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A plasma is a collection of charged particles. These charged particles generate 
electromagnetic fields through their elementary charges and currents. In order to 
evaluate these fields it would be necessary to know the position and velocity of every 
particle at all times. The motions of the charges themselves must be followed in the 
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fields they generate and those externally imposed. This program is beyond what is 
possible except in the simplest possible situations. 

Fortunately there is a cruder description of the plasma that is often sufficiently 
accurate to give gross behavior to the extent desired. 

Instead of specifying the plasma in terms of each of its particles a more 
macroscopic description of the plasma can be pursued in which the emphasis is on 
its fluid nature. Depending on circumstances that will be discussed below this fluid 
description may be a one-fluid, a two-fluid, or a many-fluid approach. 

The one-fluid approach will be considered first. Every cm3 of plasma must contain 
a definite number p g of plasma. The rate of change of this density is controlled by 
mass flow U out of the walls of this cm3• The momentum pU in any cm3 is itself 
controlled by the forces acting on it. These are normally electrical, magnetic, and 
gravitational forces acting on its volume, and pressure forces acting on its walls. 
Because the plasma is a conducting fluid its current can be found from Ohm's law in 
some form, while the direct electrical forces are usually small. The current can be 
used to find the magnetic field by the Biot-Savart law and the changing magnetic 
field gives the induced part of the electric field, while the remainder, the electrostatic 
part, follows from the condition that the current driven by the electric field be 
divergence-free. The determination of the pressure forces is often the weakest part of 
this one-fluid description since the pressure is not usually a scalar, particularly if the 
plasma is collisionless. In addition the heat flow is often quite large. (Microscopi­
cally, particles together in a small cube remain together for only a short time.) 
However, many plasma phenomena of interest do not depend on the pressure in any 
essential way so that even an inappropriate treatment by an assumed equation of 
state for a scalar pressure can give a reasonable description of the phenomena in 
their grosser aspects. (The more basic properties of the plasma are governed by its 
electrical nature.) 

For a more detailed description of plasmas in which interest is centered on plasma 
temperatures and energy densities, the two-fluid description is more appropriate. In 
this description the electron and ion fluids are treated separately. Although the mean 
velocities are nearly equal, the electron and ion temperatures are often quite 
different due to the weak energy exchange rates between ions and electrons. The 
two-fluid approach is also appropriate for a weakly ionized plasma. Here the ion 
cyclotron frequency may be less than the ion neutral frequency, while the electron 
cyclotron frequency is greater than the electron neutral collision frequency. The 
resulting electron and ion flows can be quite different under these circumstances. 

Finally, when the plasma is nearly collisionless but the pressure terms play a 
central role, an even more detailed, but still approximate, description becomes 
appropriate, the guiding center description. In this description the magnetic field is 
strong enough that the plasma is still hydromagnetic in a direction perpendicular to 
the magnetic field, since the gyration frequency is large for both species. However, 
the particle flows along the lines need not be fluid-like, so it is necessary to keep 
track of the distribution of velocities parallel to the line by a one-dimensional kinetic 
equation. Even in this case the description may be simplified to a fluid description 
that preserves the independent plasma behavior along and across the lines. Two 



1A. MHD description o/plasma 117 

equations of state for the two independent components of the pressure tensor are 
needed, and this is supplied by the Chew-Goldberger-Low or double adiabatic 
equations. 

In summary, although any real plasma is extremely complicated, some of its main 
properties may often be captured by simple macroscopic sets of equations. These can 
only describe the slower more macroscopic properties of a plasma that occur on long 
enough time and space scales that microscopic processes such as collisions and 
gyrations can establish sufficient consistency in the plasma to enable it to be 
considered as a coherent fluid. 

1. 4. 2. Collisional plasma 

As described in the introduction, the fluid picture of a plasma is most appropriate 
when the plasma is at least somewhat collisional. Then the electrons and ions 
separately relax to a local thermodynamic equilibria on a time short compared with 
that in which substantial changes in plasma conditions occur, and in regions small 
compared with the size of the plasma. Thus, we may assign a density p, mean 
velocity U, and scalar pressure p to each of the plasma components. 

In the simplest description of the one-fluid plasma we may ignore the differences 
in the·electron and ion properties and simply lump them together. We consider this 
description first. 

The one - fluid description 

On this level the plasma is in many ways like a highly conducting molten metal. 
The fluid equations describing its density, velocity and pressure are 

aplat + V·(pU) ~ 0, 

p(aUjat)+pu· vU~jXB- Vp+pg, 

(d/dt)(plpY) ~ O. 

(I) 

(2) 

(3) 

Equation (I) is the equation of continuity. Equation (2) is Euler's equation for fluid 
motion. The left-hand side represents the mass of a cm3 of material times its 
acceleration at any instant. The acceleration is produced by the magnetic and 
gravitational forces acting on the same cm3 and the surface force term represented 
by the pressure gradients. B is the magnetic field, j the plasma current, and g a fixed 
gravitational field. The pressure is the sum of the separate partial pressures of the 
ions and electrons whose gradients are assumed to act together on the plasma rather 
than on each species separately. 

In the third equation dldt '" (a I at)+ U· v is the convective derivation and y is 
the ratio of specific heats of the plasma. This last equation is the equation of state 
for each separate fluid element following the motion. It is only valid under 
conditions where the heat flow is small. Note thatplpY is related to the entropy per 
unit mass of a fluid element. If more general conditions prevail, e.g. ionization, 
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radiation pressure, etc., are important, then (3) should be replaced by the condition 
of constant entropy folIowing each fluid element. However, in most cases where the 
one-fluid theory is employed the simple power-law assumption is generally adequate. 
Note further that various limiting cases arise by taking y ~ 1, isothermal, or y ~ 00 

incompressible. It can be easily worded as "pjpY is a constant following the motion, 
but in general is different for different fluid elements". 

It should be noted that the electrical force PEE, where PE is the electrical charge 
and E the electric field, has been dropped in (2). This is because, as will soon appear, 
these forces are relativistically small compared with magnetic forces and must be 
neglected for consistency, since our theory is nonrelativistic. 

We see that knowing B and g, (1)-(3) form a complete set giving the forward time 
evolution of the fluid quantities P, U and p. The velocity U needed in (I) to advance 
P in time is determined by (2). The pressure needed in (2), to advance U, is given by 
(3), etc. 

The electromagnetic fields are controlled by Maxwell's equations: 

V' X B ~ 41Tj, 

aBjat ~ - cV' X E, 

V'·B ~ 0, 

(4) 

(5) 

(6) 

(7) 

where c is the speed of ligbt. The displacement current in (4) has been dropped since, 
as will appear, its effects are also relativistically small. Further, there is no need for 
(7) since the charge density PE appears nowhere else in the equations. 

The electromagnetic and fluid equations are coupled by Obm's law, which in its 
simplest form can be written (Spitzer, 1962) 

E+(UXB)jc~~j, (8) 

where 11 is the plasma resistivity. The combination E' ~ E + U X Bjc is the electric 
field seen by the plasma in its moving frame U, and (8) states that in this frame j is 
parallel to and proportional to E' 

Equation (8) is not strictly accurate for a plasma. Because of the anisotropy of the 
field there will be Hall currents flowing perpendicular to E and B that may actually 
be larger than that predicted by (8). However, the current in (8) is parallel to E' and 
represents dissipation of energy whereas the Hall currents do not. Thus the secular 
effects produced by this term are generally more significant than those due to the 
Hall terms. It is customary in the simplest form of the one fluid MHD equations to 
employ Obm's law in the form (8). 

