) � dim(GH)� F = n, and the result follows.
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When an instance of GHB is formulated by XGF rather than XSS, one ghost

ight is added to the problem for each bank. This increases the number of ights

from F to F +B, where B is the number of banks. The feasible solutions to XSS

are N -dimensional while the feasible solutions to XGF are N*-dimensional where,

N = TF and N� = T (F + B). Let us assume that, in the formulation of XSS,

we have added one ghost ight for each bank. Since the variables corresponding

to the ghost ights do not need to appear in the objective function or any of the

constraints, the optimal solution will remain unchanged. Now the solution vectors

for XSS and XGF are both N*-dimensional and we can consider the feasibility

of a single solution to either XSS or XGF. This simpli�es notation and allows us

to make use of previous results. In particular, we can restate the conclusion of

Theorem 3 to be that Dim(GHBC
1 ) = n�, where

n� = T (F +B)� (F +B) = n+ (TB �B):

Theorem 4. Dim(GHBC
2 ) = n�, where n� = n + (TB �B).

Proof. Let 
 be the set of all solutions, X and Y , constructed in the proof of

Lemma 1. Each solution (vector) in 
 was constructed so that ight 1 lands

before all other ights in bank b. Under the assumption that ight 1 is the ghost

ight of bank b, each solution in 
 becomes feasible to GHBC
2 . As in Lemma 1,

the vectors in 
 can be linearly combined to yield a set, 
*, of n linearly (a�nely)

independent solutions to GHBC
2 . As in the proof of Lemma 2, one more linearly

independent vector, U , may be added to 
* to bring the total number to (n�+1).

U is formed by setting U = (Y �X), where Y and X are the integer solutions

to GHBC
2 , described below.

Let k = (wb + t� 1).
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In block 1: Y1;k = X1;k = 1; all other components are zero

In block 2: Y2;k = 1 , X2;k+1 = 1; all other components are zero

In block m (m not equal to 1, 2): Ym;n = Xm;n for all n. Set these binary

components in

any feasible manner.

This shows that dim(GHBC
2 ) � n�. FromTheorem 3, we know that dim(GHBC

1 ) =

n� and since GHBC
2 � GHBC

1 , we conclude that dim(GHBC
2 ) = n�.

The following lemma is used to establish that the banking constraints from

model XSS induce facets.

Lemma 5. For every constraint C of the form (3.8), there is an integer point,

X 2 GH, that satis�es every constraint of the form (3.8) except C.

Proof. Let constraint C be given. This �xes a bank b, a time interval t; and

ights f; g 2 �b . For notational ease, let us drop the subscripts f and g from

the assignment variables Xf t and Xg t so we can refer to the variables as Xt and

Yt , respectively. Also, we will assume that both ights are scheduled to arrive in

the �rst time interval so that Xt and Yt are de�ned for all t. Then the constraint

C is given by

tX
s=1

Xs +
TX

s=t+wb

Ys � 1: (3.25)

Let S1 be any solution that assigns Xt = 1 and Yt+wb
= 1. Since 1+1 > 1, S1

violates constraint (3.25) . We will show that S1 satis�es every other constraint

of the form (3.8). Only certain of these constraints apply to the ights f and g

and they come in two forms:
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�X
i=1

Xi +
TX

i=�+wb

Yi � 1 (3.26)

or

�X
i=1

Yi +
TX

i=�+wb

Xi � 1: (3.27)

Since each summation in (3.26) and (3.27) is bounded between one and zero,

it will su�ce to show that exactly one of the two summations is zero. The four

cases appear in Appendix B.

Theorem 6. Every banking constraint of the form (3.8) represents a facet of

GHBC
1 and no two such constraints represent the same facet.

Proof. Fix a banking constraint, C, and let F be the face represented by C.

Lemma 1 shows that there are n� linearly independent (a�nely independent)

integer vectors of GHBC
1 that meet C at equality. Thus, dim(F ) � n� � 1.

We know that dim(GHBC
1 ) = n�. Let H be the hyperplane represented by C.

Since H has dimension greater than n*, we must consider the possibility that

dim(F ) = n�. Let GHBC�
1 be the polytope that results when constraint C is

relaxed from GHBC
1 . By Theorem 3, and the fact that GHBC

1 � GHBC�
1 � GH

we conclude that dim(GHBC�
1 ) = n�. Now dim(F ) = n� only if all of GHBC�

1

lies on H. But 5 shows that a (unique) point of GHBC�
1 is eliminated by this

hyperplane. Thus, dim(F ) < n�. In all, dim(F ) � n*�1 and dim(F ) � n� � 1,

so dim(F ) = (n� � 1). F is a facet of GHBC
1 , by de�nition. It follows from the

uniqueness of the point in Lemma 5 that no two such constraints represent the

same facet.
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Theorem 7. Every banking constraint of the form (3.10) represents a facet of

GHBC
2 and no two such constraints represent the same facet.

Proof. See Appendix B.

Theorem 8. Every banking constraint of the form (3.11) represents of a facet

of GHBC
2 and no two such constraints represent the same facet.

Proof. Note that every facet of GHBC
1 is also a facet of GHBC

2 . (Recall that we

have assumed the existence of ghost ights in the model XSS, so this statement

is well de�ned.) Every ghost-ight constraint of the form (3.11) is a double-sum

constraint of the form (3.8). We have already shown that every constraint of the

form (3.8) is a facet of GHBC
1 and that the representation is unique.

Let Ft be the face of GHBC
1 (or GHBC

2 ) represented by the capacity con-

straint corresponding to t. The conditions that are both necessary and su�cient

for Ft to be a facet are extremely complex and peculiar to the problem instance.

As we will see in the next theorem, a condition su�cient for Ft to be a facet is that

there should be at least one solution feasible to all constraints except the capacity

constraint. Since GHB is usually being solved under reduced capacity, it would

not be hard to construct such a solution. For instance, if ights f1; f2; : : : ; f10 are

scheduled to arrive in time interval t, and if the capacity of time interval t has

been cut to, say, bt = 7 ights, then one could assign f1; f2; : : : ; f7 to time interval

t and all other ights to time interval T . This type of construction would fail

for an early time interval for which there are not enough ights to be assigned to

it or when there is a bad interaction between bank ights and non-bank ights.

For instance, suppose that the only way to �ll the capacity of time interval t is

to assign a particular ight, f , to time interval t. Then for every (constructed)

50



feasible solution, X, we have the implied equation, Xf t = 1. Since the vari-

ables over block f must sum to one, Xf j = 0; for each j 6= t. This means that

dim(Ft) < (n� � 1), and Ft cannot be a facet of GHBC
1 (nor of GHBC

2 ). But

we consider this last scenario to be pathological. The hypothesis of the following

theorem would most likely be true in practice.

Theorem 9. Let Ft be the face of GHBC
1 (or GHBC

2 ) represented by the ca-

pacity constraint corresponding to time interval t. Then for each t 6= T , Ft is

a facet of GHBC
1 (or GHBC

2 ), provided that there is a set of bt + 1 non-bank

ights that can be assigned to t.

Proof. For each t 6= T , one can construct a set of 
 of n� linearly independent

vectors such that each vector U 2 
 is a linear combination of vectors from Ft

(see Appendix B for details of the construction). Therefore, Ft must contain

n� linearly independent vectors. Since linearly independent vectors are a�nely

independent, it follows that dim(Ft) � (n��1). Recall that dim(GHBC
1 ) = n� =

dim(GHBC
2 ). Since Ft � GHBC

1 (and GHBC
2 ), we have that dim(Ft) � n�.

Under the assumption that at least bt + 1 ights can be assigned to t, there

is at least one feasible solution that does not meet the capacity constraint at

equality, hence, does not lie on Ft. Therefore, Ft is a proper subset of GHBC
1

(and GHBC
2 ) and we can rule out the possibility that dim(Ft) = n�. It follows

that dim(Ft) = (n� � 1) and Ft is a facet by de�nition.

By using a polyhedral projection (see [6] and [20] for background), we will

show that XSS and XGF are equivalent in strength. Let P1 be a polyhedron

de�ned over variable set x and let P2 be a polyhedron de�ned over variable set

(x; z) . Then P1 is the projection of P2 onto x if
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P1 = fx : there exists a z with (x; z) 2 P2g:

Theorem 10. Let P1 be the set of feasible solutions to the LP relaxation of XSS

and let P2 be the set of feasible solutions to the LP relaxation of XGF. Then P1

is the projection of P2 onto the variable x.

Proof. It will su�ce to show that (i) whenever (x; z) 2 P2 , x 2 P1

and (ii) whenever x 2 P1 , there is a z such that (x; z) 2 P2:

Proof of (i): Let y = (x; z) 2 P2 . Fix time interval t and ights f and g in

bank b. Because y satis�es every constraint of the form (3.10), we have that

TX
s=t+1

Zb
s �

TX
s=t+1

Xfs � 0: (3.28)

The equalities below follow from (2.2) and (3.9), respectively.

TX
s=t+1

Xfs = 1 �
tX

s=1

Xfs (3.29)

TX
s=t+1

Zb
s = 1 �

tX
s=1

Zb
s (3.30)

By substituting (3.29) and (3.30) into (3.28), we obtain

tX
s=1

Xfs �
tX

s=1

Zb
s : (3.31)

For an arbitrary ight g in bank b, we add the same expression to each side

of (3.31), as below.

tX
s=1

Xfs +
TX

ss=t+wb

Xgss �
tX

s=1

Zb
s +

TX
ss=t+wb

Xgss (3.32)
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Since y satis�es every constraint of the form (3.11), the right-hand side of

(3.32) and hence the left-hand side of (3.32) is less than or equal to one. We

have shown that, for an arbitrary time interval and pair of bank ights, the

corresponding constraint of the form (3.10) is satis�ed by x. The fact that x

satis�es (2.2), (2.3) and (3.32) is trivial. Therefore, x 2 P1 .

Proof of (ii): Let x 2 P1 . For each bank b and each time interval t, we de�ne

Bt =MAXf2�b

tP
i=1

Xfi . For each bank b, we recursively de�ne

Zb
t =

8>><>>:
Bt; if t = 1

Bt �
t�1P
i=1

Zb
i ; otherwise

(3.33)

Let z be the vector whose components are comprised of the variables de�ned

in (3.33). We will show that (x; z) is in P2 . By de�nition of Zb
t , we have that

tP
i=1

Zb
i = Bt . Since 0 � Bt � 1 for each t, we have that 0 �

tP
i=1

Zb
i � 1 for each

t. Now whenever t < � , Bt � B� , so
tP

i=1
Zb
i is non-decreasing, as t increases.

Thus, for each t and b, Zb
t is nonnegative and every constraint of the form Zb

t � 0

is satis�ed. The feasibility of x to XSS implies that
TP
s=1

Xfs = 1 for every bank

ight f and, in particular, BT = 1. Since
TP
i=1

Zb
i = BT , every constraint of the

form (3.9) is satis�ed for every bank b. These same constraints imply that for

every t > 1 and every bank b,

1�
TX
s=t

Zb
s =

t�1X
s=1

Zb
s : (3.34)

Note that by de�nition z and Bt � 1,
t�1P
s=1

Xfs =
t�1P
s=1

Zb
s = Bt�1 for some ight

f in bank b with the property that
t�1P
s=1

Xfs �
t�1P
s=1

Xgs for every g in bank b. Thus,

for every g,
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t�1X
s=1

Xgs � 1�
TX
s=t

Zb
s : (3.35)

By substituting
t�1P
s=1

Xgs = 1 �
TP
s=t

Xgs into (3.35), we obtain the following

constraint for every bank ight, g, and every time interval, t > 1.

TX
s=t

Zb
s �

TX
s=t

Xgs � 0 (3.36)

In the event that t = 1, each of the summations in (3.36) is equal to one and

the validity of the inequality is trivial. We have shown that (x; z) satis�es every

constraint of the form (3.10).

Lastly, to show that (x; z) satis�es every constraint of the form (3.11), �x

t and bank b. Let f be the ight corresponding to the maximum sum in the

de�nition of Bt. For every g 2 �b , there is a constraint of the following form

(3.10) that is satis�ed by x. That is,

tX
i=1

Xfi +
TX

i=t+wb

Xgi � 1: (3.37)

By substituting
tP

i=1
Zb
i = Bt =

tP
i=1

Xfi in for the left-hand sum in (3.37), we see

that (x; z) satis�es constraint (3.11) for an arbitrary t and ight f in an arbitrary

bank b. Thus, (x; z) satis�es every constraint of the form (3.11) and (x; z) 2 P2,

as desired.

Corollary 11. The LP relaxations to XSS and XGF have the same optimal ob-

jective function values.

Proof. Note that none of the auxiliary variables (Zb t) appear in the objective

function for XGF and that the objective functions for XSS and XGF are the

same. The result follows from the preceding theorem.
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3.5 Computational Results

3.5.1 The Data

The performances of the various formulations of GHB (the ground holding prob-

lem with banking constraints) were tested on �ve data sets. Each data set was

comprised of a set of ights, a collection of banks (subsets of the set of ights),

the scheduled arrival times of the ights, and the capacities of the ights (i.e.,

the number of passengers that could be carried). The capacities were used to

compute the weight of the ight in the objective function.

Data Sets 1 - 4 were constructed with a �ctitious airport in mind with an

arrival capacity of about one ight per minute. The total number of ights in

each data set varied from 25 to 129 and the time horizon varied from 30 minutes

to just over two hours. The arrival capacities were designed to mimic those of a

large metropolitan airport but the time horizons represent a relatively small slice

of time. The time horizons were kept short to be sure that the problems could

be solved in a reasonable amount of time. More realistic time horizons would be

on the order of 4-6 hours (as in Data Set 5), implying a total of several hundred

ights. Each problem instance was solved with a reduced arrival capacity of

one-half the original arrival capacity (i.e., one ight every two minutes).

The number of banks per data set was varied from one to seven, each bank

consisting of eight to ten ights. In practice, this would be a small or medium-

sized bank. The banks were scheduled to land over one to three time intervals.

Since the time horizon was divided up into ten minute intervals, this translates

to 10-30 minutes per bank. The bank densities (percentage of total ights that

were bank ights) ranged from 8.9% to 45%.
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We found that when a given data set (1- 4) is solved without banking con-

straints, each bank would tend to spread over about four time intervals (at ten

minutes per time interval, for a total of forty minutes). So, the bank spans were

set at three time intervals (thirty minutes total) in order to keep the banking

constraints active.

Data Set 5 was actual ight data taken over an eight-hour period at Chicago's

O'Hare Airport on February 12, 1993. By default, GDP's are formulated and run

over a four hour period so this data set represents a large instance of GHB. We

solved the data set over the full eight hour period (13:00 - 20:59, data 5C) but

not all the models were able to solve a problem this size, so we generated smaller

data sets of four hours (13:00 - 16:59, data set 5A) and six hours (13:00 - 18:59,

data set 5B) in order to test fully the performance of each model on real data.

Each problem instance was solved using CPLEX 3.0 on a SPARC 10 work

station both as an LP relaxation and as an integer program (IP). We found

little or no improvement in performance by customizing the settings provided in

CPLEX, so we stayed with the default settings.

With respect to the LP relaxation, we were looking for

� high optimal function values

� low run times, and low iterations of the algorithm

with respect to the IP, we were looking for

� the ability to solve the IP within a node limit of 20,000

� low run times, low number of iterations and low iterations of the algorithm
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The computational results are tabulated in Appendix C, Tables 1-7. For each

data and for each ight f , the delay constant Cf , was set to one-tenth the

passenger capacity of the aircraft. The time intervals were ten minutes each, so

the function value units are roughly passenger-delay minutes (they are exactly

passenger-delay minutes when the parameter � is set at 1.0).

