Gutzwiller-projected wave functions for the pseudogap state of underdoped high-temperature superconductors

Rajdeep Sensarma and Victor Galitski
Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

(Received 17 June 2011; published 9 August 2011)

Recent experiments strongly suggest that a Fermi-surface reconstruction and multiple Fermi pockets are important common features of the undoped high-temperature cuprate superconductors. A related theoretical work [Phys. Rev. B 79, 134512 (2009)] has demonstrated that a number of hallmark phenomena observed in the underdoped cuprates appear naturally in the scenario of a paired electron pocket coexisting with unpaired hole pockets. We propose Gutzwiller-projected wave functions to describe this two-fluid state as well as two competing states in its vicinity. It is argued that a pseudogap state constructed from these wave functions may be selected by energetics at finite temperatures due to spin fluctuations.

DOI: 10.1103/PhysRevB.84.060503 PACS number(s): 74.20.Mn, 74.72.—h, 87.16.Qp

Shortly after the discovery of the first high-temperature cuprate superconductor, Anderson recognized\(^1\) strong electronic correlations as the key to understanding a mechanism for superconductivity in these compounds and proposed a Gutzwiller projected BCS wave function as an approximate ground state. These resonating valence bond (RVB) ideas have been pursued further in a number of follow-up works,\(^2,3\) which included analytical methods of renormalized mean-field theory,\(^4\) numerical Monte Carlo variational analyses,\(^5,6\) as well as effective field theory approaches where nonlinear RVB correlations, such that the charge sector stabilizes a finite-temperature spin-liquid state. The approach of Ref.\(^20\) is to drive a magnetically competing states in its vicinity. It is argued that a pseudogap state constructed from these wave functions may be energetically favorable to retain the AF correlations to a minimum necessary to give rise to a folding and induce the pairing at criticality. The energy gain due to the BCS pairing can compensate for the presence of otherwise unwanted AF correlations, such that the charge sector stabilizes a finite-temperature spin-liquid state.

In this Rapid Communication, we attempt to bring together the SF model and the RVB theory by proposing a set of Gutzwiller-projected wave functions to construct the pseudogap state of Ref. 20. We note that our approach below is distinct from similar variational wave-function methods used to study competition of antiferromagnetism and superconductivity,\(^24–26\) as we treat the nodal and antinodal quasiparticles differently. Our starting point is the \(t\)-\(t'\)-\(J\) model

\[
\hat{H}_{ttJ} = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} \hat{c}_{\mathbf{r} \sigma}^\dagger \hat{c}_{\mathbf{r}' \sigma} + t' \sum_{\langle \langle \mathbf{r}, \mathbf{r}' \rangle \rangle, \sigma} \hat{c}_{\mathbf{r} \sigma}^\dagger \hat{c}_{\mathbf{r}' \sigma} + \frac{J}{2} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \hat{S}_{\mathbf{r}} \cdot \hat{S}_{\mathbf{r}'},
\]

where \(\hat{c}_{\mathbf{r} \sigma}\) creates an electron of spin \(\sigma\) on site \(\mathbf{r}\) and \(\hat{S}_{\mathbf{r}} = \frac{1}{2} \sum_{\sigma'} \hat{c}_{\mathbf{r} \sigma'}^\dagger \tau_{\sigma' \sigma} \hat{c}_{\mathbf{r} \sigma'}\) is the corresponding spin operator, with \(\tau_{\sigma' \sigma}\) being the Pauli matrices. Here, \(t\) and \(t'\) are respectively the nearest- and next-nearest-neighbor hopping amplitudes, and \(J = 4t^2/U\) is the nearest-neighbor AF superexchange coupling, which is related to the on-site Hubbard repulsion \(U\). The \(t\)-\(t'\)-\(J\) model has been widely used to study the effects of strong correlations in the superconducting cuprates. On the other hand, this is also the minimal model which can describe antiferromagnetic correlations due to the superexchange term.

A mean-field Hamiltonian that gives rise to an AF metal state can be constructed from the \(t\)-\(t'\)-\(J\) model (1) as follows:

\[
\hat{H}_{\phi_\lambda} = - \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} \hat{t}_{\mathbf{r}, \mathbf{r}'} \hat{c}_{\mathbf{r} \sigma}^\dagger \hat{c}_{\mathbf{r}' \sigma} + \frac{J_z}{2} \sum_{\mathbf{r}} n_{\mathbf{r}} \left[(-1)^{\langle \mathbf{r} \rangle} \hat{S}_{\mathbf{r}} - \frac{m}{2} \hat{n} \right],
\]

where \(z = 4\) is the coordination number, \((-1)^{\langle \mathbf{r} \rangle} = \pm 1\) if \(\mathbf{r} \in S_A/B\), with \(S_A/B\) denoting the \(A/B\) sublattices. In Eq. (2), \(m\) is
the modulus and the unit vector \(\mathbf{n} \) is the direction of the Néel order parameter, which we choose to be in the \(z \) direction.