Equations (4), (5), and (8) represent three vector equations for the three vectors E, 
B, and j. They may be combined into two equations by solving (8) for E and 
substituting from (4) to eliminate j. We get 

JB c 
Tt~ V'X(UXB)- 41T V'x(~V'XB). (9) 
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If 1) is a constant, the last teTIll becomes simply (1)Cj41T) v 2B so 

vB 1)c , at ~ Vx(U X B)+ 41T VB. (9a) 

The first teTIll on the right gives the change in magnetic field produced by 
convection of lines of force by the plasma. The second term gives the magnetic 
diffusion term, which tends to smooth out irregularities in the plasma perhaps 
induced by the first term. If there were no plasma motions, the diffuse teTIll would 
smooth out any irregularities, in a characteristic time of order 41TL'j1)c where L is 
the irregularity size. (This is essentially the "LjR time" for a plasma considered as a 
lumped circuit.) This decay time is of order 1O- 7T'/2L2 s where Tis the temperature 
of the plasma in eV. For high temperatures or large plasmas this time may be very 
long. The changes in B produced by the convective term often occur on a time so 
short compared with this diffusive term that the magnetic diffusion can be ignored 
altogether. That is, we may replace (9a) by the "infinite conductivity" equation 

aBjat~ VX(UXB). (10) 

The subset of the above equations (I), (2), (3), (4), and (10) constitute the so-called 
ideal MHD equations. They are clearly an approximation to the true plasma 
equations, but they have so many nice properties that they are the preferred set for 
describing macroscopic plasma phenomena. Equation (10) gives the evolution of B 
as a result of plasma motions. Then making use of (4) j can be determined, and thus 
j X B, to determine the evolution of the fluid quantities under the action of the 
electromagnetic forces. 

The electric field E is no longer needed in this description but it may be obtained 
from the infinite-conductivity limit of Ohm's law: 

E+(UXB)jc~O. (II) 

Then the electric force on the plasma PEE can be estimated from (7) to be 

E~EV·E z~B2 
PE 41T 41TLc2' 

and it is seen, as mentioned earlier, that it is relativistically small compared with the 
magnetic forcej X B z B'j41TL. In the same way we may show that inclusion of the 
displacement current (ljc)(aEjat) has a relativistically small effect on the equa­
tions. Adding it to (4) will alter j by the small amount 8j and this will produce an 
additional contribution to the electromagnetic force teTIll in (2): 

8jXB~ _1_ aE xB ~ _ Y-( U X B)XB Z UB
2 

41TC at . at 41TC' 41Ttc 2 ' 

where t is a macroscopic time. Comparing this with the inertia term on the left we 
see that it is smaller by B2j41TpC2. In fact, the addition of this term can be thought 
of as adding the" mass" of the magnetic field to the mass of the plasma. 

The ideal equations of MHD are best thought of as exactly describing an ideal 
infinitely conducting fluid with an adiabatic equation of state whose properties are 
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sufficiently close to a plasma to be of interest, rather than an appropriate system of 
equations for a real plasma. For the moment imagine that there is such an ideal 
infinitely conducting fluid to study. It is immersed in some magnetic field. Then, by 
the condition of flux freezing, the evolution of the field may be expressed in terms of 
the distribution of magnetic lines of force bodily transmitted by the velocity U. This 
means the field depends only on the net displacement of each element of the fluid 
and not on the history of the fluid displacements. The j x B force can readily be 
thought of as the magnetic tension and pressure contained in these lines of force. 
Similarly, P is given purely by the displacement of the fluid elements and, further, 
the pressure is also thus determined. This means that, at least in principle, the force 
on a fluid element is determined holonomically by its displacement and the 
displacement of its neighbors. It is this fact, plus the fact that the system is 
dynamical (given by a Lagrangian), that leads to the many very satisfying properties 
of this ideal system. In fact a considerable amount of macroscopic plasma physics is 
devoted to determining to what extent a real plasma can differ from its ideal 
counterpart. Some of these questions, magnetic reconnection for example, are among 
the most important of modem-day research problems (Petschek, 1964). 

The two -fluid description 

An alternative and more precise treatment of a fully ionized plasma is contained 
in the two-fluid description. The two fluids are the electrons and ions. If there is a 
single species of ions, we can assign a density, velocity and pressure to the electrons 
and to the ions. Then the three equations for a single fluid, (1 )-(3), must be replaced 
by six equations, three for each fluid, describing the six independent quantities Pi' 
Pel Vi' ~,Pi' Pe' Now the one-fluid equations were written down on phenomono­
logical grounds and were not extremely accurate except in the limit "'"T, very small, 
where w" is the electron cyclotron frequency and T, the electron collision frequency. 
On the other hand, considerable work has been devoted to deriving a set of 
equations accurate for any collision rate faster than the dynamic rates of change of 
Pi' p" etc. The generally accepted set of equations are those of Braginski (1965), that 
are now taken as standard. We give them here for reference. 

The two continuity equations are 

BnjBt + v·(np,) = 0, 

Bn,/Bt+ V'(n,l{) =0, 

(12) 

(13) 

where nj and ne are the electron and ion particle densities. These equations are 
linked by the charge neutrality condition, Zn i = no' where Z is the ion charge 
number. 

The two vector equations of motion are 

( BU) ( U x B) Pi atl+~·v~ =- VPi- V-1Tj +Zen j E+-'-c- -Rei+Pig, (14) 

(15) 
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In these equations Pi and Pe are the ion and electron scalar pressures, 7Ti and 7Te are 
the nonscalar parts of the stress tensors, R'i is the rate of transfer of momentum 
from ions to electrons by collisions. They in turn are linked by the equation defining 
the currentj~ (Znie/c)(Vi - U,), where e is the electronic charge. We assume that 
Zni is much closer to n, than V, is to u,. Because, j cannot be too large without 
producing electromagnetic effects we can say that V, and U, are also close together. 

The two energy equations are: 

tnJ JTjJt + V,' VT;)+ Pi V·V, ~ - V'qi - "i: VVi + Qi' 

tn,( J1',jJt + u,. 171',)+ p, v·u, ~ - V'q, - ",: vu, + Q" 

(16) 

(17) 

where the temperatures are defined by Pi = niIj, Pe = neT;; and the units of Tare 
chosen to make Boltzmann's constant unity. The second term on the left of each 
equation is the P dV work done by compression. qi and q, are the heat flows, "i: vV, 
and we: \7~ are the frictional heating terms due to nonuniform velocities while Qi 
and Q, represent energy exchange between the species and joule heating. 

Equations (14)-(17) become more accurate as the colllsi()ri'time~' goes to zero. 
They consist of "fluid" terms and dissipative terms and the latter are smaller than 
the former roughly by T / t. Thus, if T were zero, collisions would be sufficient to 
maintain an isotropic velocity distribution in the frame moving with the fluid and 
the 7T terms would be small. However, because V is inhomogeneous, an isotropic 
distribution at one point does not match the isotropic distribution a mean free path 
away, and a certain mixing of these distributions leads to anisotropy of the 
distribution and to off-diagonal terms in the stress tensor. The other dissipative term 
R'i is produced by unlike particle collisions and is the friction force between 
electrons and ions. Since the difference between the electron and ion velocities is the 
current, this friction includes the resistivity as well as thermoelectric effects. In most 
cases in practice Vi is close to U, and can be identified with the mass flow of the 
plasma. If (14) is added to (15), the electron-ion friction force cancels out and 
the electron inertial term and gravitational terms are negligible. Thus, except for the 
viscosity terms "i and "" we recover the one-fluid equation of motion, (2). On the 
other hand, if we express U, in terms of V, and j by solving 

(18) 

and neglect inertia in (18), we obtain a form of Ohm's law usually denoted as the 
generalized Ohm's law (Spitzer, 1962) 

E+ VXB ~~jXB- Vp, _ V''', + R". (19) 
c nee nee nee nee 

Equations (12)-(17) are the equations describing the electron and ion fluids 
separately. To complete them, we must add Maxwell's equations (4)-(6), where j is 
defined by (18). Again, we may consistently neglect the displacement current term in 
(4) and take Zn i ~ n, so (13) is not needed. (This is the case for a low-frequency 
phenomenon. Although it is the case that the two-fluid equations may l. ' used to 
derive some high-frequency wave phenomena provided thermal effects are small, 
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these derivations are not really sound.) We also need the expressions for the various 
dissipation terms. These are given by Braginski (1965). Let the ion and electron 
collision times be defined as 

3ml/ 2T'/2 , , 
(20a) 

", ~ 4(2".) 1/2(ln A) e4Zn, ' 
(20b) 

where InA is the Coulomb logarithm and m" are the particle masses. The 
calculation is further limited to the case Z ~ I ;U;d to the limit W,,", » I, where s 
indicates the particle species, i or e. Then from Braginski's article we have 

"',~"I~(b· vU,·b-1V·U,)(/" -2bb)-"I;(/"· VU,·/.L +bx VU,Xb) 

- "I; (bb . W, ·/.L + I.L • W, • bb) + 1"1; (b X w,. I.L - I.L . W, X b) 

+ "I;(bX W,·bb-bb·W,xb), (21) 

where 

b~B/B, 

TJ? = O.96n jT(Tj. 