3.5.2 The Findings

The value gap of a formulation is the percent by which the LP relaxation optimal

value varies from the IP optimal value. A lower value gap indicates a stronger

model. In this respect, XGF proved to be the best of the �ve models. XSS, WSS

and WGF will have the same performance relative to this metric since they have

equivalent LP's. XGF yielded the lowest value gap in every data set. The value

gap for XGF was never more than 2.32% and fell to zero in three of the data

sets (1, 5A and 5B), indicating that the optimal integer solution was obtained

directly from the LP relaxation.. We believe that the LP strength of the XGF

model is due to the fact that each of its banking constraints represents a facet of

the convex hull of the set of integer solutions.

Note that for each data set, XGF (but not necessarily XSS, WSS and WGF)

solved the IP to integer optimality in very few nodes of the branch-and-bound

algorithm (the most was 24 nodes for data set 4).

The run times for XGF (on the IP) varied from fractions of a second to just

over 25 minutes (in data set 5B). GDP's are typically formulated a few hours

in advance. The specialist would need time to review an optimal solution to

GHB before making a �nal decision, so, in practice, the solution times that XGF

displayed would most likely be acceptable.
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The outstanding IP performance of XGF comes partly from its LP strength

but also from the fact that we greatly reduced the number of nodes required

in the branch-and-bound algorithm by relaxing the integer constraints on the

assignment variables, Xf t. Recall from section 3 that this branching technique

was applied not only to XGF but to the other models that use marker variables

(to mark the time window in which a bank lands): XWZ and XMMZ. In tables

C.1-C.7 (Appendix C), the formulations XWZ, XMMZ are the same as XW

and XMM, respectively, but the IP was solved by branching only on the marker

(Z) variables. Of course, the LP performances for XW and XWZ are the same

(likewise, for XMM and XMMZ). However, the \Z" versions of these models

vastly outperformed their counterparts in IP performance. For instance, the

number of nodes that XWZ required to solve Data Set 4 was 16 nodes compared

to 20,000 for XW.

This di�erence is so marked that we consider the establishment of marker

variables and subsequent branching to be crucial toward solving in real time

medium or large instances of GHB (or any such assignment problem with banking

constraints).

In every problem instance, the model XMM ranked last in LP strength (i.e.,

had the highest value gap), run time (both LP and IP) and number of nodes

explored in the branch-and-bound algorithm. XMM solved only the smallest of

problems (Data sets 1 and 2) to integer optimality in the allotted thresholds of

three hours and 20,000 nodes.
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3.5.3 Bertsimas-Stock Performance

Our theoretical work has shown that the B-S models are equivalent in LP strength

to their standard assignment variable counterparts. Thus, we knew prior to the

experiments that they would be equally successful at obtaining integer optimal

solutions directly from LP relaxations. So, in performance, we were looking for

LP solution times and branching issues.

In general, the B-S versions required more iterations to solve as an LP relax-

ation - often a full order of magnitude more than their standard counterparts.

For instance, WGF required 1683 iterations to solve Data Set 3 (see Table 3, Ap-

pendix C) while XGF took only 657. The run times were not so widely di�erent

but the standard assignment variable models still outperformed the B-S versions.

For all but the smallest of data sets (i.e., more than 25 ights) the B-S models

were outperformed by the standard assignment variable models. One possible

reason for the poor performance of the B-S models relates to the replacement of

non-negativity constraints with monotonicity constraints (essentially, there is an

additional constraint for every variable). This would cause the simplex algorithm

to spend signi�cantly more time �nding inverses of matrices, thus driving up the

LP run times.

We conjectured that the B-S performance would become comparable to the

standard versions if the problem had fewer variables. One way to cut down on

the number of variables is to limit the amount of delay that could be assigned

to any given ight. For instance, if a ight f were scheduled to arrive in the

�rst time interval and there were a total of 25 time intervals, then with a 10

time period limit on the tardiness of each ight, one would need variables Wft

for t = 1; 2; : : : ; 10 rather than for t = 1; 2; ::; 25. This type of limitation would
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Data Set Model Time Int's Up Bnd Cap Iterations Time (sec)

4 XGF 24 none 7 923 5.63

4 XGF 24 6 7 671 2.17

Improvement: 27.30% 61.46%

4 WGF 24 none 7 3919 42.00

4 WGF 24 6 7 3067 16.32

Improvement: 21.74% 61.11%

5A XGF 30 none 10 3875 80.25

5A XGF 30 5 10 1450 9.20

Improvement: 62.58% 88.88%

5A WGF 30 none 10 12,708 292.30

5A WGF 30 5 10 7061 83.75

Improvement: 44.44% 71.35%

Table 3.1: Does LP performance improve with a bound on ight delay?

be done in practice anyway since a ight is e�ectively canceled if it is severely

delayed.

In order to test this hypothesis, we solved the LP relaxation of model WGF

on Data sets 4 and 5A, before and after upper bounds of 5 time units and 6 time

units, respectively. The results are in Table 3.1.

The runtime of WGF dropped by about 61-72% while the number of iterations

dropped by about 22-44% (see Table 8). However, we found comparable savings

in run time and iterations (see Table 8) for XGF. The imposed bound did not

close the performance gap between the two models.

A very signi�cant property of the B-S models is that very simple constraints
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tend to represent facets. Recall that every banking constraint of XSS and XGF

represented a facet of the convex hull of integer solutions. Since WSS and WGF

are linear transformations of XSS and XGF, respectively, the banking constraints

of WSS and WGF also represent facets for their respective polytopes. Note that

these constraints involve only two variables.

3.5.4 Some Highlights of the Experiments

For Data Set 5, XGF took just over 25 minutes to solve the six-hour time period

(13:00 - 18:59, see Data Set 5B) whereas it took XGF only 20 minutes to solve

the eight-hour period (13:00 - 20:59, see Data Set 5C). One would think that it

would take more time to solve an extension of a problem. We conjecture that the

six-hour problem is equally di�cult to solve because most of the bank ights are

grouped in the �rst six hours of the eight-hour time period. We further conjecture

that the node selection in the branch-and-bound algorithm may have been less

fortunate in the six-hour case.

XTC turned out a surprisingly good performance on Data Set 5. Although

its LP strength is less than that of XGF (or XSS), it solved Data Sets 5A and 5B

in much less CPU time than XGF - sometimes an order of magnitude less. XTC

required 1368 nodes of the branch-and-bound algorithm to solve Data Set 5C

compared to only 3 for XGF and yet the solution times were comparable (around

20 minutes). This is because XTC was able to solve each iteration of the LP in

much less time than XGF. This demonstrates that the strongest model (in LP

strength) does not always solve an integer program the fastest.

As one would expect, the length of time required to solve the LP and the IP

grows with the time horizon and number of ights. All of the models were able
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to solve the small Data Sets (1 and 2) in less than a few seconds while on the

larger data sets (5A, 5B, 5C) several of the models could not solve the problem

in the (arbitrary) three-hour time limit. The relationship between size and run

time is not strict, however. Data set 4 is smaller than Data Set 5A (120 ights

versus 280 ights) and yet most models (XW and XMM in particular) had far

more trouble solving Data Set 4. This might be because Data Set 4 had four

banks whereas Data Set 5A had only two.
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Chapter 4

The Stochastic Ground-Holding Problem

In Chapter 1, we saw that a GDP (ground delay program) can be formed for a

single airport given the schedule of incoming ights and a deterministic arrival

acceptance rate, At, for each time period t in the planning horizon. Recall that,

in essence, the procedure for assigning new arrival times to incoming ights was

to list the ights by increasing ETA (estimated time of arrival), then to assign

the �rst A1 ights on the list to the �rst time interval, the next A2 ights to the

second time interval and so on.1

The e�ectiveness of a GDP is totally dependent upon the ability of the spe-

cialist who formulates the GDP to predict the AAR's (arrival acceptance rates)

for each of the time periods. For example, consider the scenario in which a storm

is predicted to hit an airport on the east coast at 12:00 hours and, in response,

a GDP has been implemented based on the prediction that the arrival capacity

for the �rst hour will drop from 50 to 30 ights per hour. Then the GDP would

assign to each of the ights scheduled to arrive during the �rst hour a ground

delay su�cient to ensure that it will arrive without airborne delay. But if the

1The complexities of such a formulation will be addressed in Section 4.1.
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storm is delayed by several hours or by-passes the airport altogether, then many

of these ights will have incurred unnecessary delay. For instance, a ight that

was scheduled to leave the west coast at 8:00 and arrive at 13:00 may have been

held at its departure airport for one hour so that it would not arrive until after

14:00. Aside from a slight adjustment in enroute air speed, there is no way for

this ight to o�set its one-hour delay even though, in hindsight, it could have

landed on time. In this event, the GDP has assigned too much ground delay.

There is also the opposite scenario in which the arrival capacity of an airport

is overestimated and ights incur airborne delay that could have been absorbed

on the ground, had a more aggressive GDP been enforced. In this instance, the

GDP has not assigned enough ground delay.

It seems that there will always be some uncertainty in the prediction of the

arrival capacity at a given airport. AAR's are dependent upon airport con�g-

urations which are, in turn, dependent upon meteorological conditions such as

visibility, wind velocity/direction, and precipitation. Thus, arrival acceptance

rates are stochastic in nature, rather than deterministic.

There are many approaches to stochastic programming (see [9], [16], or [19]

for background). The approach we will adopt here is to assume that the time

horizon has been discretized into time periods t = 1; 2; :::; T and that for each t,

the arrival capacity is a random variable with a discrete probability distribution.

We assume that the number, S, of values that the random variable can take on

is the same for each time interval. This is consistent with the manner in which

airports operate. The AAR is determined based on a small number of key weather

parameter and the runway con�guration used.

This generates S pro�les or, scenarios (sample paths), of arrival capacities
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together with associated probabilities. Figure 4.1 displays possible multiple AAR

scenario forecast for a �ctitious airport whose normal AAR is 70 ights per hour.

The pessimistic forecast, scenario 1, predicts that the AAR will plummet to 30

ights per hour at the third hour and not recover until the eighth hour. Scenario 2

is similar in pattern to scenario 1 but predicts a less severe, shorter storm period

that will begin one hour earlier. Scenario 3, the optimistic scenario, predicts

heavy impact only in hours 4, 5 and 6, with hour 6 being the worst at an AAR

of 55 ights per minute.

Figure 4.1: Multiple AAR scenarios

Let us consider an intuitive approach to planning AAR's based on the multiple

scenarios in Figure 4.1. Suppose that scenario 2 is to occur with high probability,

say, P (2) = :95. The decision-maker (DM) would do well to set the acceptance

rates in close accordance with, if not exactly equal to, this scenario. That is, the

DM should (perhaps) accept 60 ights in the �rst time period, 50 in the second

time period, 50 in the third, and so on. However, as the likelihood shifts toward
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scenario 3, say, P (1) = :05; P (2) = :55; P (3) = :40; considerable weight should

be given to the optimism of scenario 3 and very little to the pessimism of scenario

1. A GDP based on scenario 2 would probably prove to be overly aggressive and

lead to unacceptable levels of unnecessary ground-holding, thus pushing airport

demand well below that of capacity. It seems that in the formulation of the

GDP, the decision-maker should hedge toward scenario 3 and perhaps disregard

scenario 1 altogether.

This type of intuitive reasoning could produce close-to-optimal results for

cases in which there are a small number of AAR scenarios with simple patterns.

However, there could be a great number of scenarios to consider and it is not

uncommon for storm intensity to peak twice or more in an a�ected region, thus

leading to several peaks and valleys in each AAR scenario. This greatly obscures

the GDP that minimizes overall delay costs and renders almost useless any simple,

intuitive approach for �nding it.

The purpose of this chapter is to provide the specialist who formulates a GDP

with a modeling tool that will minimize overall expected delay costs while taking

into account the stochastic nature of airport arrival capacity. Henceforth, for a

given time period, we will be careful to distinguish between the arrival acceptance

rate (AAR) and the planned arrival acceptance rate (PAAR). The former is the

number of ights that will actually be able to land at the airport while the latter

is the number of ights that will attempt to land, based on controlled times of

arrival assigned during a GDP. The output of the model will be the PAAR for

each time period.

Both the model proposed herein and the use of discrete scenarios are similar

to the technique applied by Richetta and Odoni in [22] and Chapter 3 of [23].
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Their model yielded a constraint matrix that could be partitioned into network

matrices along with coupling constraints. Unable to prove that the formulation

would yield an integer solution directly from the LP relaxation, they developed a

decomposition algorithm to exploit the special nature of the constraint matrix. It

will be shown that the model presented here, however, can be solved by applying

standard network code to the dual.

The work presented in this chapter is intended to be used at the end of the

CDM (collaborative decision-making) process outlined in the Chapter 2 or at

any of its iterative cycles. Since this decision-making process is highly dependent

upon human input, it will be modeled as a black box, with �nal output being an

ordering of ights. This ordering of ights is input to the model presented in this

chapter, along with the multiple AAR scenarios..

Section 4.1 develops an integer programming model (SGH) of the stochastic

ground-holding problem. Section 4.2 presents a simpli�ed version of (SGH2) in

which some of the variables have been eliminated through preprocessing. Section

4.3 addresses the ground-holding and airborne delay costs. The theoretical work

in Section 4.4 explores the network structure of the problem and shows that

the proposed model allows the integer solution to be obtained directly from its

linear programming relaxation. Section 4.5 gives computational results for several

large-scale, realistic test cases.

4.1 Model Formulation

Let t = 1; 2; :::; T be a set of discrete, contiguous time intervals during which

the AAR of an airport is in jeopardy. Each t could represent, say, a 15-minute

time interval. Let Dt be the total number of ights scheduled to arrive during
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time interval t. In practice, not all ights can be given a CTA (controlled time

of arrival). International ights and general aviation, for instance, are exempt

from ground delay programs in the United States. Let Dt be the total number

of (non-exempt) ights that will be included in the GDP. Then the number of

exempt ights is given by Et = Dt �Dt with Et � 0:

When formulating a GDP, the decision-maker (DM) has the option to exempt

ights from the program based on criterion other than those already mentioned.

Typically, this criteria is related to the proximity of the origination airport to the

destination airport. For instance, when formulating a GDP for an airport on the

east coast of the United States, the DM may choose to exempt all long-distance

ights, hence, all ights originating on the west coast. So, we assume that the set

of ights that are candidates for a given GDP is partitioned into disjoint classes

e = 1; 2; :::; E; called tiers. For each tier, we de�ne a decision variable, ye; such

that ye = 1; if tier e is to be included in the GDP and ye = 0; otherwise. Let det

be the number of ights in tier e: Then we have that

Dt =
EX
e=1

detye:

Let Xt be the PAAR (planned arrival acceptance rate) for time period t, i.e.,

the number of ights that will be assigned a controlled time of arrival that falls

within time period t. This is equivalent to the parameter bt in the previous

chapter and will be the output of our model.

Because of the stochastic nature of weather, Xt ights will not necessarily be

able to land during time interval t. For instance, if X1 = 10 and the airport can

land only 8 ights at time t = 1, then 2 of the 10 ights scheduled to arrive at

time t = 1 will be held in the air by the controllers at the destination airport. Let

us assume that X2 = 10 and that the capacity of the airport is, say, 15 ights for
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the next period so that the two airborne-held ights are able to land in the next

time interval, t = 2. Then the airborne delay under this single AAR scenario can

be depicted by the ow diagram in Figure 4.2.

planned acceptance
rate, time t = 1

8

2

12

1010

planned acceptance
rate, time t = 2

airborne holding

landing, time t = 2landing, time t = 1

AAR = 8 AAR = 15

Figure 4.2: Airborne holding of two ights

Assuming that ground holding is cheaper than airborne holding (else there is

no need for a GDP), it would have been cheaper to hold two ights on the ground

for one time unit and have them arrive at the terminal airspace at time t = 2.

The single-unit ground delay of these two ights can be represented by adding a

horizontal arc at the top of Figure 4.2. The result is shown in Figure 4.3.

Note that Figure 4.3 treats ights on an aggregate level, hence, there is no

mention as to which ights will absorb the ground delay. Recall from Chapters 1

and 2 that the ights are sequenced by landing order prior to the formulation of

a GDP. Thus, it is easily deduced that the �rst eight ights are allowed to land

at time interval t = 1 while the ninth and tenth ights will absorb the ground

delay and land in time interval t = 2.

Figure 4.3 is easily extended to allow for an arbitrary number of time periods,
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planned acceptance rateplanned acceptance rate

landinglanding

flights scheduled toflights scheduled to

arrive, time t = 1 arrive, time t = 2

time t = 1 time t = 2

time t = 2time t = 1

10 10

2

0

128

8 12

airborne holding

Figure 4.3: Ground holding of two ights

T . Moreover, arcs can been added to allow for the exemption of ights. The

result is Figure 4.4, which assumes the following notation.

Et = number of ights scheduled to arrive at time t that are exempt from

ground delay.

b1t = number of ights that can be landed at the airport (the AAR) during

time period t.

Zt = number of (non-exempt) ights wishing to land at time t but not ac-

cepted to the terminal airspace at time t (these ights have been ground delayed).

Z1
t = number of ights held in the air from time period t to t+1 (these ights

have been airborne delayed).

The exempted ights ow directly to the bottom nodes, indicating that they

will be accepted to the terminal airspace under any conditions. These ights are

not exempt, however, from possible airborne holding.

Next, we extend Figure 4.4 to accommodate multiple AAR scenarios. Let

s = 1; 2; :::; S be a set of AAR scenarios, each with an associated probability,
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Figure 4.4: Deterministic ow model (S = 1)

p (s) :The capacity of the airport (AAR) at time t varies with the scenario, s,

hence, so does the amount of airborne holding at time t. We generalize the above

notation as follows.

Zs
t = number of ights held in the air from time period t to t + 1;under

scenario s.

bst = number of ights that can be landed at the airport (the AAR) during

time period t;under scenario s.

The lower portion of Figure 4.4 is replicated once for each scenario to arrive

at our �nal diagram in Figure 4.5. Our integer programming model will be based

on this diagram.

The hypothetical path of a single ight through the ow diagram is depicted

in Figure 4.6. The ight enters the system at time t = 1, indicating that it is

originally scheduled to arrive at time t = 1. Next, the ight absorbs two units of
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Figure 4.5: Stochastic ow model (S = 2)

ground delay, then is allowed to enter the terminal airspace and absorbs two unit

of airborne delay. Note that the ow pattern gives the illusion that the ight is

being held on the ground just prior to arriving at the terminal space (attempting

to land). In reality, it will absorb its ground delay at its origin airport at some

earlier time, which is easily computed based on the estimated enroute travel time

for the ight.

Let ~c and ĉ be, respectively, the costs of holding a ight for one time unit on

the ground and one time unit in the air. Given an outcome (scenario), s, the

total delay cost of the GDP is given by

TX
t=1

(~cZt + ĉZs
t ) ;

and the expected total delay cost of the GDP is given by

SX
s=1

"
p (s) �

TX
t=1

(~cZt + ĉZs
t )

#
: (4.1)
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Figure 4.6: The path of a single ight

In formulating a GDP, the DM tries to minimize the total expected delay cost

subject to the constraints imposed by Figure 4.5. We now develop those con-

straints.

First, we model the ow through the upper (round) nodes of Figure 4.5. We

have the following relations.

D1 = X1 + Z1 (4.2)

Zt�1 +Dt = Xt + Zt for all t > 1 (4.3)

To see that these equations are valid, recall that Xt is the number of ights

that will be accepted to the terminal (airport) airspace (but not necessarily land)

at time t; that Dt is the number of ights scheduled to land, and that Zt�1 is

the number of ights denied access to the airport airspace at time t� 1 (but now

wishing to land). Then Zt�1+Dt is the number of ights wishing to land at time

t and 4.3 simply says that this number is equal to the number accepted to the
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airspace at time t (Xt) plus the number rejected from the airspace at time t (Zt).

We should point out that, unless S = 1, the equations of the form 4.2 and

4.3 are not be based on conservation of ow. Note that, for each scenario s,

there is one arc owing out the bottom of any given upper (round) node and

that each of these S arcs has ow Xt. This labeling is justi�ed by the fact

that once the planned arrival acceptance rate Xt is set, Xt ights are expected

to arrive at the destination airport no matter which scenario occurs. (Each of

these arcs could have been superscripted with their respective scenarios (Xs
t ),

in which case we would require coupling constraints of the form Xs
t = Xs0

t , for

s 6= s0. The formulation presented here avoids the need for these constraints.) As

a consequence, there could be more ow out of one of these nodes than into it.

For convenience, we de�ne ust to be the number of ights that arrive at time

t under scenario s (this variable need not appear in the �nal formulation). This

is the ow out the bottom of Figure 4.5 and is limited by the arrival capacity at

time t under scenario s, bst . Thus, we have that

ust � bst for all s; for all t: (4.4)

By conservation of ow at the lower nodes, variables of the form ust can be de�ned

as follows.

us1 = X1 + E1 � Zs
1 for all s (4.5)

ust = Zs
t�1 +Xt + Et � Zs

t for all s; for all t � 2 (4.6)

Substituting (4.5) and (4.6) into (4.4), we obtain the following set of constraints.

X1 + E1 � Zs
1 � bs1 for all s (4.7)
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Zs
t�1 +Xt + Et � Zs

t � bst for all s; for all t � 2 (4.8)

We de�ne vector z via

z =
�
Z1; Z2; :::ZT ; Z1

1 ; Z
1
2 :::; Z

1
T ; ::: ZS

1 ; Z
S
2 :::; Z

S
T

�
: (4.9)

Since the ow across each arc represents a number of ights, this value must be

integer and non-negative. In all, we have the following integer program.

(SGH)

Minimize F (z) =
TX
t=1

 
~cZt +

SX
s=1

ĉZs
t � p (s)

!
(4.10)

subject to

(4:2) ; (4:3); (4:7) ; (4:8)

Zt; Z
s
t � 0 for all s; for all t

Zt; Z
s
t integer; for all s; for all t

This integer programming model yields t constraints of the type (4.3), and

(S � T ) of type (4.8). There is one constraint of type (4.2) and one of type

(4.7). Since the model treats ights on an aggregate level, the total number of

constraints is independent of the number of ights and kept quite small: O (S � T ).

The number of variables is also O (S � T ) : In an alternative formulation, one could

establish, for each t; a set fXs
t : s = 1; 2; :::; Sg and a set fEs

t : s = 1; 2; :::; Sg and
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write coupling constraints of the forms Xs
t = Xs0

t and Es
t = Es0

t , for every pair

s 6= s0.

For the case S = 1, the model is deterministic and the diagram in Figure

4.5 reduces to the diagram in Figure 4.4. The deterministic case S = 1 is easily

solved by the following greedy algorithm. For t = 1; 2; :::; T; land as many ights

as possible (but no more than b1t ) from the exempt and airborne-delayed categories

of ights (reected in the variables Et and Z1
t�1), then carry over the remainder

into the next time period in the form of airborne holding (via the variable Z1
t+1).

This reduces the capacity of the airport to some number, b�t : Then, if b
�
t > 0; land

b�t (or as many as possible) of the non-exempt ights (reected in the variables

~Zt�1 and Dt) via the variables Xt and u1t : Any excess of non-exempt ights must

be held on the ground and is reected in the variable Zt (assuming that airborne

holding is more expensive than ground holding).

When S � 2; the problem is truly stochastic and the greedy algorithm is ill-

de�ned because the phrase, \land as many ights as possible" becomes ambiguous

(which of the capacities b1t ; b
2
t ; :::; b

S
t for time t should one use?).

The model resembles a classic production-inventory model in which an in-

ventory can be held in one of two states (see Section 4.5 of [14]). The ights

correspond to a product or materials, such as crude oil. A quantity of materials

(the ights) is purchased when it enters the diagram at a time period and can

then be held in raw form (ground-holding) or �nished form (airborne holding).

The materials are sold when they exit the diagram at the bottom. But the model

presented here is distinguished in three ways. First, it does not seek production

levels to be set for each time period; these levels are set in advance by the pa-

rameters of the form Dt: Second, and more crucially, the product can be held
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over (in two di�erent types of inventory) at two di�erent costs, as in a raw mate-

rial/�nished good production model, such as crude oil/re�ned oil. However, the

amount held over in the second form is stochastic, depending on a random vari-

able. This prevents the model from being solved by standard techniques. (See

[19] for a treatment of stochastic network routing.) Third, the model cannot be

translated into a network model, even though it is depicted by a ow diagram.

(The dual of the model, however, can be, as shown in Section 4.4.)

4.2 Pre-processing

In this section we show that for each tier e and each time interval t, the variables

ye and Et can be eliminated from the formulation of SGH by pre-processing.

Note that whenever a tier e is excluded from the GDP, this shifts the ights of

tier e from the parameter Dt to the parameter Et and one has lost the ability to

assign ground delay to these ights. There are many reasons why this should be

done in practice, but from an optimization standpoint, there is no advantage to

this type of exclusion because it can only decrease the exibility of the program.

Speci�cally, k ights can be e�ectively exempted from ground delay at time t by

increasing the variable Xt by k units. Proposition 12 is the formalization of this

observation.

Proposition 12. For every feasible solution, z; to SGH, there is a feasible so-

lution, z�; with the properties that F (z�) = F (z) and ye = 1 for e = 1; 2; :::; E:

Proof. Let z be any feasible solution to SGH with corresponding function value

F (z) : If ye = 1 for every e, then we set z = z� and there is nothing to show.
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Otherwise, we create a new solution, z�; as follows. For each index e such that

ye = 0 in solution z; we set ye = 1. By de�nition Dt, this increases the value of

Dt by the amount det and decreases the value of Et by the same amount. This

jeopardizes equality in equation (4.3); but equality can be maintained by adding

the amount det to the value of Xt: This also preserves feasibility in constraints

(4.8). Since the values of Zs
t and Zt remain unchanged for every s and every t,

we have created a new feasible solution, z� with the same function value as z.

The result follows from the fact that ye does not appear in the objective function

and that the index e was chosen arbitrarily.

As a consequence of Proposition 12, we can make the simplifying assumption

that ye = 1 for e = 1; 2; :::; E and we discard these variables from the formulation

of the problem. In practice, this means that the values of the variables ye are set

a priori by the DM (as opposed to being output by the solution) and that the

values of Et and Dt are adjusted accordingly.

An alternate model could be developed in which the exclusion or inclusion

of tiers from the formulation of the GDP is not so rigid. The variables ye could

appear in the objective function with associated penalties. Each penalty would

reect the reluctance of the decision-maker to include the associated tier in the

program. Such a model would be useful, for instance, whenever a tier is comprised

of ights that have been de-iced and should not be delayed. The above proposition

would not hold in such a model.

Now we consider the variables of the form Et. We wish to show that these

variables can be pre-processed and subsequently eliminated from the formulation

of the problem. In light of constraints (4.8), the e�ect of increasing Et is to

subtract from the capacity parameter bst for each s. This is the same as saying
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that, under any circumstances, the exempt ights will be entering the terminal

airspace during time interval t thereby reducing arrival capacity. So in the formu-

lation of SGH, the exempt ights can be pre-processed via bst := bst �Et; for each

s and each t. But whenever Et > bst ; this pre-processing becomes meaningless

and, worse yet, constraints (4.8) become infeasible and the solution set to SGH

is empty. In practice, the number or exempt ights (this includes international

ights and those already airborne at the time of the formulation of the GDP)

is usually on the order of ten percent and is not likely to exceed the AAR of

the airport, even under severe weather conditions. However, we already granted

the DM with the option to exempt ights by setting the values of some of the

tier variables at ye = 0. Thus, the number of exempt ights could easily exceed

the AAR in some, or perhaps all, of the scenarios and we should not too readily

dismiss the possibility that Et > bst for some t. In this event, the pre-processing

that needs to be done is to set bst := 0 and let the excess of exempt ights be

carried over into the next set of exempt ights at time t + 1. Formally, this

pre-processing is de�ned as follows. For t = 1; 2; :::; T; we recursively de�ne new

values of Et and bst ; denoted by Et and b
s

t ; respectively, as follows.

�Et =

8>><>>:
Et; if t = 1

Et +max
�
0; �Et�1 � bst�1

�
; if t > 1

�bst = max
�
0; bst � �Et

�
Now we can proceed under the assumption that for each t; Et = 0 or, in other

words, Dt = Dt: Combining this with the prior assumption that ye = 1 for every

e; we have the following revision of SGH.

(SGH2)
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Minimize (4:10)

subject to

D1 = X1 + Z1 (4.11)

Zt�1 +Dt = Xt + Zt for all t (4.12)

X1 � Zs
1 � bs1 for all s (4.13)

Zs
t�1 +Xt � Zs

t � bst for all s; for all t (4.14)

Zt; Z
s
t � 0 for all s; for all t (4.15)

Zt; Z
s
t integer for all s; for all t (4.16)

4.3 Holding Costs: The E�cient Frontier

An exact calculation of the cost of ground-holding or airborne holding for any

given ight involves complex factors such as crew costs, fuel consumption, and

connectivity with other ights. It is be hard to assign a dollar value to each

minute of passenger delay and still harder to determine whether this delay is

more costly when taken on the ground or in the air. A proper assessment of
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delay costs should also include the risk for passenger safety that is incurred in

airborne delay, and the connectivity between ights: a ight that is unnecessarily

delayed on the ground will, in turn, delay any ights that connect with it at its

destination airport.

The assessment of air and ground delay costs is extremely complex, situation-

speci�c and, in many cases, highly subjective. Moreover, much of the information

required for a careful calculation of holding costs is currently unavailable to the

FAA: This makes it exceedingly impractical for the FAA to assign holding costs

to individual ights in real time.

One solution to this cost-assessment dilemma is to average delay costs so that

both airborne holding costs and ground holding costs are uniform for all ights.

The Air Transportation Association [1] estimates that for a typical ight, every

minute of ground delay costs $20.35 while every minute of airborne delay costs

$45.85. Our model is in keeping with, but not limited to, this approach. An

alternative to this proposed by Richetta in [21] is to assume that ights can be

grouped into a small number or classes, each with one delay cost.

Our model allows for an interpretation of delay costs that largely avoids the

economics of airline operations - an interpretation which we now explore.

The primary mission of the FAA, hence, the ATCSCC (air tra�c control

systems command center), is to ensure passenger safety. This might tempt one

to conclude that all GDP0s should be aggressive enough to ensure that, under

any reasonable circumstances, no ight will be subjected to airborne holding.

However, it is also the task of the FAA to manage resources within the NAS

(national air space) in an e�cient, even-handed manner. Any such policy would,

on average, lead to a gross under-utilization of airport arrival capacity and the
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services provided by the air tra�c controllers. The DM must strike a balance

between restricted tra�c ow and e�cient allocation of resources.