7Ji = O.3n)i/w~Ti' 

1JI = O.SnjTj/wci' 

For Rei' 

w, ~ vU + ( vU)", 

1J~ = O.73ne~Tel 

1J~ = O.51ne~/w;eTe' 

1J! = -O.Snc-Z:/wce. 

I.L =I-bb, 

(22) 

(23) 

where a" ~ e2n,",/m" all ~ 1.96 .a.L' and the last two terms of (23) represent thermal 
forces. 

The heat flow terms q, are given by 

5 ns~ 
q, ~ - K'lIb • vT,b - K,.L I.L • vT, + -2 --b X VT 

WCymS 

where 

+[o.71nJ ,(u,-u,)+-2
3 

nJ bX(U,-U,)]o", 
wceTe 

K'II ~ 3.16n;Z;'",/m" 

Ke~ = 4.66n c Te/m ew;eTc. 

Kill = 3.9n j Tj'Ti/m j. 

Ki~ = 2nJi/miw~Ti' 

(24) 

(25) 

and the factor multiplying the bracket indicates that this term (the thermoelectric 
term) is present only for q,. 
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The internal heating terms Q are given by 

Q, = - Rci'(Ui - U,)- Q., 
where the first term is the joule heating term and the second 

Q=Q =3 m,n'(T_T) 
I Ll mi 'Te e l' 

the energy exchange term. 

123 

(26) 

(27) 

Equations (12)-(17) are a complete set of equations for the plasma quantities 
n i = n" Ui, ~, Pi' and p" all the quantities on the right being defined in terms of 
them. They allow a much richer set of plasma phenomena to be described than the 
one-fluid equations, particularly in the allowance for different electron and ion 
temperatures and the inclusion of nonideal effects such as thermal conductivity, 
viscosity, resistivity and thermoelectric effects. Thus, they are more useful for 
describing long-term phenomena in which nonideal effects playa significant role. It 
is possible to include such nonideal terms in the one-fluid equation. However, 
because ion and electron transport play different roles and because the temperature 
sensitivity of these is important, the modified one-fluid approach is usually highly 
inaccurate and misleading. Thus, one could possibly distinguish between the useful­
ness of the one-fluid and two-fluid approaches as follows. The one-fluid approach is 
preferable for short-time hydrodynaruic effects in which nonideal effects play a 
minor role. Its great advantage is that its equations are considerably simpler to 
handle than the two-fluid approach. Finally, it can be used in longer-time problems 
to get an idea of at least some of the plasma behavior. 

The two-fluid equations are more accurate and necessary for any precision in the 
discussion of phenomena where plasma transport or dissipation is involved. They are 
too complex to solve, however, for any problems except those with simple geome­
tries. They can, of course, be used to form a good idea as to the accuracy of 
calculations based on the one-fluid approach. 

1.4.3. Collisionless plasma 

In Section 1.4.2 plasmas were discussed in which the collision time was the 
shortest time in the problem with the possible exception of the gyration period. 
Thus, a small element of mass of a plasma will relax quickly to a Maxwellian before 
it can change its properties, and a local description in terms of the parameters 
characterizing this Maxwellian is appropriate. This consistency justifies a fluid 
description. But in many important plasmas the collision time is so long that 
collisions should be ignored. It would appear that for such "collisionless" plasmas a 
fluid theory is not appropriate. However, even for weak magnetic fields, the 
cyclotron period is still shorter than any macroscopic period, and the plasma does 
have a two-dimensional consistency perpendicular to the magnetic field. This 
restores the possibility of a fluid theory to a limited extent and is the basis for the 
guiding center description of a plasma. 
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The guiding center limit of the Vlasov equation 

A collisionless plasma is completely described by giving its velocity distribution 
functions f, [f,(t, r, v)d3rd3x is the number of particles in an element d3rd3v at 
position r and velocity v at time tl. Its time behavior is governed by the Vlasov 
equation with e, the particle charge 

3j, e, ( v X B) j 0 - + v- \1/ + - E + -- - \1 = at S ms c v s , 
(28) 

where E(r, t) and B(r, t) are the mean electric and magnetic fields produced by the 
smoothed-out plasma distributions j, 

e, f I 3E \1XB=4"L- jvd3v+--, eSc at , 

\1-E = 4" Le,j j,d3v, 

3BI3t=-c\1XE, 

\1-B = O. 

(29a) 

(29b) 

(29c) 

(29d) 

These equations are more complicated than the fluid equations because they involve 
seven independent variables t, r, v rather than four, t, r. However, by an asymptotic 
expansion in the smallness of the gyration radiation p = mcv I eB compared with the 
scale size of the plasma the effective number of variables in the kinetic equation can 
be reduced by two, because the gyration phase variable is irrelevant and the scalar 
perpendicular velocity is controlled by a constant of the motion, the adiabatic 
invariant (Chew et a!., 1955; Kulsrud, 1962). 

Further, to lowest order, the motion of the particles consists of an E X B velocity 
perpendicular to the magnetic field common to all particles, regardless of their 
peculiar velocities or species, and a parallel motion along the field. If the parallel 
electric field Ell = b -E, where b = BIB, is small [cf., the discussion after (34)], it is 
well known that the magnetic lines of force can be assigned the same E X B velocity 
perpendicular to themselves (Newcomb, 1958). Thus, all particles will stay on the 
same line and it should be possible to concentrate our attention on a single line and 
derive a kinetic equation involving only two particle variables, position along the 
line and parallel velocity. 

To derive the equations for this reduced system we may carry out a formal 
expansion in the quantity m Ie (Kruskal, 1960). (If we regard macroscopic lengths 
and times to be fixed, then the small-gyration-radius limit is reached by taking a 
sequence of fictitious charged particles with different atomic properties mle ap­
proaching zero. In this imagined series of experiments one expects resulls to be near 
their asymptotic value when the true values of m Ie are reached, if the ratio of 
gyration radius to scale size is sufficiently small.) In point of fact, it turns out to be 
slightly more convenient to expand all quantities E, B, j in just the reciprocal charge, 
the quantity 1/e (Rosenbluth and Rostoker, 1958). 



1.4. MHD description of plasma 125 

Consider first the Vlasov equation (28) and set I ~ 10 + II where II ~ 0(1/ e) etc. 
From this point on the subscript s will be dropped when no confusion resuIts. Then 
to lowest order 

[E+(vXB)/el' VJo~O. 

Introduce the E X B velocity: 

UE~e(EXB)/B2, 

and set v ~ v' + UE • Equation (28) then becomes 

[(v'xB)/el· Vv'lo+Ellb' vlo~O. 

Next introduce cylindrical coordinates v~, cp and vII in v' space, by 

v' ~ xv~ coscp + yv~ sincp + 00 11 , 

Then (32) becomes 

B alo ala 
---+E-~O 

e acp II aV
11 

. 

(30) 

(31 ) 

(32) 

(33) 

(34) 

If Ell '" 0, then (34) implies 10 is constant along a helix in velocity space extending to 
infinite velocities, which is unphysical. Therefore, (30) has reasonable solutions only 
if Ell is expanded in 1/ e also. That is Ell ~ 0(1/ e)E. (If this were not the case, the 
greatly more effective Ell would accelerate particles on a cyclotron period time seale 
until Ell is shorted out to the lowest order.) The resulting greatly reduced Ell can then 
produce a force comparable with the other forces. [See (19)]. It is simpler not to 
expand E and B further, but simply to regard Ell as smaller by one power of e. 