In so doing, the decision maker at the ATCSCC must address airline needs and

perceptions. In particular, an airline �nds it aggravating when a GDP is aborted

in mid-operation. This happens whenever the DM has clear evidence that the

original capacity and weather forecasts were overly pessimistic. Of course, the

GDP was unnecessary only in hindsight but it is hard to justify ground delay

to passengers who see \blue-sky" conditions at their departure airport. For this

reason, the airlines are frequently willing to risk small or moderate amounts of

airborne delay and tend to favor more liberal ground-holding policies.

The DM may require the freedom to vary the values of the costs ~c and bc with
the airport and situation at hand. Because our model is solved so rapidly, the

decision maker can retain the option to explore a number of cost pairs, (~c1; bc1),
(~c2; bc2), ..., (~cn; bcn). Let us assume that the ground holding costs have been

normalized to 1.0 by forming the ratio �i = ĉi=~ci; for each cost pair.

By plotting on one graph each expected delay cost, f(�i); as a function of

its cost ratio �i the decision-maker can establish an e�cient frontier for the

formulation of the GDP (see Figure 4.7). For a given cost ratio, �i; any proposed

GDP that is sub-optimal will lie to the upper left of the frontier. The e�ect of

our model is to help the decision-maker push the GDP back onto the frontier.

Our alternative perspective, then, on the delay cost ratio (air to ground) is

that of a numerical expression of the willingness of the DM and the ATCSCC

to trade ground holding for airborne holding - the higher the cost ratio, �; the

more conservative will be the resulting optimal GDP. Any further treatment of

values for delay costs would be venturing into the arena of policy-making and
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well beyond the scope of this technical paper. (For sensitivity analysis of the

model with respect to delay cost parameters, see section 4.5.)

Lastly, we point out that the structure of the objective function allows the

delay costs, both airborne and ground, to vary with t. This grants the decision

maker the exibility to establish time intervals of varying length. One possible

use would be to have time periods of increasing length so that short-term planning

is done on a re�ned level while long-range planning is more coarse.
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Figure 4.7: The e�cient frontier

4.4 Theoretical Results

We say that a (0; 1;�1) matrix is in network matrix form if each column

contains at most two nonzero entries and whenever a column contains two nonzero

entries, they sum to zero. If N is in network matrix form, then one can solve the

following LP as a network ow problem.

83



Max cTx (4.17)

subject to

Nx = b

x � 0

Speci�cally, by adding a redundant equation (the negative sum of the equa-

tions) to the system in (4:17), one obtains an equivalent system, N 0x = b0, in

which the matrix N 0 is a node-arc incidence matrix for an underlying directed

graph G over which one is trying to maximize ow. The system N 0x = b0 is

comprised of conservation of ow and arc capacity equations for the nodes in G.

Network ow problems are desirable because they can be solved via known

algorithms which are, in many cases, faster than the simplex procedure. (See

[2] for background.) But these problems often appear in hidden form. Suppose

that a sequence of simplex pivots is performed on the system of equations in

(4.17), where a single simplex pivot is de�ned to be the row operations necessary

to obtain aij = 1 in the ith column of the jth row, for some i; j; and to obtain

aik = 0 for all k 6= j: In the new system, N 00x = b00; it is highly unlikely that N 00

is in network matrix form. So, if one starts with this N 00x = b00 it might not be

obvious that it can be transformed (back) into a network ow problem and even

less obvious how to do so.

This prompts the following de�nition. Let � be the set of all matrices in

network matrix form. We de�ne the set of network matrices, denoted C (�) ; to

be the closure of � under simplex pivoting. That is, an m�nmatrixM 2 C (�) i�

there is an m�n matrixN 2 � such thatM can be derived fromN by a sequence
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of simplex pivots. For each network matrix, M , the sequence of simplex pivots

by whichM is obtained from some N can be represented by an invertible matrix,

E; such that M = EN: In this case, we say that M is a network matrix with

respect to N via E. Note that every network matrix is a (0; 1;�1) matrix. See

[17] for background material on network matrices.

If M is a network matrix with respect to N via E, and if either N or E is

known, then the LP

Max cTx (4.18)

subject to

Mx = b

x � 0

can be transformed into, hence solved as, a network ow problem. In this section,

we will be exploring the possibility that either the primal or dual of SGH2 is a

network ow problem in hidden form. We will be considering only those cases

in which S � 2; for if S = 1, SGH2 is deterministic and solved by a greedy

algorithm. In fact, it is easy to show that the primal problem is a network ow

problem, when S = 1.

The primal of SGH2 is given by

Min cTx (4.19)

subject to

Ax � b

x � 0
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where

cT =
�
Block repeats T times~c; ĉ1; ĉ2; :::; ĉS; 0; ::: ; ~c; ĉ1; ĉ2; :::; ĉS; 0| {z }

�
;

(4.20)

ĉk = p (k) � ĉ; (4.21)

x =
�
Z1; Z

1
1 ; Z

2
1 ; :::; Z

S
1 ;X1; Z2; Z

1
2 ; Z

2
2 ; :::; Z

S
2 ;X2; ::: ; ZT ; Z

1
T ; Z

2
T ; :::; Z

S
T ;XT

�
;

(4.22)

and

bT =
�
D1; b

1
1; b

2
1; :::; b

S
1 ; D2; b

1
2; b

2
2; :::; b

S
2 ; ::: ;DT ; b

1
T ; b

2
T ; :::; b

S
T

�
: (4.23)

For instance, when S = 2 and T = 2, the primal is as below.

min
�
~cZ1 + ĉ1Z

1
1 + ĉ2Z

2
1 + ~cZ2 + ĉ1Z

1
2 + ĉ2Z

2
2

�
(4.24)

subject to

Z1 X1 � D1

Z1
1 �X1 � �b11

Z2
1 �X1 � �b21

-Z1 Z2 X2 � D2

-Z1
1 Z1

2 �X2 � �b12

-Z2
1 Z2

2 �X2 � �b22

After adding surplus variables to the system in (4.19), we obtain the system

of equations (I;A)x = b and we need to determine whether or not (I;A) is a

network matrix. There are network recognition algorithms for determining this.

86



See [10] or [17] for a reference. The core of any such algorithm relies on the

following key facts. Suppose that M is an m� n network matrix with respect to

N via E and that and each column of the m�m identity matrix appears exactly

once in M . Since N is a node-arc incidence matrix (minus one row) there is an

underlying graph, G, of n edges on m+ 1 nodes. The appearance of an identity

column in the jth column of M indicates that the jth edge of G is in a basis B

of m edges that form a spanning tree for G. By association through the identity

columns, each row of M corresponds to an edge of B. Each non-identity column

is the characteristic vector of a path in G, with respect to the edges in B.

Lemma 15 in Appendix B shows that for every S � 2; the primal matrix (I;A)

of SGH2 fails to be a network matrix. The lemma derives a contradiction from

the (assumed) coexistence of the aforementioned paths without directly appealing

to the recognition algorithms, though they will reveal the same contradiction.

We turn our attention to the dual of SGH2, given below.

Max bTw (4.25)

subject to

ATw � c

w � 0

AT is an m� n matrix where m = T (S + 2) and n = T (S + 1): We begin with

an explicit block description of AT :

Let D and E be the (S + 2) � (S + 1) matrices de�ned via

dij =

8>>>>>><>>>>>>:

1; if ( i = j) or (i = S + 2 and j = 1)

�1; if i = S + 2 and j 6= 1

0; otherwise

; eij =

8>><>>:
�1; if i = j

0; otherwise
:
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Then AT is the T �T block matrix such that the (i; j)thblock is of size (S + 2)�

(S + 1) and de�ned by

Aij =

8>>>>>><>>>>>>:

D; if i = j

E; if i+ 1 = j

0 matrix; otherwise

:

For example, when S = 2 and T = 2;

AT =

2664 D E

0 D

3775 =

2666666666666666666666666664

1 0 0

0 1 0

0 0 1

1 -1 -1

-1 0 0

0 -1 0

0 0 -1

0 0 0

-0-

1 0 0

0 1 0

0 0 1

1 -1 -1

3777777777777777777777777775

:

We wish to show that the m� (m+ n) matrixM =
�
I;AT

�
is a network matrix.

We will construct an m� (m+ n) matrix N in network matrix form such that N

can be transformed into M via simplex pivots. Let �;�0; be (S + 2) � (S + 2)

matrices de�ned via

�ij =

8>>>>>><>>>>>>:

1; if (i = 1 and j = 1) or (i = 2 and j � 2)

�1; if i� 1 = j

0; otherwise

;

�0ij =

8>><>>:
�1; if i = 2 and j = S + 2

0; otherwise
;
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and let " be the (S + 1)� (S + 1) matrix de�ned by

�ij =

8>>>>>><>>>>>>:

1; if i = 1 and j = 1

�1; if i � 3 and i� 1 = j

0; otherwise

:

We de�ne N to be the T � 2T block matrix below.

N =

2666666666666664

� �0 " �"

� �0 " �"

::: ::: ::: :::

� �0 " �"

� "

3777777777777775
(4.26)

For example, when S = 2 and T = 2,

� =

266666666664

1 0 0 0

-1 1 1 1

0 -1 0 0

0 0 -1 0

377777777775
�0 =

266666666664

0 0 0 0

0 0 0 -1

0 0 0 0

0 0 0 0

377777777775
" =

266666666664

1 0 0

0 0 0

0 -1 0

0 0 -1

377777777775
and
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N =

2666666666666666666666666664

1 0 0 0

-1 1 1 1

0 -1 0 0

0 0 -1 0

0 0 0 0

0 0 0 -1

0 0 0 0

0 0 0 0

1 0 0

0 0 0

0 -1 0

0 0 -1

-1 0 0

0 0 0

0 1 0

0 0 1

-0-

1 0 0 0

-1 1 1 1

0 -1 0 0

0 0 -1 0

-0-

1 0 0

0 0 0

0 -1 0

0 0 -1

3777777777777777777777777775
(4.27)

In this instance, N is clearly in network matrix form. Lemma 16 in Appendix

B shows that, for any S � 1,T � 1, N is in network matrix form. It is eas-

ily veri�ed that when simplex pivots are performed successively on elements

n1;1 ; n2;2 ; :::; nm;m ; then N is transformed into M = (I;A). For example, the

above instance of N is transformed into the matrix below.

M = (I;A) =

2666666666666666666666666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-0-

1 0 0

0 1 0

0 0 1

1 -1 -1

-1 0 0

0 -1 0

0 0 -1

0 0 0

-0-

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-0-

1 0 0

0 1 0

0 0 1

1 -1 -1

3777777777777777777777777775
(4.28)
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Let E be the matrix (established by simplex pivots) that transforms N into

M . The inverse of E is the matrix that revertsM to network matrix form. Since

E�1M = N and M = (I;A) ; we have that N = (E�1; E�1A) : So, E�1 must be

comprised of the �rst m = T (S + 2) columns of N and E�1 must be in network

matrix form. Moreover, since we have an explicit description of N; we have an

explicit description of the transformation E�1:

In all, we have established the following theorem.

Theorem 13. Let AT be the symmetric dual matrix of the LP relaxation of

SGH2. Then M = (I;AT) is a network matrix.

Corollary 14. The primal matrix of the LP relaxation of SGH2 is integral,

whenever the problem is feasible.

Proof. The dual matrix is a network matrix, hence, totally unimodular (TU).

Since every TU matrix is integral, both the primal and dual of SGH2are integral

under the assumption that the problem is feasible.

As a result of the above corollary, the integer solution to SGH2 can be ob-

tained directly from its LP relaxation.

Some insight into SGH2 can be gained by examining the dual and the induced

network. We resume the example in which S = 2 and T = 2: The symmetric

dual is given below.

Max D1w1 � b11w
1
1 � b21w

2
1 +D2w2 � b12w

1
2 � b22w

2
2 (4.29)

subject to
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w1 �w2

w1
1 �w1

2

w2
1 �w2

2

w1 �w1
1 �w2

1

w2

w1
2

w2
2

w2 �w1
2 �w2

2

�

�

�

�

�

�

�

�

ec
bc1
bc2
0

ec
bc1
bc2
0

Let (I;A) (w) = c be the system of equations obtained after adding surplus

variables to (4.29). Let E�1 be the transformation matrix comprised of the �rst

eight columns of the matrix in (4:27). After applying the transformation E�1 to

(I;A) (w) = c, we obtain the following network ow problem.

Max D1w1 � b11w
1
1 � b21w

2
1 +D2w2 � b12w

1
2 � b22w

2
2 (4.30)

subject to

s1 + w1 � w2 = ec
�s1 + s2 + s3 + s4 � s8 = ~c� ĉ

�s2 � w1
1 + w1

2 = �bc1
�s3 � w2

1 + w2
2 = �bc2

s5 + w2 = ec
�s5 + s6 + s7 + s8 = ~c� ĉ

�s6 � w1
2 = �bc1

�s7 � w2
2 = �bc2
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Each of the equations in (4.30) is a conservation of ow equation or arc capac-

ity equation for one of the nodes in the underlying graph G, depicted in Figure

4.8. The equations of the system (I;A) (w) = c correspond to the following

primal variables, respectively.

Z1; Z
1
1 ; Z

2
1 ;X1; Z2; Z

1
2 ; Z

2
2 ;X2 (4.31)

For the sake of consistency, we have maintained this labeling system for the

equations in (4.30), even though each equation is actually a linear combination of

the equations in (I;A) (w) = c (i.e., the dual network variables of the network ow

problem are not logically equivalent to the original problem variables). Hence,

each node in G is labeled with the appropriate primal variable except for the

left-most node, which is superuous to the problem. Flow is conserved at this

node by the redundant equation formed by the negative sum of the equations in

(4.30).

We may assume that ~c; ĉ; and ĉ � ~c > 0; or else SGH2 can be solved by

a greedy algorithm and there is no need to appeal to the dual or the network.

Under this assumption, each of the equations in (??) contains a nonzero constant,

indicating that the corresponding node is a source node or sink node, depending if

the constant is positive or negative. Nodes Z1; Z2; Z
1
1 ; Z

1
2 are sources with values

of ~c; ~c; ĉ�~c; ĉ�~c; respectively, while the nodes X1;X2; Z
2
1 ; Z

2
2 are sinks with values

of ĉ1; ĉ1; ĉ2; ĉ2; respectively. For purposes of illustration, we have connected the

source nodes in Figure 4.8 to a single source and connected the sink nodes to

a single sink. The connecting arcs are capacitated by the respective values just

listed. All other arcs in the diagram are uncapacitated.

Recall that the for t = 1; 2 the input parameter Dt is the number of ights

that enter the system (are scheduled to arrive) in time periods t and that the
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capacity parameters bst ; is the maximum numbers of ights that can exit the

system (arrive) at time t under scenario s. The (positive) costs of the ows along

the upper two arcs, w1 and w2; are set by the input parameters D1 and D2 while

the costs of the ows along the lower four arcs w1
1; w

2
1; w

1
2 and w2

2; are set by the

negatives of the capacity parameters, b11; b
2
1; b

1
2 and b22: There is no cost to ow

along the arcs corresponding to the surplus variables, s1; s2; ::; s8.

In this network, ow must be set so as to maximize revenue, subject to con-

servation of ow at each node and the capacities on the arcs owing in and out

of the sources and sinks. Since arc capacity is given by the cost parameters (~c; ĉ)

of the primal, revenue can be measured in dollars but there doesn't appear to be

any meaningful interpretation of the dual with respect to the primal.

For certain special cases, it is easy to see that the network ow problem

depicted in Figure 4.8 gives the same optimal function value as the primal. For

instance, if the airport capacity bst in the primal is zero for each s and each t,

then the optimal solution to the network is to allow maximal ow along the upper

arcs, that is, w2 = ~c and w1 = 2~c , at a cost of ~cD1 + 2~cD2: In the primal, since

there is no arrival capacity at the airport at any time period under any scenario,

the optimal solution is to ground hold each ight for each time period, that is,

Z1 = D1 and Z2 = D1+D2 at the same cost of ~cZ1+~cZ2 = ~cD1+~c (D1 +D2) =

~cD1 + 2~cD2:

It would be hard to imagine a situation in which the optimal solution would

allow ow along arcs s4 and s8, for this could only incur negative cost. This

intuition is con�rmed by complementary slackness. Under any ordinary circum-

stances, the optimal solution to the primal will probably allow the landing of a

positive number of �ghts in time intervals 1 and 2. In this event, the values of X1
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and X2 are positive. By complementary slackness, we know that X1 � s4 = 0 and

X2 � s8 = 0; so both s4 and s8 must be zero in any optimal solution. Moreover,

if there is a positive amount of ground holding in time period 1 (or 2) of the

optimal, then there will be no ow along arc s1 (or s5) in the optimal solution to

the dual.

Z 1
2

= source
(flow, cost)

= sink = node

w( 1 D1 ),

w(

1
2 ,w( -b )1

2

( s1 ), 0

X 2

Z 2

X 1

Z 1 Z 2

Z 2Z 1

11

2

( s5 ), 0

( s6 ), 0( s2 ), 0

( s3 ), 0

( s7 ), 0

D2 ),2

)1
1

-b1
1 ,w(

)2
1

-b2
1 ,w(

)2
2

-b2
2 ,w(

( s4 ), 0

( s8 ), 0

Figure 4.8: Dual network ow diagram for S = 2, T = 2
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4.5 Computational Results and Implementation

The number of time periods, T; in SGH2 should to be taken large enough so

that all of the scheduled ights will be able to land. Speci�cally, T should satisfyPT
t=1

PS
s=1 b

s
t �

PT
t=1Dt or else there will be a surplus of (Zt +

P
s Z

s
t ) unresolved

ights relegated to the time period T + 1 (the problem would still be feasible,

however). In practice, the number of scheduled ights, Dt; drops o� dramat-

ically in the night-time and early-morning hours (passengers tend to travel in

the daytime) so one can assume that, in application, a planning horizon of 24

hours would be su�cient. Even if ights were delayed for extreme periods of

time (longer than 24 hours) the airlines would probably divert the excess ights

or cancel them altogether so that the total demand would be reduced to a level

that could be accommodated in one 24-hour period. This means that although

we take T to be �nite, the planning horizon is e�ectively in�nite.

The length of one time period, t, would probably be no smaller than say, 10

minutes.2 Assuming that T � 24; an operational upper bound on T would be

about 240. For a major international airport in the United States, a high AAR

would be on the order of 60 or 70 ights per hour. Severe weather conditions could

reduce this level to 30 or 40 ights per hour. GDP0s are commonly formulated

for a 4-6 hour duration.

We constructed three realistic instances of the SGH using the following guide-

lines. Each test case was solved for two levels of granularity of time periods, for

2There is little point to a further re�nement of the time periods: there is inherent leeway in

enroute travel times, departure times, gate availability, etc.

96



Test Numb Numb Min per Opt Func Time Simplex Node

Case ights periods period Value (sec) Iteration B&B

1a 624 12 60 642.00 0.07 51 0

1b 624 48 15 3329.00 0.30 267 0

2a 624 12 60 1088.00 0.07 59 0

2b 624 48 15 4209.00 0.37 289 0

3a 624 12 60 485.00 0.05 55 0

3b 624 48 15 1745.50 0.20 223 0

Table 4.1: SGH model performance

a total of six test cases. For each instance, we constructed three AAR scenarios.

In test case 1, the AAR's were randomly generated numbers in the range 30 - 60.

In test case 2, each AAR scenario drops from 60 ights per hour to 40 ights per

hour for several hours, then returns to 60 ights per hour. The times were varied

at which each AAR scenario drops and recovers. In test case 3, the �rst scenario

is designed to be a fair weather scenario, the second is a bad weather scenario

and the third is randomly generated.

In all instances, the costs used were 2.0 for ground holding and 5.0 for airborne

holding. Each instance was solved using CPLEX 3.0 on a SPARC STATION 10.

The results in Table 4.1 show that the problem is highly tractable. The integer

solution was obtained in zero nodes of the mixed integer program algorithm of

CPLEX, meaning that the integer solution was obtained directly from the linear

program relaxation. The largest number of iterations of the simplex procedure

was 289 and the longest run time was barely more than half a second. Note that

the run time is almost linear in the coarseness (length of) the time periods.
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4.5.1 Sensitivity Analysis

Through experimentation, we have noticed a curious `discrete' sensitivity in the

optimal PAAR's (planned arrival acceptance rates) with respect to the cost ratio �

that causes us to question the wisdom of working with small number of scenarios.

Speci�cally, upon input of AAR scenarios with bi-level patterns (to be de�ned

shortly), the optimal PAAR's tend to closely match one of the AAR scenarios

and remain unaltered as one raises �; then, when certain critical points of � are

reached, the solution jumps to (closely follow) another scenario.

If, in working with this model, a single cost ratio � can be arrived at, then

this phenomenon is of little concern. However, if � retains a certain degree of

arbitrariness and the DM varies � on a regular basis, then this phenomenon could

be problematic. Suppose that in formulating a GDP, the DM wishes to �ne-tune

the conservativeness of a GDP by raising or lowering the value of � just slightly.

Then, if the values of � are allowed to uctuate around a critical point, then the

model might output radically di�erent solutions. We consider a lack of robustness

an undesirable property so we now explore the underlying principle at work and

propose a solution.

We say that an AAR scenario, Bs = (bs1; b
s
2; :::; b

s
T) ;is bi-level if there are

two capacity levels, �s1 � �s2; and two time periods ts1and t
s
2 (starting and ending,

resp.) such that for every t, ts1 � t � ts2 implies that bst = �s2 and bst = �s1

otherwise.

Then a bi-level AAR scenario is one that has a constant capacity for (ts1 � 1)

time periods, drops to a lower capacity level at time t1, then returns to the original

level at time t2 + 1. This pattern could arise in practice as a result of simplistic

weather (and runway con�guration) forecasting.
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We now construct an instance of SGH2 which displays this discrete behavior

in extreme form. The lower portion of table 4.2 gives demand and three AAR

scenarios for a �ctitious airport over eight time intervals. Note the bi-level pat-

tern in the scenarios and that the start times (and end times) of the scenarios

coincide. The upper portion of table 4.2 gives the optimal PAAR's (generated

by CPLEX) for values of � between 1.2 and 4.0, taken in increments of 0.2. The

probabilities of the scenarios are evenly distributed at p (s) = 1=3, for s = 1; 2; 3:

The phenomenon to be observed is that there are only three optimal solutions,

corresponding to the AAR scenarios, respectively, and that the solution jumps

from one scenario to another at two critical values of � at around 3.0 and 1.4.

For this arti�cial example, the critical points can be exactly computed by

deducing the optimal PAAR's for each value of �. Since demand is constant at 70

ights per time interval and since capacity in each scenario is 70 for t = 1; 2; 7; 8,

one should accept 70 ights in each of these time intervals to avoid airborne or

ground delay. Then in any optimal solution, for any value of �, we will have that

X1 = X2 = X7 = X8 = 70 and each solution will be characterized strictly by

the optimal value of Xt for t = 3; 4; 5; 6. (Note: The optimality of the values of

X1;X2;X7;X8 requires a more rigorous argument but would be tangental to our

current discussion.)

We will assume that ground-holding cost, ec; is held constant at ec = 1:0 so that

� = bc=ec = bc and a change in � is simply a change in the airborne holding cost, bc:
Suppose that 3:0 � � � 4:0: For t = 3; 4; 5; 6, the capacity in each scenario is at

least 30 so there is no cost incurred in accepting at least 30 ights in each time

period, i.e., Xt � 30 for t = 3; 4; 5; 6. If we increase the value of Xt beyond 30

for any such t, then capacity will be exceeded in scenario 1 and one will incur an
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cost ratio t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

1.2 70 70 65 65 65 65 70 70

1.4 70 70 65 65 65 65 70 70

1.6 70 70 50 50 50 50 70 70

1.8 70 70 50 50 50 50 70 70

2 70 70 50 50 50 50 70 70

2.2 70 70 50 50 50 50 70 70

2.4 70 70 50 50 50 50 70 70

2.6 70 70 50 50 50 50 70 70

2.8 70 70 50 50 50 50 70 70

3 70 70 50 50 50 50 70 70

3.2 70 70 30 30 30 30 70 70

3.4 70 70 30 30 30 30 70 70

3.6 70 70 30 30 30 30 70 70

3.8 70 70 30 30 30 30 70 70

4 70 70 30 30 30 30 70 70

demand 70 70 70 70 70 70 70 70

scen 1 70 70 30 30 30 30 70 70

scen 2 70 70 50 50 50 50 70 70

scen 3 70 70 65 65 65 65 70 70

Table 4.2: Optimal solutions as a function of cost ratio
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expected airborne holding cost (EAHC) given by

EAHC = p (1) � bc = (1=3) � �:

For 3:0 � � � 4:0; we have that EAHC � ec = 1:0; and it is cheaper (in expected

value) to hold subsequent ights on the ground and no more ights should be

accepted. This �xes the optimal solution atXt = 30 for t = 3; 4; 5; 6 (i.e., scenario

1):

But when EAHC � ec; the values of Xt will change. This establishes our �rst

critical point � at EAHC = ec = 1:0 or, in other words,

EAHC = p (1) � bc = (1=3) � � = 1:0

� = 3:0 :

For 1:6 � � � 3:0; we �nd that EAHC � ec . In time periods t = 3; 4; 5; 6;

it becomes cheaper to accept additional ights and their subsequent (expected)

airborne holding costs. We increment the integer values of Xt beyond 30 to �nd

the optimal solution. But when Xt > 50; capacity in scenario 2 is exceeded as

well as in scenario 1. The new EAHC calculation for any ight beyond the 50th

ight is

EAHC = [p (1) + p (2)] � bc = [1=3 + 1=3] � bc = [2=3] � bc
Since 1:6 � � � 3:0; EAHC � ec and ground holding is preferable. This �xes the

optimal solution at Xt = 50 for t = 3; 4; 5; 6, (scenario 2). This will hold until we

reach our second critical point � at EAHC = ec or,
[2=3] � bc = ec

2=3 = 1=�

� = 1:5
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For values of � such that � < 1:5; the optimal solution switches to Xt = 65;

for t = 3; 4; 5; 6, (i.e., scenario 3). We do not consider values of � � 1:0 because

there is no need for this model when airborne holding is cheaper than ground

holding. Reection upon the above calculations shows that the precise values of

the critical points is heavily dependent upon the probabilities, p (s). Therefore,

when working with a value of � near a critical point, the solution is also highly

sensitive toward a redistribution of the probabilities.

The phenomenon of critical points in the cost ratio begins to erode if the

start and end times of the AAR scenarios are staggered as in the bottom of table

4.3. The results at the top of table 4.3 are similar to but not as marked as the

previous example. Again, the optimal solution changes signi�cantly at � = 1:5

and � = 3:0 but there are two major di�erences this time. First, the majority of

the optimal solutions do not exactly agree with any of the scenarios. Second, note

that � = 1:5 a�ects time intervals t = 3; 4; 5 while � = 3:0 a�ects t = 4; 5; 6; 7.

In this respect, the concept of a critical point becomes heavily dependent upon

the time interval, hence, begins to lose its meaning.

At the other extreme, when the AAR scenarios rise and fall erratically, critical

points vanish altogether and the model becomes robust with respect to pertur-

bations of the cost ratio, �, and redistributions of the probabilities.

If, in practice, the only AAR scenarios that can be forecasted tend to display

bi-level patterns and, worse yet, tend to coincide in start and end times of their

reduced capacity, then the optimal solution will be very stable for some ranges

of cost ratios and highly unstable for others.

One way to guard against this behavior is to work with a large number of AAR

scenarios. Another alternative is to re�ne the probability distributions. Each sce-
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cost ratio t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

1.2 70 70 70 65 65 65 70 70

1.4 70 70 70 65 65 65 70 70

1.6 70 70 30 50 55 65 70 70

1.8 70 70 30 50 55 65 70 70

2 70 70 30 50 55 65 70 70

2.2 70 70 30 50 55 65 70 70

2.4 70 70 30 50 55 65 70 70

2.6 70 70 30 50 50 65 70 70

2.8 70 70 30 50 50 65 70 70

3 70 70 30 50 50 65 70 70

3.2 70 70 30 30 30 30 30 70

3.4 70 70 30 30 30 30 30 70

3.6 70 70 30 30 30 30 30 70

3.8 70 70 30 30 30 30 30 70

4 70 70 30 30 30 30 30 70

demand 70 70 70 70 70 70 70 70

scen 1 70 70 30 30 30 30 30 70

scen 2 70 50 50 50 50 70 70 70

scen 3 70 70 70 65 65 65 70 70

Table 4.3: The erosion of critical points
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narios, s, could be converted to a set of `micro-scenarios', s1; s2; :::; sn; such thatP
p (si) = p (s) : For each time period, t, the capacities of these micro-scenarios

could be designed cover a gradient of values hovering around the capacity of

scenario s.
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Chapter 5

Closing Remarks

This dissertation makes three major contributions. First, it provides practical

solutions to problems in air tra�c ow management. Secondly, it adds to the

knowledge base of integer programming by providing theoretical and computa-

tional results. Third, it provides guidance for research in air tra�c by present-

ing in a precise manner the latest methodologies and paradigms in air tra�c

ow management developed by the Collaborative Decision Making (CDM) work

group.

The stochastic ground-holding model presented in this dissertation �nds the

optimal trade-o� between airborne-holding and ground-holding in the formulation

of a ground delay program. By treating ights on an aggregate level, this integer

programming model avoids the need to consider the assignment of every ight to

each time period in the planning horizon. This yields a simpler, more e�cient

solution, hence, an improvement over the previous models found in the literature.

More importantly, the model is designed to be an integral component of the

collaborative decision-making process and can be easily integrated into the FSM

decision support tool. This makes it available for immediate use.

A particularly powerful model was developed to �nd the minimum cost so-
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lution to the assignment of arrival times to ights bound for a single airport

while holding together banks of ights. By producing facet-inducing constraints,

this model greatly cuts down on the computational resources necessary to solve

this di�cult integer programming problem. It was demonstrated that realistic

instances of the problem can be solved in just minutes using a commercial solver

on a personal computer or ordinary work station.

The CDM working group is an extremely quali�ed and inuential team of

aviation experts. Their impact promises to be dramatic. As ATFM (air tra�c

ow management) moves toward an increasingly collaborative setting, the suc-

cessful contribution of researchers to ATFM will be heavily dependent upon their

understanding of CDM goals and the type of decision support tools required by

decision makers in all areas of the aviation community. This dissertation has

made a signi�cant contribution to this understanding.