If the Ell term in (34) is dropped, the lowest order Vlasov equation says that 10 is 
independent of cp, but gives no further information on its dependence on t, r, v~ and 
vII' Proceeding to first order we have 

alo e( VXB) e alo -a +v'vlo+- Eo+-- 'VJI+-EII-a ~O. 
t m c m VII 

(35) 

Transforming to the cylindrical variables v ~, VII' yields 

eB all ( alo ) e alo --a ~ -a +v· vlo +-EII -a . 
me cp t m VII 

(36) 

(The terms in parentheses are not yet so transformed but they must be.) This 
transformation is somewhat complex since at fixed v, v ~, and VII are dependent on r 
and t, because b and UE are, through (31). It is easy to see that actually the 
transformation of the quantities in parentheses leads to a series of terms that are 
sines and cosines in cpo Once this transformation is accomplished it is easy to solve 
(36) for II' However, any constant term leads to an II linear in cp and therefore not 
periodic with period 21F. Thus, in order to have a proper solution for II a necessary 
and sufficient condition is that the average of the right-hand side of (36) vanish. 
Imagine the right-hand side transformed to V~, VII variables and averaged over cpo 
The details of this calculation are straightforward and the result is that (36) can be 
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solved for II' if and only if 

alo ( ) V~ ( ) alo 
Tt+ UE+vllb • Vlo- 2 V'UE-b' vUE'b+v11V'b av~ 

(
DUE vi e) a 10 + -b'-+-(V'b)+-E -=0 
Dt 2 m II BVII ' 

(37) 

where DUE/Dt '" aUEI at + (UE + bvll )' VUE' This condition thus gives the time 
evolution of 10' Strictly speaking we should go ahead and solve for II once we are 
assured by (37) that this can be done. But it will appear shortly that we do not need 
II for a lowest-order description of a guiding center plasma. 

To complete the system we must add the equations for E and B, Maxwell's 
equations (29a)-(29d). They involve I so that they also must be expanded in our 
small "parameter" lie. To lowest order we have 

0= 4.,,- L :: j l,ovd3v, (38a) , 

O=4",-Le,j/'od3v. (38b) 
, 

Equation (38b) is the charge neutrality condition which states that to lowest order in 
lie the total charges of each species must be equal. For a Z = I ion species this 
reduces to equality of the species densities. (Any finite charge density is produced by 
first-order differences in charge density because of the factor II e). Similarly (38a) is 
the current neutrality condition. If we transform the velocity integration to cylindri­
cal coordinates, we get for'(38a) 

and the first term vanishes by virtue of (38b) so we have 

0= Lj,_I'b= L:: jlov ll d
3v. , , (39) 

Equations (38b) and (39) are related by the continuity equation derivable from (37) 
or even from (28), 

,,(ano, no,(ll,'b») 
1.."e, Tt+ B ' V B , 

(40) 

so that if (39) is satisfied at some initial time t, and (38b) is satisfied (and the other 
guiding center equations are satisfied), then (39) will be satisfied for all t. Alterna­
tively, if the charge neutrality condition is satisfied and (39) is satisfied at one point 
on each line at every time it will be satisfied everywhere. 

Equations (38b) and (39) are extra conditions imposed on 10 and do not serve to 
advance E and B in time. These conditions are essentially thought to be control on 
the magnitude of Ell_ which is usually chosen to ensure that they are satisfied. To 
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complete our equations we must include (29c) and (29d) and proceed to one higher 
order in the expansion of (29a) and (29b). Thus, (29a) and (29b) become 

e, j I aE VXB~4"L- v/l,d'v+--a ' c c t 
(41a) 

, 

v" E ~ 4" Le,j II,d'v. (4Ib) 
, 

It would appear that it is necessary to evaluate II from (36) after all. However, full 
infonnation on the dependence of II is not needed. Transformation of (4Ia) to 
cylindrical coordinates shows we only need flld</>, fllsin</>d</>, and fllcos</>d</>. 
These may be obtained by multiplying (36) by I, sin</> and cos</> and integrating over 
</>. An equivalent set of moments can be carried out on the exact Vlasov equation 
(28) and passing to the zeroth,order limit. But these are simply the MHD equations 
of Sections 1.4.1 and 1.4.2. Thus, j to zeroth order is detennined by 

" ( au, ) . .:..,n,m, Tt+u,"vu, ~-V"P+JXB+PEV"E, (42) 

where the mass velocity U, and the stress tensor P are defined by 

P~ L,m,jl,(v-U,)(v-U,). (43) 
, 

Note that the component of U, perpendicular to b is UE , while by (39) the parallel 
mass velocities are the same for both species. Thus U ~ u,. On transforming to 
cylindrical coordinates the stress tensor may be written 

P~ PJ. (1- bb)+ Pllbb , 

where I is the unit dyadic and 
2 " j vJ. , pJ.~.:..,m, !,2"dv, 

, 

PII ~ Lm,j!,{ v ll - U"b)2 d'v. 
, 

(44a) 

(44b) 

(44c) 

As advertised, (42) determines the part ofj perpendicular to b. The parallel part of 
j is a different moment of II but can also be found from Maxwell's equations. We 
may continue this scheme but it is more efficacious at this point to change the 
emphasis from E to U, regarding U as the primary variable and E as a secondary 
variable; 

E~-(UXB)/c, (45) 

from (31). This is particularly true since E is restricted to be perpendicular to b, 
while U is not and determines E automatically to satisfy this condition. 
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Solving (29a) for jo, substituting into (42) and making use of (45) gives 

p( au +U.Vu)~ _ V.p+ (VXB)XB +~L(UXB)XB 
at 4" c2 at 

+ (UXB) ~.(UXB), (46) 
c 

where P ~ 2n,m,. Then substituting (45) into (29c) gives 

aBlat~ VX(UXB). (47) 

Equations (46) and (47) are nearly self-contained except we need 10, to compute p 

and P. p is given by the continuity equation 

aplat+v·(pU)~O, (48) 

but we cannot obtain P in any other way than from fa. Thus, the equation 
determining /0 and thus P, (37), may be considered to determine the "equation of 
state" of the plasma. Finally, inspection of (37) shows it brings in Ell' which must be 
determined by the charge neutrality condition (38b) or alternatively the parallel 
current condition of (39). It is possible by combining the separate moment equations 
to show that 

(49) 
, 

However, this is a little misleading since (49) arises from the second time derivative 
of the charge neutrality condition (38a) and in fact if one seeks equilibria, Ell 
actually drops out of (49). 

Our complete system of guiding center equations are (45)-(48) with P defined by 
(44a)-(44c) and /0 and Ell determined by (37) and (38a). Again as in the one-fluid 
theory we see that the last two terms of (46) may be dropped as relativistically small. 
The system then reduces to that of a one-fluid description with the main complica­
tion occurring through the equation of state. This complication can only be removed 
by solving an apparently five-dimensional equation for 10' However, these five 
variables t, r, v ~, VII can be reduced to four by replacing v ~ by the new variable 

p. '" vi 12B, (50) 

equal to the magnetic moment of the particle. Equation (37) then reduces to 

alo +(u +v b)-V/t +(_b. DUE +P.BV.b+~E) a/o ~O at E II 0 Dt m II aV
11 

(51 ) 

where the coefficient of a/lap. vanishes so that the effective number of variables is 
reduced by one. The variable p. occurs merely as a parameter in (52) and VII is the 
only real variable in addition to rand t. Note that 

UE~U~ "'U-bb·U. (52) 

The guiding center theory demonstrates how in the absence of collisions the 
magnetic field acts to give the plasma almost enough consistency for a hydrodynamic 
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description. It interferes strongly with motions across itself forcing all particles to 
move together so that all particles in one tube of force stay in that one tube of force. 