The development of the models in this dissertation has introduced and re-

solved several intriguing theoretical issues in integer programming and combi-

natorial optimization. In the work on stochastic ground-holding, it was shown

that the ow model introduced is non-network in the primal but that the dual

can be transformed into a network ow problem. This renders it a powerful

tool for obtaining rapid solutions to more general types of stochastic program-

ming problems. In the work done on the ground-holding problem with banking

constraints, it was shown that under mild assumptions each of the constraints

generated by two of the models represents a facet of the convex hull of the set of

integer solutions. These results carry over to a job-scheduling generalization of

the problem.

The search for an e�cient solution to the ground-holding problem with bank-
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ing constraints showed the enormous bene�ts that can be obtained through the

exploration of alternative formulations. Computational analyses showed that

one of the models was far superior to the others in performance and a polyhe-

dral projection was used to show that another one of the models is equivalent in

LP strength. The development of the models employed a number of key tech-

niques related to the formulation of integer programs such as the introduction of

auxiliary variables and the selective imposition of integer restrictions.

This dissertation paves the way for several research topics. For instance, the

banking constraint models presented here could be modi�ed for integration with

a decision support tool such as the ight schedule monitor (FSM), currently used

CDM. The axiom of GHB that each bank must arrive within its speci�ed time

window could be reconsidered. An alternative model might allow for the temporal

expansion of a bank beyond the desired parameter but at a penalty reected in the

objective function. The challenge there would be to �nd a concise mathematical

representation of the expansion. Another model could exempt a limited number

of ights from the banking constraints, thus allowing for a trade-o� between

banking and reduced overall delay costs. Such models could be modi�ed so that

their behavior closely mimics the decision making processes of the airlines and

the FAA in the formulation of a ground delay program.

The stochastic ow model introduced in this dissertation assumes the produc-

tion of multiple arrival acceptance rate scenarios with associated probabilities.

The generation of the scenarios and their probabilities represents unique research

challenges. This requires the fusion of weather forecasts with optimal runway

con�gurations using a combination of statistical techniques and analysis of the

impact of meteorological conditions on incoming aircraft. Moreover, the interac-
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tion of incoming aircraft with departing aircraft could lead to many interesting

problems in optimization.

During the coming years, the growth of air tra�c in the NAS (National

Airspace System) is inevitable. Crowded conditions in the NAS will call for

more e�cient use of resources. Collaborative decision making will call for the de-

velopment of more sophisticated decision support tools. As tracking capabilities

and communication systems grow, the demand for innovative models will increase

dramatically. The concept of free ight alone will pose a myriad of technical chal-

lenges. All of these factors will only heighten the role of integer programming

and combinatorial optimization in the future of air tra�c ow management.
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Appendix A

RBS and Compression Algorithms

In this Appendix, formal presentations of the RBS (ration by schedule) and Com-

pression algorithms are presented as well as more in-depth discussions that would

have detracted from their initial presentation. For an overview of the algorithms

as well as their scope and purpose, the reader is referred to the abbreviated

versions in Section 2.2.2

A.1 Input to algorithms:

� A set F of ights and a partition � of F into airlines

� For each f 2 F; the following data �elds

AIRf 2 � =airline of ight f

ETAf; ETDf =estimated arrival/departure times for f

CTAf; CTDf =controlled times of arrival/departure for f

EDCTf =estimated departure clearance time of f

OGTAf ; OGTD =original gate time of arrival/departure of f

(in general; O� pre�x implies an original time e.g., OETAf)
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� Time parameters current time; start time = t0; end time = t1; Taxi (time)

� Contiguous time slots S = t0; t0 + 1; :::; t1 (created in RBS, input to

Compression)

� For each t 2 S; the following �elds:

flight (t) 2 F [ fnullg

owner (t) 2 � [ fnullg

status (t) 2 fopen; released; filled; holdg

A.1.1 The RBS Algorithm

1. Find the set of ights, I � F , to be included in the program. Let I =

A
S
B; where

A = ff 2 F : t0 � ETAf � t1g

B = ff 2 F : t1 < ETAf and (t0 � CTAf � t1 or t0 � OGTAf � Taxi � t1)g

2. Find the set of ights, E � I, to be exempted from (delay within) the

program.

This set is user speci�ed.

3. Split non-exempted (but included) ights I � E into two disjoint sets, F1

and F2; de�ned

via

F1 : = ff 2 I � E : f has been assigned a CTA at least onceg

F2 : = (I � E)� F1
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Note: I = E ^ F1 ^ F2.

4. Compute earliest CTA for each f 2 I

if f 2 E;

earliest CTA :=

8>><>>:
ETAf ; if f has a slot ID

min (ETAf ; OGTA � Taxi) ; else

if f 2 F1 ^ F2;

earliest CTA :=

8>><>>:
OGTA� Taxi; if current time � OETDf

current time+ p+ (OETAf �OETDf ) ; otherwise

Note: p is a positive parameter, user-speci�ed

5. Create queues of ights.

(a) Q (E) := qE1 ; q
E
2 ; :::; q

E
jEj; from E using ETA as a priority.

(b) Q (F1) := qF11 ; qF12 ; :::; qF1jF1j; from F1 using CTA as a priority.

(c)Q (F2) := qF21 ; qF2
2
; :::; qF2jF2j;from F2 using (OGTA � Taxi) as a priority.

(d) Q := qE1 ; q
E
2 ; :::; q

E
jEj; qF11 ; qF12 ; :::; qF1jF1j; qF21 ; qF2

2
; :::; qF2jF2j

Re-index via Q = q1; q2; :::; qjIj. Note that
SjI j
k=1 qk = I.

6. Create the set S of virtual slots according to user-speci�ed AAR's.

For instance, if AAR= 6 flights per hour; t0 = 1801; t1 = 2159;

then S = f1810; 1820; :::; 2150; 2200g : When AAR> 60; use su�xes to

mark

subdivisions of minute intervals, e.g., 1801A, 1801B; ::.
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7. Assign a CTA and OCTA (if necessary) to each f 2 I

Let Q be as in Step 5(d) and let S be as in Step 6.

for f = q1; q2;:::; qjIj;

Let t0 : = min (t 2 S : t � earliest CTAf and status (t) = open)

CTAf : = t0

CTDf : = CTAf �OETAf +OETDf ; if 2 F1 [ F2

EDCTf : =

8>><>>:
OETD + 1; if f 2 E

CTDf ; if f 2 F1 [ F2

OCTAf : = CTAf ; OCTDf := CTDf ; if f 2 F2

ETAf : = CTAf ; if f 2 F1 [ F2

flight (t0) : = f

owner (t0) : = AIRf

status (t0) : =

8>><>>:
open; if f 2 E and CTAf < ETAf

filled; else

S : = S � ft0g

end for

end RBS algorithm.

The RBS algorithm is surprisingly complex considering that it is intrinsically

a �st-scheduled, �rst-served algorithm. Since RBS is to be implemented prior

to the Compression algorithm or the cancellation/substitution process, it carries

with it the added burden of establishing those ights both in the program and

non-exempted. This is the function of steps 1 and 2. Step 3 allows for the
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possibility that RBS or compression have been run once before. Therefore, it is

arguable that steps 1 - 3 are preliminary to the entire GDP formulation procedure

and that RBS truly begins in step 4.

Note that in step 1, there are three su�cient conditions for a ight f to be

included in the program: (1) ETAf falls within the program horizon or (2) ETAf

is beyond the program horizon but CTAf falls within the program horizon or (3)

ETAf is beyond the program horizon but the original scheduled arrival time of

f falls within the program horizon. The latter of the three ensures that an airline

will not be penalized for reporting a delay.

The user-speci�ed exemptions of step 2 will be discussed more in Chapter 4.

In step 4, the status of an exempt versus non-exempt ight is acknowledged.

Step 5 is the heart of the algorithm. It rations slots by the following priority

scheme: exempt ights �rst, ights already assigned a CTA second, and, lastly,

non-exempt ights that require a CTA. Steps 6 could be considered preliminary

and step 7 is a necessary labeling system for future runs of RBS.

A.1.2 The Compression Algorithm

main Algorithm (Compression)

1. for each slot t = t1; t2; :::; tjSj

if status(tk) = filled or hold

go to tk+1

else [status = open or released]

call subroutine fill slot (t)
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end main algorithm

subroutine fill slot (t) [try to �ll slot t with a ight]

1. if status (t) = open then

(a) form one queue Q of all ights ordered by CTA

(b) call subroutine search (Q; t)

1. if status (t) = released; then

2. let A := owner (t)

(a) form two queues

QA := ights from airline A ordered by CTA

QA := ights not in airline A ordered by CTA

(b) call subroutine search
�
QA; t

�
(c) if search

�
QA; t

�
returns no flight found; then

call search
�
QA; t

�
(d) if search

�
QA; t

�
returns hold slot; then end subroutine

end subroutine fill slot ()

subroutine search (Q; t) [�nd a ight in Q to assign to t]

1. input queue Q and time slot t

2. if Q = � then return hold slot and end subroutine

3. repeat

(a) f := next ight in Q
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(b) if feasible(f; t) = true then

old owner := owner(t) [save info on t]

old status := status(t)

t0 =CTAf [next slot to consider]

CTAf := t [assign f to t]

status(t) := filled

owner(t) := Airf

(c) if old status = open then

status(t0) := open

(d) if old status = released then

status(t0) := released

owner(t0) := old owner

fill slot(t0)

(e) Q := Q� ffg

until status (t) = filled or Q = �

4. if status (t) = filled then return flight found else return no flight found

end subroutine search ( ; )

subroutine feasible (f; t)

5. input ight f , time slot t

6. check that f meets feasibility criteria (user speci�ed) for assigning f to t
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7. if f feasible for t then return true else return false

end subroutine feasible ( ; )

The main algorithm of Compression scrolls through the time slots in ascending

order and attempts to �ll available slots by calling the subroutine fill slot( ): This

subroutine sorts slots with an open status from those with a released status. If

a slot t is released, then it has a controlling airline, A, and, in step 1(b), the

subroutine search ( ; ) attempts to �ll t with the next available ight from A: If

this is not possible, then in step 1(c), the subroutine search ( ; ) attempts to �ll t

with the next available ight not in airline t. If a slot is open, search ( ) is called

in step 2 on the entire collection of ights. Note that under any circumstances,

ights are considered in order of increasing CTA [see steps 1(a) and 2(a)].

It is quite possible for the subroutine search ( ) to fail in the attempt to assign

a ight to a time slot from the input queue. Moreover, the entire algorithm may

leave a slot with no ight assigned to it. This is a desirable feature, since a slot

may be too early for any ight in the program.

One of the key aspects of this algorithm is that the status of these un�lled slots

is unaltered. Suppose that an open slot t cannot be �lled with a ight from the

controlling airline, AL; because it has no ights below slot t. Then the subroutine

search ( ) returns a hold slot status in step 2, indicating that the input queue of

ights from AL is empty, and by step 1(d) of fill slot( ); the attempt to �ll slot

t is halted. If the ground delay program is extended, AL might suddenly have a

ight that can be moved into t. By retaining the open (but not released) status

of t, AL can make future use of the resource.
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The upward movement of ights from a single airline (substitution stream)

is ignited by step 3(c). Suppose that a slot t has the open status and owner

AL. If a ight f is moved into t from a (lower) slot t0; then ownership of slot

t is transferred to t0; regardless of the airline that owns f , and the subroutine

fill slot( ) is recursively called on t0. A ight from AL is then sought to for t0.

If f belongs to some airline BL 6= AL; then f is said to have acted as a bridge

for the substitution stream. Note that both AL and BL have pro�ted from the

vacancy created at slot t by airline AL.

In the interest of NAS user compliance, a more re�ned version of Compression

is used in which ights are designated as Class I or Class II. Class II ights are

those created within 48 hours of the current time. If a Class II ight is cancelled

from a slot t, then the status of t is declared to be released, thus blocking

the controlling airline from creating a substitution stream. This is intended to

discourage the airlines from scheduling dummy ights just prior to the program.

The feasibility criteria in the subroutine feasible ( ) has deliberately been left

vague. There are several possibilities for this. The most direct is that a ight f

can be moved into a slot t only if ETAf � t: More generally, the requirement is

that ETAf � t+k; where k � 0 is a �xed parameter to prevent minor movements

of ights. Also, feasibility of assignment should vary with the current time. The

airlines require a minimum noti�cation if a ight is to be moved earlier than its

current CTA. This minimum requirement is currently set at 30 minutes for all

airlines.
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Example of Compression

Consider a GDP implemented between times 1100 and 1310, with an AAR of

six ights per hour (the numbers are simplistic for the purposes of illustration).

The last seven time slots of the schedule are shown below.

Before Cancellation/Substitution

slot status owner ight-earliest CTA

1201-1210 filled A A100-1149

1211-1220 filled B B100-1151

1221-1230 filled C C100-1155

1231-1240 filled A A200-1228

1241-1250 filled B B200-1216

1251-1300 filled A A300-1235

1301-1310 filled D D100-1335

The airlines are now free to make cancellations and substitutions within their

own time slots. Suppose that after this process, airline A has cancelled ight

A100 or moved it to a higher position in the schedule, thus vacating slot 1201.

Similarly, airline B has cancelled or moved up B100, thus vacating slot 1211.
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After Cancellation/Substitution

slot status owner ight-earliest CTA

1201-1210 released A -

1211-1220 released B -

1221-1230 filled C C100-1155

1231-1240 filled A A200-1228

1241-1250 filled B B200-1216

1251-1300 filled A A300-1235

1301-1310 filled D D100-1335

As it stands, airline A cannot make use of the 1201 time slot because the

earliest CTA's of ights A200 and A300 are too early for the 1201 time slot.

Airline B could have movedB200 into the 1211 slot but is trusting the compression

algorithm to do this on their behalf. Note that airlines A and B have retained

ownership of their respective, vacated slots.

The main algorithm of Compression calls upon subroutine fill slot( ) to �ll

slot 1201 with the next available ight of airline A. Subroutine search( ) reports

that none of the A ights are feasible for this slot (note the earliest CTA's of A200

and A300) so search( ) is called upon to �ll slot 1201 with the next available ight

from the other airlines. These ights are considered in the order of CTA, which

is the same as the positioning in the schedule above. C100 is the �rst available,

so it is moved into slot 1201, as below.
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Flight C100 moved up

slot status owner ight-earliest CTA

1201-1210 filled C C100-1155

1211-1220 released B -

1221-1230 released A -

1231-1240 filled A A200-1228

1241-1250 filled B B200-1216

1251-1300 filled A A300-1235

1301-1310 filled D D100-1335

Step 5(c) of search( ) changes ownership of slot 1221 (vacated by C100) from

C to A and marks it as released. This is crucial to the remainder of the algorithm.

Although airline A could not use slot 1201 directly, compensation will be made

to A by moving one of it's ights as close as possible to slot 1201. In particular,

fill slot( ) is called on slot 1221 and the attempt is made to move an A ight into

this slot. Subroutine search( ) recognizes that the next ight, A200, in the queue

of A ights (ordered by CTA) is feasible to the 1221 slot and places it there. The

vacated slot, 1231, is marked with type A ownership and fill slot( ) is called on

1231. This moves ight A300 into slot 1231 and the schedule is now as below.
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End of Substitution Stream of A ights

slot status owner ight-earliest CTA

1201-1210 filled C C100-1155

1211-1220 released B -

1221-1230 filled A A200-1228

1231-1240 filled A A300-1235

1241-1250 filled B B200-1216

1251-1300 hold A -

1301-1310 filled D D100-1335

Note that search( ) has marked slot 1251 with hold status. This marks the

end of the substitution stream created by the vacancy at slot 1201 and prevents

ight D100 from being moved into slot 1251, even though D100 is feasible for

it. If the program is extended beyond 1310, airline A will have the opportunity

to move one of its ights up into the 1251 time slot. The for loop of the main

algorithm calls upon fill slot( ) to �ll the 1211 slot with B200 and the algorithm

terminates with the results below.
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End of Compression

slot status owner ight-earliest CTA

1201-1210 filled C C100-1155

1211-1220 filled B B200-1216

1221-1230 filled A A200-1228

1231-1240 filled A A300-1235

1241-1250 hold B -

1251-1300 hold A -

1301-1310 filled D D100-1335

The net result of the Compression algorithm was to push ights up in the

schedule and force the unusable slots to the bottom of the schedule, thus min-

imizing overall delay. Airline A was compensated for slot 1201 even though it

could not use it and a direct substitution was made for airline B. All airlines

except C received a reduction in delay.