Equation (51) may be reduced by two more dimensions in line with the remarks at 
the beginning of this section. To do this the Clebsch form is used for any 
divergence-free field as shown in Section 1.4.4; for any vector field B such that 
V· B = 0 one can find two scalars a and /3 such that 

B = Va X 17/3, (53) 

a and /3 are not uniquely determined, but if they once give B at some initial time to, 
they will continue to represent B by (53) for all time, provided they satisfy 

aa +U'Va=O a/3 +U'v/3=O (54) 
at ' at ' 

or, in other words, provided they are "frozen" in the fluid. Since a and /3 are flux 
labels, a line of force is always given by a = constant, /3 = constant. This result is a 
precise mathematical expression of the fact that lines of force are frozen in a plasma. 
If we replace the general position variable r by new coordinates a, /3 and I, a 
parameter characterizing position along a line of force, then (52) can be reduced to a 
"one-dimensional" kinetic equation by transforming to the variables a, /3, I, p., VII' 1>. 
It becomes, with s arc length along B, 

afo ( al) afo (DUE eEII) afo -+v - -+ -b·--+p.BV·b+- -=0 
at II as al Dt m aV Il ' 

provided only that I satisfies (all at + UE' vi) = O. 

(55) 

For completeness we collect together the full systems of guiding center equations 
for the fundamental variables p, U, B, fo, and Ell' 

api at + v'(pU) = 0, (48) 

p( 
au + u. ~u) = (17 X B)X B 
at v 477 V'P, 

aBlat= VX(UXB), 

P= p~/+(plI- p~ )bb, 

PII = 'L,m,j fo,( VII - U· b)2 d3v, 
, 

afo, ( ) ( )afo, -a- + UE + vllb • 17/0, - v~ V·U~ - b· VU'b + VII V'b -a-
t v~ 

+ -b'--+-V'b+-E -=0 (
DUE vi e) a /0, 
Dt 2 m II aV 11 ' 

(46) 

(47) 

(44a) 

(44b) 

(44c) 

(37) 

(38b) 
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The double adiabatic theory 

As remarked in the previous subsection a collisionless plasma is subject to 
description by fluid equations with the single difficulty involving the determination 
of the evolution of the two pressure components P~ and PI!' Chew et al. (1956) 
showed that these quantities themselves can be expressed in terms of two equations 
of state: 

~(h )=0 
dt pB ' 

~(PIlB2) = 0 
dt 3 ' P 

(56a) 

(56b) 

which apply under the same restrictions as the adiabatic theory of the previous 
subsection but with an important additional restriction. The system must vary 
sufficiently slowly along the lines of force that little communication of particles from 
points of different behavior along the lines occurs. More explicitly (see Fig. 1.4.1), let 
points Pj and P2 be two points on a line of force at which the plasma properties, p, 
T, B, etc., are significantly different. Then in a time t ~ llv, particles from I and 2 
will mix together and they can no longer be considered separate units. However, if 
significant changes occur at Pj in a time short compared with t, the behavior at P2 

can exert no appreciable affect on Pj' Particles at Pj can be considered to remain 
intact and the two-particle adiabatic invariants may be employed to determine the 
behavior at Pj' h is proportional to vi averaged over all the particles and to the 
density p, while (vi), by the invariance of /l, is proportional to B, so we have 

This, of course, is true following the motion since it is the particles and not their 
location that is of importance. 

The second invariant is not so familiar. It is VIII where I is the "extension" of a 
fluid element along the line. The quantity I has an amount of uncertainty in its 
definition since the particles are dispersing at a considerable rate. However, it is 
known that even in free expansion of a one-dimensional gas the mean square 
dispersion of velocities decreases as the density does and moreover is inversely 
proportional to the length of the element of gas squared. (This can be seen for a gas 
initially of finite length, the particles of slowest velocity staying near the initial 
position.) For our case the length I is proportional to B I p since the volume of a tube 
of force is inversely proportional to p, while the cross sectional area is inversely 

----;-=:: __ v __ ~ 

~""'--l--' 
P, 

Fig. lAl. A line of force, B. 
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proportional to B. Thus, the parallel pressure goes as 

PII a: p( VTI) a: pl12 a: p31B2. 

13! 

A more formal derivation is as follows: The condition that points PI and P2 

remain intact clearly means that there is no significant heat exchange between points 
PI and P2 • Thus, in the second moment of the Vlasov equation we may neglect Q the 
heat flow tensor. MultiplY (28) by m,( v - u,)( v - U,), integrate over all velocities at 
a fixed point r. By charge and current neutrality U, is the same for ions and electrons 
if a single ion species is assumed. Then: 

d ( )" e, ( ) -d p,+ v·Q,+P,V·U+p'· vU+ P,' vU +-- BXP'+P'XB ~O, 
t r.nsc 

(57) 

where the superscript tr indicates transpose of the diadic, P, is defined as in (43), and 
Q, is the triad: 

Q, "" m,f (v - U,)( v- U,)( v - U,)jd3v. (58) 

As before, we regard the last two terms as dominant because of the factor elmc (the 
small gyration radius expansion). Thus, to lowest significant order, the pressure P,o 
must satisfy 

BXP,o~P,oXB. 

The most general solution of this equation is 

P,o ~ p~,(t- bb)+ PII,bb, 

where the two scalars (so far) are arbitrary functions of time and space. 

(59) 

(60) 

Denote the left-hand side of (57) by LPo; then to next significant order in our 
expansion, (57) reads 

(61) 

where P'I is the first-order pressure. The necessary and sufficient condition that this 
can be solved for P'I is that the trace of this equation vanish and also that it vanish 
when dotted with b on the right and left sides. Performing these operations, 
dropping Q and summing over s, gives 

(d/dt)(2h + PII)+ (2p~ + PII) V'U +2h (V·U - b· VU'b) 

+ 2Pllb' VU'b ~ 0, 

(d/dt)PII + PII V'U +2Pllb' VU'b ~ O. 

U can be related to the rate of change of p and B by (48) and (47): 

dp/dt ~ - p V'U, 

(62a) 

(62b) 

(63) 
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and 

dBjdt=b·dBjdt=b-[\7X(UXB)+U·\7B] =B(b'\7U'b- \7'U), (64) 

so that (62b) becomes 

dPIl 3PII dp 2PII dB -=+-----
dt p dt B dt' (65) 

This reduces immediately to (56b). Subtracting (62b) from (62a) and using (63) and 
(64) again yields 

2dp~ 2p~ dp 2p~ dB 
dt - -p-di' - Bdt = 0, 

which reduces to (56a). 
Thus, the double adiabatic equations of state result from the guiding center 

equations and the dropping of the heat flow. We can reduce the expression for Q by 
making use of the special form of fo, derived in the previous section from (34), that is 
its independence of gyration phase <p. Q can be written 

Q= 2q~ (lb + b1+tr)+2q~bbb, (66) 

where 

2 

q~ = L,m,f V; (V 11 - U.b )fd3v, (66a) 
, 

q~ = L,m,f (v lI - U·b )3fd3v , (66b) 
, 

and the symbol tr denotes the third possible transposition of the triad lb. q~ is the 
parallel heat flow of perpendicular energy while q~ is the parallel flow of parallel 

I 
• 

energy. They are only small if f is nearly symmetric, the situation arising when ~ 

macroscopic plasma parameters vary slowly along B. Also 

(67a) 

and 

(67b) 

so the derivative reduces the heat flow term by an additional factor proportional to 
the slowness of variation along B. 

To summarize the double adiabatic formalism, it is identical with the single-fluid 
theory, (1)-(4) and (10), with the single change thatp is replaced by the divergence 
of the tensor pressure P, with the two scalars P ~, PII determined by the double 
equations of state, (56a) and (56b). Again it can be seen that the double adiabatic 
formalism is holonomic: all quantities can be expressed in terms of the displacement 
vector and can be reduced to a Lagrangian formalism. 

These nice properties plus the apparent generalization allowed by a nonscalar 
pressure have made the double adiabatic theory quite popular. Unfortunately, the 
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stringent conditions of very slow variation along magnetic lines of force imposed by 
the neglect of Q greatly limit its applicability, at least when accurate results are 
desired, On the other hand, the equations can be applied to solve problems beyond 
their limits of applicability, and the answers obtained are grossly inaccurate. This 
will be illustrated by an example in Section 1.4.5; namely, the computation of the 
criteria for stability against the mirror instability when a homogeneous magnetized 
plasma has unequal perpendicular and parallel pressures. This easy applicability of 
the formalism beyond the range of its validity makes it somewhat dangerous. 

1.4.4. Consequences of the MHD description 

The ideal MHD equations and, to a lesser extent, the double adiabatic equations 
and the guiding center equations possess some nice properties that often may be 
employed to draw some intuitive conclusions concerning plasma behavior without 
solving the equations in detaiL They consist of some general global relations, 
conservation equations, and virial theorems, and also of the flux and line conserva­
tion equations which may be thought of as detailed conservation equations. 

Conseroation relations 

The three quantities conserved by a plasma are linear momentum, energy, and 
angular momentum. To write them down for the ideal one-fluid system the force 
equation is first rewritten as: 

au (vXB)XB 
PTt ~ - pu· vU + 4" - vp - P V</>, (68a) 

where use has been made of (4) to eliminate j and the gravitational potential </> with 
g ~ - V</> has been introduced. Multiplying the continuity equation by U and 
adding gives: 

(a/at)(pu)~- V'T-pv</>, 

where 

( 
B2 BB) 

T~+pUU- -1-- -pl. 
8" 4" 

(68b) 

(69) 

T represents stresses exerted on any surface: the first terms are Reynold stresses; the 
second, magnetic stresses, magnetic pressure and tension; while the third term is the 
pressure stress. Integrating (69) over a fixed volume V, and employing Gauss's 
theorem gives: 

(70) 

The term on the left is the rate of change of the plasma momentum in the volume, 
the first term on the right represents changes in this momentum due to forces 
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exerted on the surfaces, and the last, changes in this momentum due to gravitational 
forces. If the system were isolated and g zero, then the total linear momentum would 
be conserved. [This is actually impossible (see the virial theorem below) but if the 
gravitational force is self-consistent, produced by the plasma, the gravitational force 
can be written as a divergence and the linear momentum is actually conserved, as for 
example in an isolated staLl In any event the linear momentum density of a plasma 
is simply pU and includes no magnetic field contribution. Its change may be 
estimated by the forces on the surface. The electromagnetic contribution is relativis­
tically small and not included in our equation. 

A more significant conservation relation is that of energy. It is obtained by first 
multiplying (68a) by U and making use of the continuity equation to obtain 

J... ( U') ~ + U -( \7 X B) X B 
at p 2 4" 

(71 ) 

The left-hand side represents the rate of change of kinetic energy per unit volume. 
The kinetic energy is changed as a result of corresponding changes of the magnetic 
energy (the first term on the right), pressure energy (the second term) and gravita­
tional energy (the third term). In fact, multiplying (10) by B gives: 

J...(B')~B_ \7x(UXB) 
at 8" 4,,' 

(72) 

Equations (3) and (I) give: 

a ( p) U- Vp yp 
at 'I - 1 ~ - --:y=T - 'I - 1 \7-U. (73) 

Equation (I) gives: 

(a/at)(pcp) ~ - \7-(pU)cp, (74) 

(CP is assumed to be independent of time). The quantities on the left of (70)-(74) are 
the rates of change of the magnetic, pressure and gravitational energy densities 
respectively. Each of these expressions is equal to a term that corresponds to one of 
the terms on the right-hand side of (71). In other words, any change in these energies 
can produce changes in the kinetic energy density. 

Adding (71)-(74), integrating over a fixed volume V, and making use of Gauss's 
theorem yields 

dIi,v d i( pV' B' P ) --~- --+-+--+pcp dT 
dt dt 2 8" 'I - 1 

~ -i dS'( pU' U+ B x(U XB) + _Y_pU + Pucp). 
2 4" y-1 

(75) 

Thus, we may safely identify the left-hand side with the time rate of change of 0v­
the total energy inside the volume V, and the integral on the right-hand side with the 
loss of energy through the surface S. The energy consists of four types: kinetic 
energy, magnetic energy, pressure energy, and gravitational energy. Almost any 
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macroscopic plasma process consists of exchange of various forms of energy together 
with loss of energy through the surface. From (75) this loss can be seen to consist of 
direct loss of kinetic energy (first term), Poynting flux (second term, since U X B = 

- eEl, thermal energy and p dV work [since ypU/(y -1) = pU/(y -1)+ pU], and 
finally of gravitational work represented by fluid entering at one potential and 
leaving at another. (The Poynting flux can also be thought of as loss of magnetic 
energy plus a magnetic PdV work.) 

If the system is effectively isolated, say by rigid infinitely conducting walls at 
which B· n = 0 at some time, then B· n will continue to be zero at all times and 
U· n = 0 so the right-hand side of (75) will vanish and the energy inside the volume 
will be conserved. 

Finally, a conservation relation can be derived for angular momentum, in com­
plete analogy to (70). Take any point 0 as the origin and let r be the radius vector 
from this point. Then 

:J:XPUdT= fs(rx T)·dS+ fj"xgdT. (76) 

The angular momentum again resides solely in plasma motions. This relation is of 
considerable use in discussing outflow of angular momentum from the sun via the 
solar wind. 

Another important integral relation for a plasma is the virial theorem. Define With 
respect to an origin 0 the tensor moment of inertia of a plasma inside a fixed volume 
V 

Iv = f prrdT. 
v 

(77) 

Differentiate twice with respect to time making use of the ideal MHD equations and 
neglect surface terms and gravity 

(78) 

(79) 

Then if the plasma remains in a finite region of space over a long period of time, we 
may time-average (79) and drop the left-hand side. There results from (69) 

(80) 

This is the vector virial theorem. < > denotes a time average. Deviations from this 
equation can result from surface terms so this equation applies only to an isolated 
system. Taking the trace of (80) yields 

(81 ) 
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Since the integral is clearly positive this then shows the impossibility of an isolated 
(without coils) force-free system. On the other hand, if a self-consistent gravitational 
term is included, 

(J(PU2+ :; +3p+ P2<P)dT) ~O, (82) 

so gravitational energy, which is always negative, can balance the other three types 
of energy. [Note that the first term is twice the kinetic energy, the second term is just 
the magnetic energy, and the third term is 3( y - I) times the thermal energy, equal to 
two times for y ~ 5/3, while the last term is the gravitational energy.] 

A final important theorem concerning ideal MHD systems is that the system is 
derivable from a Lagrangian. In order to understand this theorem most easily it is 
necessary to regard each plasma fluid element as an entity. Any flow pattern 
between times to and tl should be viewed as a set of time-dependent displacements 
Hro, t) of each of the fluid elements from its initial position ro at t ~ to to its final 
position r l ~ ro + ~ at t I' A possible motion consists of a dependence of the 
displacement ~(ro, t) on t. Then Hamilton's principle for the ideal MHD equations 
states that the motion that makes 

(83) 

stationary, where 

e~f(pU2 __ P __ B2)dT 
2 y -I 8'11' ' 

(84) 

is the true dynamical one that satisfies the ideal MHD equations, and conversely. It 
is to be understood that for any displacement function g(r, t), dynamical or not, the 
quantities P, p, and B are to be determined by solving (I), (3), and (10) respectively. 
We know that these quantities are determined holonomically and do not depend on 
the detailed time dependence of g(ro, t). 

For the proof of this result let us consider a given motion g(ro, t) and determine a 
neighboring motion by specifying the Eulerian function og(r, t) which is defined to 
be the difference between the position of the fluid element at time t that would have 
been at r under the unperturbed motion, and r. Then it is easy to see that the 
,:>erturbations in the quantities P, p, B at position r under the influence of the 
perturbation of motion are 

PI ~ - 'V'(pog), 

PI ~ - yp ",.( o~)- og· 'VP, 

BI~ 'VX(o~XB). 