122



Appendix B

Proofs

B.1 Proof of Lemma 1

The algorithm below produces n linearly independent, linear combinations of the

vectors in S, where n = (FT �F ) and S is the set of integer solutions in GHBC
1

.

Algorithm 1

Note: Let w = wb , for ease of notation.

STEP 1:

For j = 1; 2; :::; T

Set vector Y via:

Block 1: Y1;j = 1 Y1;k = 0; k 6= j

if 1 � j � (Tw+ 1)

Block 2: Y2;j+w�1 = 1 Y2;k = 0; k 6= j + w

else

Block 2: Y2;T = 1 Y2;k = 0; k 6= T

end if

Block p > 2 : [Set in any feasible manner]
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Output row vector U = Y (Note: U1;j = 1; U1;k = 0 for all k < j )

end for

STEP 2:

For j = 1; 2; :::; (T � 2)

Set vectors X and Y via:

if 1 6= j 6= (w � 2)

Block 1: Y1;1 = 1;X1;1 = 1 Y1;k = X1; k = 0; k 6= j

Block 2: Y2;j = 1;X2;j+1 = 1 Y2;k = 0 for k 6= j; X2;k = 0 for k 6= j + 1

if (wb � 1) � j � (w � 1) +t� 1

u = (j �w + 2)

Block 1: Y1;u = 1 X1;u = 1 Y1;k = X1;k = 0; k 6= u

Block 2: Y2;j = 1 X2;j+1 = 1 Y2;k = 0 for k 6= j and X2;k = 0 for k 6= j+1

if(w + t� 1) � j � (T � 2)

Block 1:Y1;j+1 = 1 X1;j+1 = 1 Y1;k = X1;k = 0; k 6= j + 1

Block 2:Y2;j+1 = 1 X2;j+2 = 1 Y2;k = 0 for k 6= j + 1 and X2;k =

0 for k 6= j + 2

end if

Block p > 2: Yp;k = Xp;k for all k. [Set in any feasible manner]

OUTPUT Z = (Y �X) (Note: U2;j = 1; U2;k = 0 for all k < j)

end for

Repeat STEP 3 for each block m = 3; 4; :::; F

STEP 3:

For j = 1; 2; :::; (T � 1)

Set vectors X and Y via:

if 1 � j � (T �w + 1)
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Block 1: Y1;j = 1 X1;j = 1 Y1;k = X1;k = 0;else.

Block 2: Y2;(j+w�1) = 1 X2;j+w�1 = 1 Y2;k = X2;k = 0; else.

Block m: Ym;j = 1 Xm;j+1 = 1 Ym;k = Xm;k = 0, else.

else

Block 1: Y1;j = 1 X1;j = 1 Y1;k = X1;k = 0, for k 6= j

Block 2: Y2;T = 1 X2;T = 1 Y2;k = X2;k = 0 for k 6= T

Block m: Ym;j = 1Xm;j+1 = 1 Y m; k = 0 for k 6= j and Xm;k = 0 for

k 6= j + 1

Block p > 2; 6= m: Yp;k = Xp;k for all k. [Set in any feasible manner]

Output row vector U = (Y �X).

end for

Block p: Yp;k = Xp;k for all k. [Set in any feasible manner]

Output row vector U = (Y �X).

end for

end Algorithm 1

Proof that Algorithm 1 is correct:

Form a matrix, A, by letting the kth row of matrix A be the kth (row) vector

output by Algorithm 1. Note that A has FT columns. To show that the algorithm

is correct, it will su�ce to show that the rows of A are linearly independent, linear

combinations of vectors from S, where S is the set of integer solutions in GHBC
1

. To this end, we will show three things:

(i) The number of rows in A is n = (FT � F )

(ii) The rows of A are linearly independent

(iii) Each row of A is a linear combination of vectors from S

Proof of (i) : Step 1 yields T vectors. Step 2 yields (T � 2) vectors. Step 3
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yields (T � 1) vectors for each of its (F � 2)-many executions. The total number

of vectors output by the algorithm is given by:

T + (T � 2) + (F � 2)(T � 1) = F (T � 1) = FT � F = n

The fact that these vectors are distinct will follow from the linear independence

of the vectors.

Proof of (ii): To show that the rows of A are linearly independent, it will

su�ce to show that A is in row-echelon form and that each row is a pivot row. By

construction, every (row) vector has a lead \1" in component (i; j), for some (i; j).

We will show that the lead entries in the rows of matrix A are staggered, left to

right. Let U be any vector output by the algorithm except the last. Suppose that

the lead entry of U occurs in the position (i; j) (i.e., Uij = 1 and for all m < j,

Ui;m = 0 and for all k < i and all h, Ukh = 0). The lead-entry of the next vector,

U�, will occur either in the same block i, and the position (i; j+1), (whenever U�

is created in the same for-loop) or it will occur in the next block, (i+1) (whenever

U� is created in the subsequent for-loop). In either case, the lead-entry of U� is

strictly to the right of the lead entry in U . So, A is in row-echelon form and each

of its n rows is a pivot row.

Proof of (iii): Lastly, we must show that each row of A is a linear combina-

tion of vectors in S. Each vector, U , output by the algorithm is formed by either

U = (Y �X) or U = Y , so, clearly, U is a linear combination of the vectors X

and Y . Next, we must show that X and Y are in S. That is, we must show that

X and Y are

(a) integer vectors

(b) solutions to GHB and

(c) meet constraint C at equality
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Since the components of X and Y are binary, (a) is clear. Over each block,

the components of Y (and X) sum to one, so constraints (1.3) are satis�ed. Let

j be 1 � j � T . The number of k for which Yk;j = 1 (or Xk;j = 1) is less than

or equal to two (except for j = T ) and since we have assumed that for all t, bt 2,

Y (and X) satis�es the capacity constraints. Let Yi;j = 1 and Y m;n = 1 where

m 6= i. By construction, jj�nj � wb, so Y satis�es the banking constraints. The

same holds for X. So, X and Y are solutions to GHB, and (b) is shown. Finally,

to show (c), note that for any vector, X, constraint C reads

tX
s=1

X1;s +
TX

s=t+wb

X2;s � 1:

To show that X meets C at equality, it su�ces to show that exactly one of

the following holds true:

(i) X1;s = 1 for exactly one s 2 f1; 2; :::; tg

(ii) X2;s = 1 for exactly one s 2 ft+ wb; t+ wb+ 1; :::; Tg

By this technique, we will show that, at each step of the algorithm, both X

and Y meet C at equality.

Let w = wb:

STEP 1:

for j = 1; 2; :::; t;

Y1;j = 1) (i) true for Y

Y2;j+w�1 = 1 ) Y2;k = 0 for all k � t+ w (ii) false for Y

for j = (t+ 1); (t+ 2); :::; T

Y1;j = 1) Yi;k = 0 for all k � t )(i) false for Y

Y2;T = 1 ) (ii) true for Y

STEP 2:

for j = 1; 2; :::; w � 2 + t
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Y1;j = 1 for some 1 � j � t ) (i) true for Y

Y2;j = 1 ) Y2;k = 0 for all k � t+ w (ii) false for Y

X1;j = 1 for some 1 � j � t (i) true for X

X2;j + 1 = 1 ) X2;k = 0 for all k � t+ w)(ii) false for X

for j = (w + t); (w+ t) + 1; :::; (T � 1)

Y1;j = 1 (i) false for Y

Y2;u = 1 for u � w + t )(ii) true for Y

X1;j = 1 ) (i) false for X

X2;u = 1 for u � w + t) (ii) true for X

STEP 3:

Note that Y1;k = X1;k and Y2;k = X2;k for all k

for j = 1; 2; :::t

Y1;j = 1 ) (ii) true for Y , (i) true for X

Y2;j+w�1 = 1 ) Y2;k = 0 for all k � t+w ) (ii) false for Y , (ii) false for Y

for j = t; t+ 1; :::; T

Y1;j = 1 ) (i) false for Y , (i) false for X

Y2;u = 1 for some u � w + t ) (ii) true for Y , (ii) true for X

Thus, each X and each Y produced by algorithm 1 satisfy C at equality. In

all, we have shown that there are (at least) n linearly independent (hence, a�nely

independent), integer vectors in GHBC
1 that meet constraint C at equality.

B.2 Proof of Lemma 2

Recall that in Lemma 1, we generated a matrix A of n linearly independent,

integer vectors from span
�
GHBC

1

�
. We will show how to add to matrix A

one more linearly independent, integer vector from span
�
GHBC

1

�
for a total of
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(n + 1) linearly independent integer vectors. Since linearly independent vectors

are a�nely independent, this will show that dim(GHBC
1 ) � n:

As it stands, matrix A does not have a row with a pivot in component (2; k)

(i.e., the kth component of the second block), where k = (wb + t � 1). But we

can generate such a row by creating a vector, U = (Y �X), where Y and X are

integer solutions to SAGHPBC and constructed as follows:

In block 1: Y1;k = X1;k = 1 all other components are zero

In block 2: Y2;k = 1X2;k+1 = 1 all other components are zero

In block m > 2: Ym;n = Xm;n for all n. Set these binary components in

any feasible manner.

Note that, since U = (Y � X), U2;k = 1 and all components to the left of

U2;k are zero. Because of its unique pivot, this row is linearly independent of the

other rows.

B.3 Proof of Lemma 5

Let w = wb.

Case 1: (3.26) with � > t. Since Yt+w = 1, Ys = 0 for all s > t + w. Thus,

� + w > t+ w implies that
TP

i=�+w
Yi = 0.

Case 2: (3.26) with � < t. Since Xt = 1, Xs = 0 for all s < t and we have

that
�P
i=1

Xi = 0 .

Case 3: (3.27) with � < t+w. Since Yt+w = 1, Ys = 0 for all s < (t+w), and

we have that
�P
i=1

Yi = 0 .

Case 4: (3.27) with � � t+w. Since Xt = 1, we see that Xs = 0 for all s > t.

In particular, Xs = 0 for all s.
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B.4 Proof of Theorem 7

Let C be an arbitrary constraint of the form (3.10). Then for some time interval

t and some ight f , C has the form

TX
i=t

Zb
i �

TX
i=t

Xfi � 0: (B.1)

None of our work is a�ected by the assignment of a ight outside bank b to the

last time interval, T . Thus, for ease of vector notation, we can ignore all ights

not in bank b and assume that the set of ights, f1; 2; : : : ; F + Bg is indexed so

that variable Z corresponds to ight 1 (i.e., ight 1 is the \ghost ight") and

that variable Xf t corresponds to ight 2.

The proof is almost identical to the proof of Lemma 1. All of the vectors

constructed in Algorithm 1 (with n = n�) are in GHBC
2 . All but �ve of those

vectors meet constraint (B.1) at equality. Below are the replacements necessary

so that all vectors X and Y generated in (but not output by) algorithm 1 meet

(B.1) at equality.

In STEP 1, iteration j = (t� 1), change vector Y so that

Y1;t�1 = Y2;t�1 = 1.

In STEP 2, iteration j = (t� 1), change vectors Y and X so that

Y1;t+1 = Y2;t+1 = X1;t+1 = X2;t+2 = 1.

In STEP 3, iteration j = (t� 1), change vectors Y and X so that

Y1;t�1 = Y2;t�1 = X1;t�1 = X2;t�1 = Y3;t�1 = X3; t = 1:

With these minor modi�cations to algorithm 1, all of its output is in the span

of the set of vectors that meet (B.1) at equality. Thus, there are at least n�

linearly independent (a�nely independent) vectors that meet (B.1) at equality

and the face, F , represented by (B.1) must have dimension at least (n � �1).
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(B.1) is the one and only constraint to eliminate the solution, X, in which ight

f lands in time slot (t � 1) and the ghost ight lands in time slot t. Therefore,

dim(F ) = (n� � 1), and since dim(GHBC
2 ) = n�, F is a facet of GHBC

2 .

Moreover, the uniqueness of X implies that (B.1) is the only constraint of its

kind that represents F .

B.5 Construction for the proof of Theorem 9

Fix a time interval t < T and let C be the corresponding capacity constraint.

Let k = MAXt 6=T (bt) . By re-indexing or adding dummy ights to the set of

ights, F , we may assume that the last (k + 1) ights of F is a set, F �, of

non-bank ights such that af = 1, for each f 2 F �. Let F � be indexed via

ff1; f2; :::; fk; fk+1g.

Recall that the components of each N�-dimensional vector are indexed by the

set

I = f(i; j) : 1 � i � F and 1 � j � Tg:

We de�ne I� � I via I� = f(i; j) 2 I : j 6= Tg. Note that there is one pair

in I� for every component of every ight block except the last component. Thus,

jI�j = N�� F = n�. For each (i; j) 2 I�, we will generate a row vector U with a

lead \1" (all zeros to the left) in component (i; j). The set 
 will be the collection

of all such U -vectors. Thus, j
j = n� and the vectors in are linearly independent

because they can be used to form the rows of an upper triangular matrix.

Fix the index (i; j).

Case 1: i 2 (F �F�). First, generate a feasible solution vector, Y as follows.

Assign ight i to time interval j. If i is a bank ight in, say, bank b, then let
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wb be the width of the bank b. Assign the ights of (�b � fig) to time intervals

j; j + 1; :::; j + wb in any feasible manner that does not exhaust the capacity of

interval (j + 1) (this uses Assumption 2). If j = t, then assign the last (bt � 1)

ights of F � to time interval t. If j 6= t, then assign the last bt ights of F � to

time interval t. Assign every ight in (F � �b), including the remaining ights

of F �, to time interval T . Note that whether j = t or j 6= t, there are exactly bt

ights assigned to time interval t and that there is exactly one ight assigned to

time interval j. Vector Y meet the capacity constraint at equality, hence, is in

Ft.

Secondly, generate a feasible solution (row) vector X by setting every com-

ponent of X as in Y , except that ight i should be assigned to time interval

(t + 1) (this is possible by assumption 2). If j = t, then one of the ights that

is currently assigned to time interval t should be reassigned to time interval T .

Thus, there will be exactly bt ights assigned to interval t. Vector X meets the

capacity constraint at equality, hence, is in Ft.

Let U = (Y � X). Clearly, U is a linear combination of vectors in Ft. Y

and X are the same in all components strictly to the left of (i; j). Moreover,

Yi;j = 1, Xi;j = 0, Yi;j+1 = 0, Xi;j+1 = 1. Thus, Ui;j = 1, Ui;j+1 = 1 and all other

components of U are zero. U has a lead \1" in component (i; j), as desired.

Case 2: i 2 F � = ff1; f2; :::; fk; fk+1g.

If i = f1 , then construct row vectors Y and X as follows.