It remains to determine UI • The perturbation in the fluid element velocity is 

aovat+u·",o~, 

(85a) 

(85b) 

(85c) 

by definition of of But this perturbation is at r + og and is therefore also equal to 



1.4. MHD description of plasma 137 

U I + 8~' vu. Hence 

UI = a8~1 at + U· v8~ - 8~' VU. (S5d) 

Substituting these perturbations into the corresponding perturbations of (S3) and 
(S4) gives: 

8L = f8Cdt 

= f dtf d+U'( a;~ +U· v8~-8~· Vu) 

_ V'(p8~) U 2 
+ ypv'8~ + 8~· Vp __ I B' VX(~XB)l. (S6) 

2 y -I y -I 4" 

Then integration by parts shows that 8L = 0 for a118~ vanishing at to, t l , and spatial 
boundaries, if and only if (2) is satisfied. 

The existence of this Hamilton's principle for the MHD equations is extremely 
important. It can be shown to underlie most of the general results on MHD such as 
self-adjointness with steady flow, energy principles for stability of static equilibrium, 
and energy conservation (Kulsrud, 1965). Further, it has been shown that small-scale 
hydromagnetic waves preserve wave action, that is they can be thought of as 
quantized, and this also is a direct consequence of this Lagrangian approach (Dewar 
1970). 

This section has so far exclusively discussed the properties of the one-fluid ideal 
MHD equations. All of these properties are also possessed by the double adiabatic 
formalism if we replace p and y by the appropriate generation. For example 
pl(y -1) should be replaced by h + Pll/2 in (75), (SO), and (S4) while 3p should be 
replaced by 2h + PII in (S2). Similar results appear to hold for the guiding center 
theory, although they have so far only been effectively determined in certain limiting 
situations. The reader is referred to the literature for details (Bernstein et al., 1955; 
Kulsrud, 1962). 

Flux frozen in plasma 

Probably the most useful of the intuitive concepts implied by the ideal MHD 
equations, as well as the guiding center theory and the double adiabatic theory, is 
that concerning the magnetic flux lines frozen in the plasma. Precisely stated, the 
flux conserving theorem is as follows: 

Assume that at some initial time to magnetic lines of force are drawn throughout 
the plasma volume in such a way that their density is proportional to the field 
strength B, and they are everywhere tangent to B. (For simplicity we take a finite 
but very large number of such lines so their density is not precisely determined at 
each point but can be defined to any desired precision by taking a sufficiently large 
number of such lines.) Then at time to the magnetic field B is completely represented 
by these lines. Let the plasma flow with velocity U and let the magnetic field evolve 
according to (10). At the same time let the lines of force be bodily transported by 



138 R.M. Kulsrud 

this velocity U to some new configuration, just as though they were "frozen" in the 
plasma. Then, at any later time I, the configuration of the lines at that time will 
represent the magnetic field at that time both as to field strength given by line 
density, and direction given by the tangents to the lines. 

This theorem holds true to the extent that (10) does. That is, if B deviates from the 
field given by (10) due to finite resistivity, it will deviate from the field given by the 
line configuration to exactly the same extent. Since the displacement of the lines 
evolves in a continuous manner, their topology must be preserved. Closed lines 
remain closed, ergodic lines remain ergodic, magnetic surfaces existing at time to 
continue to exist, etc. This flux-freezing concept is often a very critical one and it is 
important to know under what conditions it can be broken. The plasma can 
occasionally be kept from reaching a state of much lower magnetic energy by this 
constraint alone. A change in topology which may be produced by a breakdown in 
(10) over a very small region, say near an X poin~ could conceivably lead to a large 
conversion of magnetic energy to kinetic energy in a plasma. This possibility is 
usually termed the reconnection problem and it is a problem of great interest since 
its resolution could conceivably lead to an explanation for certain observed violent 
plasma behavior such as disruption in tokomaks, solar flares, etc. 

There are two mathematical ways to express the theorem of flux freezing. The first 
is the Lundqvist identity, while the second makes use of the Clebsch formula 
(Lundqvist, 1951). 

The Lundqvist identity expresses the magnetic field at time I and position, in 
terms of its value at time 10 and a different position '0 

(87) 

In this formula r is understood to be a function of '0 and I which represents the 
position of the fluid element at time I that occupied the position '0 at initial time 10, 

The subscript 0 on 170 indicates that derivatives are to be taken with respect to '0 at 
fixed I. Let Eo and Po represent B(ro, (0 ) and p(,o, (0 ) respectively. To establish the 
validity of (87) it is first shown that it satisfies (10). Making use of (a'j al)" ~ U 
gives 

~ (B) ~ Bo. V U (88) 
dl p Po 0, 

where djdl ~ a j al + U· v == (a jal)" Also 

vX(Ux B) ~ B· vU-U' vB -Bv'U, 

so 

aB dB Tt- VX(UXB)~dt-B'VU+BV'U 

p I dp B dp 
~ Po (Bo'VoU)+pdtB-B'VU-pdt 

~.E..- [Bo' VoU - (Bo' 170')- VU], 
Po 

(89) 
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where the first line follows from the definition of d/dt, the second line from (88) 
and (1) and the third from substitution of (87) for B. The bracket in the third line of 
(89) vanishes because of the chain rule for differentiation. Thus, (87) satisfies (10) 
for the evolution of the magnetic field and is valid initially, so it remains valid for all 
t. Its relation to flux freezing can be seen geometrically. (Bo· 'ilorl/Bo is the shearing 
of a unit line element along the initial line of force by the flow, so (87) states that B 
continues to be parallel to the sheared line element. Also the line has been 
lengthened by the same shear flow, but factor pi Po represents the decrease in 
volume. This combined with the lengthening of the line element gives the shrinking 
of the cross-sectional area which thus represents the amplification of the density of 
the lines of force. 

The other alternative mathematical method for describing flux conservation 
involves the Clebsch formula for expressing an arbitrary divergence-free vector field 
such as B in terms of two scalar functions 

B = 'ila X 'il/3. (90) 

If such a and /3 scalars exist, B given by (90) clearly is divergence-free. Further, . 
dotting (90) with 'ila and with 'il/3 gives 

B· 'ila=O, B· 'il/3=0, (91) 

so a and /3 are constants along lines of force and, indeed, a general line of force can 
be determined by a = ao, /3 = /30 where ao and /30 are constants. Lastly because 
J = (B· 'ila X 'il/3IB) = B is the Jacobian for a transformation from coordinates r to 
coordinates a, /3, I, where 1 is arc length along the lines, we can see that dad/3 
represents the element of flux. That is, if we parameterize a surface S cutting the 
lines by a and /3 then dad/3 is the flux through the corresponding element of area 
(Fig. 1.4.2). Thus, if we select the lines of force by a uniform distribution of values of 
a and /3, their density will be proportional to the magnetic field strength B. 

The above properties of a and /3 show how they can actually be found to satisfy 
(90). As in Fig. 1.4.2, choose a and /3' arbitrarily on S and extend them through all 
space so as to satisfy (91) and B· 'il/3' = 0, i.e. by keeping them constant on B lines. 
Then 

B X ( 'ila X 'il/3') = B· 'il/3' 'ila - B· 'ila 'il/3' = 0, 

so 

B = g( 'ilaX 'il/3'), 

where g is a scalar. From 'il. B = ° we have 

( 'ila X 'il/3'). 'ilg = (B· 'ilg )/g = 0, 

so g is constant along B lines, and thus a function of a and /3', g = g(a, /3'). Now 
choose /3 to satisfy 

J/31 J/3' = g( a, /3'). (92) 

Then for this a and /3 (90) is easily verified. 



140 R.M. Kulsrud 

+ + 
do d.8=B· d S. 

_----s 

8 

s 

aJ3' 

Fig. 1.4.2. Clebsch coordinates a and 13. 

Now a and /3 are clearly not unique. However, once they are chosen to represent B 
at some initial time to' they can be chosen at any later time by demanding they stay 
constant on any fluid element; that is, they satisfy 

aa/ at + U· Va = 0, 

a/3/ at + U· '11/3 = 0. 

(92a) 

(92b) 

Then B as given by (90) satisfies (10) and thus continues to give the magnetic field. 
For 

a 
at(vax '11/3)- VX[UX(VaX '11/3)] 

= v
aa 

x '11/3+ VaX V
a

/3 - vx[U' V/3va-U' Va '11/3] 
at /3t 

=- V(u· va) X '11/3- VaX V(U· '11/3) 

- V(U· '11/3) X Va+ V(U· va) X '11/3 = 0, 

where the second line follows from expanding out of the triple vector product in the 
bracket in the first line, while the third line follows from (92) and taking the curl of 
the bracket in the second line. 

The properties of a and /3 clearly correspond to those of magnetic lines in the flux 
conservation theorem. 

A constant of the motion of considerable recent interest is the "B' A invariant" of 
Taylor (1974). It is closely related to the linkage of magnetic flux. Consider the 

I 



integral 

K=fA.BdT 
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(93) 

where the integral is taken over a bounded fixed volume Vat which B is tangential. 
This integral is gauge invariant. If A is replaced by A + \7X, then the change 
induced in K is 

(94) 

since B·n = 0 on the surface. (This argument assumes the vector potential and gauge 
are changed throughout all space, not just in V, so that we can be certain that X is 
single-valued.) Select a gauge with E = - (I/c)( aA / at). Then the rate of change of 
K with time is given by 

dK =f( aA.( \7XA)+A. aB)dT 
dt at at 

=f[- \7'( aA XA)+ aB. A +A. aBjdT 
at at at 

=- fdSn.(aa~ XA)+ f2A.\7X(UXB)dT 

= + c f dS(n x E)·A -2 f \7·[A x(u XB)]dT +2 fB.(U x B)dT 

= f dS·(nXA)·(UXB)=O (95) 

where (10) has been employed in the third line; the surface term vanishes in the 
fourth line because the tangential component of E vanishes on an infinite conducting 
surface. Thus, K is a constant of the motion for an ideal plasma. 

The physical significance of K is that it represents the amount of flux linkage of a 
field, for example the amount of linkage of toroidal and poloidal flux in toroidal 
geometry (Kruskal and Kulsrud, 1958). Thus, it is not really an independent 
constant of the motion but expresses a topological quantity related to line and flux 
conservation. However, Taylor (1974) has pointed out that K is actually not changed 
by certain resistive instabilities and reconnection phenomena so that it is actually a 
more general constant, of considerable importance. 

1.4.5. An example 

The guiding center formalism will be illustrated by an example which will also 
bring out the limitations of the double adiabatic formalism. 

Consider a homogeneous, magnetized, ion-electron plasma with unequal per­
pendicular and parallel temperatures. Take the uniform field Bo in the z direction. 
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For simplicity take the equilibrium distribution to be a bi-Maxwellian with unequal 
perpendicular and parallel temperatures: 

n ( m,vi m,v~) (96) 
/0, = (277m )3/2

T 7:1/2 exp - 2T", - 2TII , . 
s ..L s lis 

Consider a sinusoidal perturbation of this plasma proportional to exp( -iwt +ikxx 
+ik,z). Under what conditions is this perturbation unstable? 

If the plasma displacement g, with U = - iwg is introduced into the fluid equa­
tions (46) and (47), then these become 

2 , I ( ) Bo·V B, 
- pw ~ = - V P, - 477 V Bo· BI + 477 ' (97) 

(98) 

where the subscript or superscript I indicates perturbed quantities. From (44a) the 
perturbed pressure is given by: 

P, = p~/+(PII- p~)bb+(pll- p" )(blb+ bb l )· 

Now from (98) 

so 

B, = -ikAxBo, 

hj = ikz~xi, 

(99) 

(100a) 

(100b) 

V·PI = [ikxp~ - (PII- p" )k;gx] X+ [ik,PII- (PII- p" )kxk,qi. (101) 

Substituting (101) in the equation of motion (97) and taking the x and z components 
gives two equations: 

- pW2~x = -ikxp~ +k;( PII- h )gx - (k; + k;)( B5I477 )~x' 

- pW2~, = -ik,PII + kxk,(PII- p" )~x' 

(102a) 

(102b) 

for ~x and ~,. In order to complete the system equations of state for p~ and PII are 
needed. 

Up to this point the donble adiabatic theory and the guiding center theory 
coincide. They differ as to the determination of p~ and PII' however. First the 
equations are completed by invoking the two equations of state, (56a) and (56b), of 
the double adiabatic theory, to express p~ and PII in terms of ~x and ~,. Since from 
the continuity equation (48) P, = -i(kx~x + k,~,), then from (lOOa) 

, B 
PJ.=fJ.+-'=-2ik~ -ik~, 
P.L p Bo x x z z 

PII 3p,. 2B , . . 
-=---=-lk ~ -31k g. 
Pli P Bo x x z z 

(103a) 

(103b) 

Substitution of (l03a) and (103b) in (l02a) and (l02b) yields two equations for L 
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and ~, alone. Setting the determinant of these equations to zero gives the eigenvalue 
equation for '" 

[p",2_((2k;+k:)P.L + k;:J -k;PII)](p",2_3k;PII)=k;k;pi. (104) 

It is easy to see that the roots of ",2 are real. We have instability if one of the roots 
for ",2 is negative and the condition for this is 

2 [BJ ( P ~)] 2 ( BJ ) 2kx S'1T+P~ 1-
6PII 

+k, 4'1T+P~-PII <0. 

This is negative if kx = 0 and 

PII > P~ + BJ/4'1T, 

the "fire hose instability", or k, -> 0 (it must not vanish) and 

pi/6PII> B2/S'1T + P~, 

(105) 

(106) 

the "mirror instability". Equations (105) and (106) are the stability results derived 
from double adiabatic theory. 

The guiding center theory is now used to find p~ and PII and to complete (102a) 
and (102b). Actually p~ can be determined from ~x alone and only (102a) need be 
considered. p~ is fonnd from f' which is given by solving (51), for example. Let 
1=10 + II' Then, since B is the Jacobian of the transformation to 1", VII variables, 

P.L = 'L,m,j/'I"B(Bdl")dv11d</>, , 
and 

Perturbing (51) and using (96) gives 

[-kx k,L(v1!2)+(e,/m,)E11l m,v
11 11,= "k ~ I,· 

~lW+l zV Il .Ills 

(107) 

(lOS) 

Near the marginal point for stability, '" may be neglected in the denominator [if 
"'« k,(T/mF'] and 

(109) 

Now from charge neutrality Ell can be determined to be 

E = k, (k ~ ) (Td7l1), - (T~ /711), 
II e x x (1/711,)-(1/111') 

(110) 
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For simplicity, (T1- /TII)i is taken to equal (T1- /TII ), so that Ell ~ O. Substituting 
(109) (with Ell ~ 0) into (107) and making use of (lOOa) gives 

p~ ~ 2ikx~xL ( ;2) n - 2ikx~xp 1- , 

s II s 

(111) 

and if, further, T1- i is taken to equal TH 

p~ ~ 2ikx~x (pi - h). 
PII 

(112) 

Then for sufficiently small w (see above), from (l02a). 

pw
2 ~ 2k; ( p" + :! -~~I ) + k; ( p" + :! -PII)' 

Again we have the fire hose instability if kx ~ 0 and (105) is satisfied. However, the 
condition for the mirror instability is changed to k, -> 0 and 

(Pi/PII) > p" + (BJj8'1T) , 
a criterion differing substantially from (106) (by a factor of 6). 

The reason for the different criteria for the guiding center theory of the mirror 
instability and the double adiabatic theory is that w must pass through zero so that 
particle communication sets in over a distance k- I along the lines in a time short 
compared with w -I, so the condition necessary for the validity of the latter theory 
fails. 

This example illustrates the dangers inherent in the double adiabatic theory, since 
the failure of the validity conditions to hold really only becomes evident after the 
more accurate guiding center theory is carried out. The fire hose instability theory 
remains valid since, as can be seen from intuitive picture of the instability, parallel 
heat flow plays no role. 
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