Vector Y : Assign all ights of (F �F �) to time interval T . Assign f1 to time

interval j. If j 6= t, then assign bt of the ights of (F � � ff1g) to time interval

t. This is possible because jF �j = (k + 1), where k = bt . And if j = t, assign

bt� 1 ights of F � to time interval t. Either way, the number of ights assigned
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to time interval t is bt and the vector Y is in Ft.

Vector X: Assign f1 to time interval (j + 1). If (j + 1) 6= t, then assign bt

of the ights of (F � � ff1g) to time interval t. And if j = t, then assign bt � 1

ights of F � to time interval t. Either way, the number of ights assigned to time

interval t is bt and the vector X is in Ft.

If i > f1, then construct row vectors Y and X as follows.

Vector Y : Assign all ights of (F � F �) to time interval T . Assign ight i to

time interval j. If j 6= t, then assign bt of the ights of (F ��fig) to time interval

t. If j = t, then let d = bt � 1 and assign d ights to time interval t. Assign all

remaining ights of (F � � fig) to time interval T .

Vector X: For each i < F1 and for each j, let U = (Y �X). Clearly, U is

a linear combination of vectors in Ft. Y and X are the same in all components

strictly to the left of (i; j). Moreover, Yi;j = 1, Xi;j = 0, Yi;j+1 = 0, Xi;j+1 = 1.

Thus, Ui;j = 1, Ui;j+1 = 1 and all other components of U are zero. U has a lead

\1" in component (i; j), as desired.

B.6 Network Proofs

Lemma 15. For every S � 2; the primal matrix (I;A) of the LP relaxation of

SGH2; fails to be a network matrix.

Proof. Since every submatrix of a network matrix is itself a network matrix,

it will su�ce to show that A contains a submatrix B that is not a network

matrix. We form B by intersecting those rows corresponding to parameters

D1;D2; b11; b
1
2; b

2
1; b

2
2 and those columns corresponding to variables Z1; Z

1
1 ; Z

2
1 ;X1;X2:

If the rows and columns are arranged in the orders just listed, then B is as below.
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B =

26666666666666666664

1 0 0 1 0

-1 0 0 0 1

0 1 0 -1 0

0 -1 0 0 -1

0 0 1 -1 0

0 0 -1 0 -1

37777777777777777775
By way of contradiction, let us assume that B is a network matrix. Let G be

the corresponding undirected graph G = (V;E) and let e1; e2; ::::; e6 be the basis

of edges marked by the identity columns in (I;A) that form a spanning tree of

G. Every column of B is the edge-path characteristic vector of a path in G with

respect to the edges e1; e2; ::::; e6. That is, for each column j of B; if we set

Xj =
n
i : the ith entry of column j is nonzero

o
;

then the following set Pj of edges is a path in G:

Pj = fei : i 2 Xjg :

We will derive a contradiction from the co-existence of the paths P1; P2; :::; P6

in G: We have that

X4 = f1; 3; 5g X5 = f2; 4; 6g

and therefore,

P4 = fe1; e3; e5g P5 = fe2; e4; e6g :

The ordering of the edges in paths P4 and P5 is, as of yet, undetermined, but

the paths must be isomorphic, respectively, to the ones shown in Figure ??.
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e i

e s e te r

r, s, t in the set

e j e k

i, j, k in the set

(even edges)

(odd edges)4

5

path P

path P

{1, 3, 5}

{2, 4, 6}

Figure B.1: The two paths

Since G is spanned by a tree with six edges, the total number of nodes in G is

6+1 = 7: There are 8 nodes in Figure B.1, so paths P4 and P5 must have exactly

one node in common. The reader can easily verify that G must be isomorphic to

exactly one of the three graphs in Figure B.2.

Graph 1:
inner node of P
same as inner node of P

4
5

Graph 2:

same as outer node of P
4

5

Graph 3:
outer node of P
same as outer node of P

4
5

inner node of P

Figure B.2: The three isomorphisms

Fix any one of those graphs G0 and consider its left-most edge, ei. This edge

is adjacent to exactly one edge, ej. The index i is either odd or it is even. We

assume that it is odd, the even case being symmetric. Every odd edge lies on
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path P4 and is adjacent to another odd edge, so j must be odd. Note that

X1 = f1; 2g X2 = f3; 4g X3 = f5; 6g

and

P1 = fe1; e2g P2 = fe3; e4g P3 = fe5; e6g

so every odd edge is adjacent to an even edge and j must be even. This contradicts

the previously established parity of j.

Lemma 16. The matrix N; as de�ned in (4.26) is in network matrix form.

Proof. The matrix N is a (0; 1;�1) matrix because it is comprised of (0; 1;�1)

block matrices. We must show that an arbitrary column c of N contains at most

two nonzero entries and that whenever c contains exactly two nonzero entries,

they sum to zero. By de�nition N; there are only two cases to consider.

Case 1: The nonzero entries of c fall within a column of exactly one of the

following matrices: �;�0;or ": Each of these matrices is clearly a NAIM, so the

result follows.

Case 2: The nonzero entries of c fall within a column of a matrix de�ned via

M =

2664 (�1)"

"

3775 :
Each column of " contains at most one nonzero entry. Thus, M is a NAIM and

the result follows.
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Appendix C

Banking Constraint Results
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Data Set 1

79 ights, 1 bank, bank width = 3, cap = 5, T=6

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 3.41 90.60 87 0.13 93.80 382 0.70 93

XW 1.81 92.10 113 0.13 93.80 209 0.30 18

XWZ 1.81 92.10 113 0.12 93.80 345 0.53 4

XMM 11.64 82.88 111 0.17 93.80 1991 4.75 776

XMMZ 11.64 82.88 111 0.18 93.80 231 0.30 6

XSS 0.00 INT 93.80 92 0.15 93.80 92 0.15 0

WSS 0.00 INT 93.80 172 0.23 93.80 172 0.23 0

XGF 0.00 INT 93.80 93 0.12 93.80 93 0.15 0

WGF 0.00 INT 93.80 158 0.18 93.80 158 0.18 0

Table C.1: Model performances on Data Set 1
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Data Set 2

25 ights, 2 banks (9 each), bank width = 3, cap = 5, T = 6

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 11.35 100.35 124 0.27 113.20 3773 0.27 629

XW 8.82 103.22 159 0.28 113.20 1352 0.27 156

XWZ 8.82 103.22 159 0.28 113.20 268 0.27 8

XMM 25.22 84.65 118 0.20 113.20 23904 64.10 6161

XMMZ 25.22 84.65 118 0.20 113.20 226 0.42 4

XSS 2.32 110.57 112 0.30 113.20 139 0.42 8

WSS 2.32 110.57 224 0.53 113.20 290 0.82 26

XGF 2.32 110.57 115 0.18 113.20 125 0.27 3

WGF 2.32 110.57 176 0.30 113.20 197 0.35 2

Table C.2: Model performances on Data Set 2

139



Data Set 3

79 ights, 2 banks (10 each), bank width = 3, cap = 5, T = 16

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 0.47 890.92 585 1.30 895.10 2932 20.22 540

XW 2.96 868.62 961 3.42 NL 934.40 388,988 2021.37 20,000

XWZ 2.96 868.62 967 3.93 895.10 1561 6.27 16

XMM 5.37 847.00 596 3.33 NL 920.10 134,303 924.90 20,000

XMMZ 5.37 847.00 596 3.35 895.10 1548 7.38 14

XSS 0.31 892.35 720 8.13 895.10 4645 86.47 574

WSS 0.31 892.35 1937 17.60 895.10 4343 50.88 382

XGF 0.31 892.35 657 3.30 895.10 694 3.40 3

WGF 0.31 892.35 1683 7.68 895.10 1733 10.05 5

NL - node limit reached (20,000)

Table C.3: Model performances on Data Set 3
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Data Set 4

120 ights, 4 banks (8 each), bank width = 3, cap = 5, T = 24

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 0.69 2784.71 1369 4.73 NL 2915.20 437,068 4171 20000

XW 4.90 2666.72 2525 16.08 NL 2898.20 726,325 8556 20000

XWZ 4.90 2666.72 2525 16.08 2804.10 17502 191 283

XMM 7.22 2601.53 1637 21.18 NL 3001.60 279,618 3801 20000

XMMZ 7.22 2601.53 1637 21.18 2804.10 11980 149 146

XSS 0.26 2796.68 1838 38.95 NL 2804.60 398,102 11,589 20000

WSS 0.26 2796.68 7060 142.38 NL 2804.80 464,154 11,958 20000

XGF 0.26 2796.68 1845 14.22 2804.10 2924 30 24

WGF 0.26 2796.68 4489 26.55 NL 2804.80 5478 64 26

NL - node limit (20,000) reached

Table C.4: Model performances on Data Set 4
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Data Set 5A (13:00-16:59)

280 ights, 6 banks (12-36 each), bank width = 6, cap = 10, T = 30

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 0.00 7317.78 1996 29.17 7318.10 2002 30.43 3

XW 0.09 7311.60 6784 103.42 7318.10 8938 156.33 140

XWZ 0.09 7311.60 6784 103.90 7318.10 6805 104.02 4

XMM 0.41 7287.81 2110 55.35 7318.10 61411 3807.30 20000

XMMZ 0.41 7287.81 2110 55.63 7318.10 2225 63.48 3

XSS 0.00 *7318.10 6925 1132.73 7318.10 6925 1127.28 0

WSS 0.00 *7318.10 47,250 9037.80 7318.10 47250 9024.78 0

XGF 0.00 *7318.10 3875 71.82 7318.10 3875 71.63 0

WGF 0.00 *7318.10 12,708 292.30 7318.10 12,708 292.30 0

* Integer solution

Table C.5: Model performances on Data Set 5A
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Data Set 5B (13:00-18:59)

419 ights, 6 banks (12-36), bank width = 6, cap = 10, T = 42

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 0.05 14579.28 3533 39.63 14587.10 5276 150.82 323

XW 0.74 14478.50 23,325 381.70 NL 14620.40 326130 7720.70 20,000

XWZ 0.74 14478.50 23,325 381.10 14587.10 23,892 383.90 16

XMM 1.67 14343.19 5224 137.83 NL 14647.60 158201 10559.28 20000

XMMZ 1.67 14343.19 5224 138.15 14587.10 6302 286.23 29

XSS N/A N/A N/A TLIM N/A N/A TLIM N/A

WSS < 0.01 *1458.71 34,701 2137.72 14587.10 34701 2136.73 0

XGF < 0.01 *1458.71 22,052 1590.52 14587.10 22052 1508.53 0

WGF < 0.01 *1458.71 34,701 2137.72 14587.10 34,701 2138.42 0

* integer solution TLIM - 3 hour CPU time limit reached time

N/A - not applicable (limits reached) NL - node limit reached (20,000)

Table C.6: Model performances on Data Set 5B
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Data Set 5C (13:00-20:59)

536 ights, 6 banks (12-36), bank width = 6, cap = 10, T = 54

LP IP

Model Gap(%) Value Iter Time (s) Value Iter Time (s) Nodes

XTC 0.06 22822.05 6504 187.93 22835.90 11725 1360.90 1368

XW 0.82 22647.80 49186 1888.05 N/A N/A TLIM N/A

XWZ 0.82 22647.80 49186 1886.98 22835.90 50620 2360.15 35

XMM 1.72 22442.19 7973 531.82 N/A N/A TLIM N/A

XMMZ 1.72 22442.19 7973 533.02 22835.90 11460 892.77 48

XSS N/A N/A N/A TLIM N/A N/A TLIM N/A

WSS N/A N/A N/A TLIM N/A N/A TLIM N/A

XGF 0.03 22829.87 14944 1197.22 22835.90 15030 1205.31 3

WGF N/A 22829.87 81633 8266.10 22835.90 81718 8296.67 2

TLIM - 3 hour CPU time limit reached time

N/A - not applicable (limits reached) NL - node limit reached (20,000)

Table C.7: Model performances on Data Set 5C
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Appendix D

Glossary

D.1 General

AAR = arrival acceptance rate (capacity of a time interval)

AOC = airline operational center

ARTCC = air route tra�c control center

ATCSCC = Air Tra�c Control Systems Command Center, a branch of the FAA

ATFM = air tra�c ow management

CDI = capacity demand inequity

CDM = collaborative decision making

CTA = controlled time of arrival

CTD = controlled time of departure

DM = decision maker

ETA = estimated time of arrival

FAA = Federal Aviation Administration

FADE = FAA Airline Data Exchange (program)

FSM = ight schedule monitor

GDP = ground delay program
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GH = ground-holding problem

GPS = global position system

IP = integer program

JFK = John F. Kennedy Airport

LP = linear program

LTI = landing time interval

MAGHP = multi-airport ground-holding problem

MAR = managed arrival resevoir

NAIM = node-arc incidence matrix

NAIM = node arc incidence matrix

NAS = national airspace system

NEXTOR = National Center for Excellence in Aviation Operations Research

OAG = o�cial airline guide

OGTA = original gate time of arrival

PAAR = planned arrival acceptance rate

SAGHP = single airport ground-holding problem

SGH = stochastic ground-holding problem

SGH2 = single airport ground-holding problem, simpl�ed by preprocesing

TFMP = (air) tra�c ow management problem

UPS = United Parcel Service

SGH2 = simpli�ed version of the stochastic ground-holding problem
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D.2 Mathematical

B&B = branch and bound strategy, used in solving integer programs

B-S = Bertsimas Stock variables, (of the form Wf t)

GH = an integer program model of the ground-holding problem

GHLP = the linear program (LP) relaxation of GH

GHB = ground-holding problem with banking constraints

GHB1 = set of integer solutions to model XSS

GHB2 = set of integer solutions to model XGF

IP = integer program

LP = linear program

MIP = mixed integer program (integer and non-integer variables)

PC = convex hull of integer solutions to set

PLP = feasible points in LP relaxation of an integer program P

polytope = a bounded polyhedron

RBS = ration by schedule, an algorithm for alloting arrival slots

TU = totally unimodular (matrix), sq submatrices with det 0,1, or -1

WGF = B-S version of model XGF

WSS = B-S version of model XSS

XGF = ghost ight model of GHB

XMM = monotone marker model of GHB

XMMZ = a relaxation of model XMM (only Z variables declared integer)

XSS = Sdouble sum model of GHB

XTC = time coe�cient model of GHB

XW = window marker model of GHB

XWZ = a relaxation of model XW (only Z variables declared integer)
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D.3 Constants and Variables

af = scheduled time of arrival of ight f

bt = capacity of time interval t (also called AAR)

bst = capacity of time interval t (AAR) under scenario s

ec = cost of one unit of ground delay

bc = cost of one unit of airborne delay

Cf = cost of delaying ight f for one time period

�b = the set of ights in bank b

Et = number of exempt ights in time period t

F = total number of ights bound for an airport under a GDP

Ft = the face of GHB1(or GHB2) de�ned by capacity constraint t

n = TF � F = the dimension of Euclidean space for model XSS

n� = n + (TB �B) = the dimension of Euclidean space for model XGF

N = FT = number of components in vectors X feasible to XSS

N� = T (F +B) = number of components in vectors X feasible to XGF

T = total number of time periods

wb = desired number of time intervals in which bank b should land

Wf t = B-S variable. Wf t = 1, if f arrives by time t, Wf t = 0, else.

X = feasible solution to GHB, X = (X11; :::;X1T ;X21; :::;X2T ; XF1; ::;XFT )

Xt = (context: SGH) planned arrival acceptance rate for time period t

Xf t = assignment variable of ight f to time period t

~Zt = numb of ights held over on the ground from time period t to t+ 1

Ẑs
t = numb of ights held in the air from time period t to t+ 1, in scenario s
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