Using the Fourier transforms \(\hat{a}_{\mathbf{k},\sigma} = \sum_{\mathbf{r} \in \Lambda} \hat{c}_{\mathbf{r}\sigma} e^{-i\mathbf{kr}} \) and \(\hat{b}_{\mathbf{k},\sigma} = \sum_{\mathbf{r} \in \Lambda} \hat{c}_{\mathbf{r}\sigma} e^{-i\mathbf{kr}} \), and the four-component operator \(\mathbf{P}_{\mathbf{k}} = (\hat{a}_{\mathbf{k},\uparrow}, \hat{b}_{\mathbf{k},\uparrow}, \hat{a}_{\mathbf{k},\downarrow}, \hat{b}_{\mathbf{k},\downarrow}) \), the Hamiltonian (2) reads

\[
\hat{H}_{\alpha\beta} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}} (\epsilon(\mathbf{k}) \hat{I}_{x} \times \hat{I}_{y} + \epsilon_{1}(\mathbf{k}) \hat{I}_{y} \times \hat{I}_{z}) + \phi \hat{I}_{z} \times \hat{J}_{\mathbf{k}},
\]

where \(\epsilon(\mathbf{k}) = -2t\cos k_{x} \cos k_{y} \) and \(\epsilon_{1}(\mathbf{k}) = 4t \cos k_{x} \cos k_{y} \) are the intersublattice and intrasublattice dispersions, \(\hat{I}_{x} \) and \(\hat{I}_{y} \) are the 2 \times 2 identity matrices. Hamiltonian (3) is diagonalized by a Bogoliubov rotation and yields two eigenmodes \(E_{\mathbf{k}}(\mathbf{k}) \equiv E_{\mathbf{k}_{c}}(\mathbf{k}) \equiv \epsilon_{1}(\mathbf{k}) \pm \sqrt{\epsilon^{2}(\mathbf{k}) + \phi^{2}} \) with \(\phi = \sqrt{2} \mu m \), where \(e \) and \(h \) correspond to electron and hole branches located primarily in the antinodal and nodal regions of the magnetic Brillouin zone (MBZ) respectively, as shown in Fig. 1. The electron and hole operators are given by

\[
\begin{align*}
\frac{\hat{c}_{\mathbf{k}_{c}}^{\dagger}}{\hat{c}_{\mathbf{k}_{c}}} & = \alpha_{k} \hat{I}_{\sigma} + i \beta_{k} \hat{\sigma}_{y} \frac{\hat{a}_{\mathbf{k}}^{\dagger}}{\hat{b}_{\mathbf{k}}^{\dagger}}, & \text{and} \\
\frac{\hat{c}_{\mathbf{k}_{e}}^{\dagger}}{\hat{c}_{\mathbf{k}_{e}}} & = \beta_{k} \hat{I}_{\sigma} + i \alpha_{k} \hat{\sigma}_{y} \frac{\hat{a}_{\mathbf{k}}^{\dagger}}{\hat{b}_{\mathbf{k}}^{\dagger}}.
\end{align*}
\]

Note that the shapes of the electron and hole pockets depend on the details of the lattice hoppings via the ratio \(t'/t \), and we assume that it is such that both pockets appear at low dopings.\(^{27,28}\)

We now use operators (4) to express variational wave functions describing a paired electron pocket and competing metallic and superconducting states. We denote these states by \(|m, \Delta_{c}, \Delta_{h}\rangle \), where \(m \) is the magnetization, and \(\Delta_{c/h} \) is the electron/hole variational gap parameter. The simplest such wave function, \(|\psi_{\text{PAM}}\rangle \), describes an unpaired metal.

\[
|\psi_{\text{PAM}}\rangle \equiv |\bar{m}, 0, 0\rangle = \hat{P}_{G} \prod_{\mathbf{k} \in \text{MBZ}} \left[U_{k}^{(e)} + V_{k}^{(e)} \right] \hat{e}_{\mathbf{k}_{c}}^{\dagger} \hat{e}_{\mathbf{k}_{c}} \prod_{\mathbf{p} \in \text{MBZ}} \left[U_{p}^{(h)} + V_{p}^{(h)} \right] \hat{h}_{\mathbf{p}_{+}}^{\dagger} \hat{h}_{\mathbf{p}_{-}}|0\rangle,
\]

where the Gutzwiller projector \(\hat{P}_{G} = \prod_{\mathbf{k}} (1 - \hat{c}_{\mathbf{k}_{c}}^{\dagger} \hat{c}_{\mathbf{k}_{c}}) \) enforces the nonlinear no-double-occupancy constraint, \(E_{\mathbf{k}_{c}}(\mathbf{k}) \) are the spectra given above Eq. (4), and \(\mu \) is the chemical potential. Here and below the overline implies that the corresponding parameter [e.g., magnetization \(\bar{m} \) in Eq. (5)] is calculated self-consistently by minimizing the energy.

Another possible wave function, \(|\psi_{\text{PPF}}\rangle \), argued to be of relevance to the pseudogap state, is a Gutzwiller-projected product of wave functions for the paired electron pocket and unpaired hole pockets:

\[
|\psi_{\text{PPF}}\rangle \equiv |m, \Delta_{c}, 0\rangle = \hat{P}_{G} \prod_{\mathbf{k} \in \text{MBZ}} \left[U_{k}^{(e)} + V_{k}^{(e)} \right] \hat{e}_{\mathbf{k}_{c}}^{\dagger} \hat{e}_{\mathbf{k}_{c}} \prod_{\mathbf{p} \in \text{MBZ}} \left[U_{p}^{(h)} + V_{p}^{(h)} \right] \hat{h}_{\mathbf{p}_{+}}^{\dagger} \hat{h}_{\mathbf{p}_{-}}|0\rangle,
\]

where \(U_{k}^{(e)} \) and \(V_{k}^{(e)} \) are the usual Bogoliubov amplitudes for a pairing in the electron pocket, i.e., \(|U_{k}^{(e)}|^{2} + |V_{k}^{(e)}|^{2} = 1 \) and \(|V_{k}^{(e)}|^{2} = \frac{1}{2} \left[1 - E_{\mathbf{k}_{c}}(\mathbf{k}) - \mu / \sqrt{E_{\mathbf{k}_{c}}(\mathbf{k}) - \mu} \right] \). The variational parameter \(\Delta_{c} \) corresponds to the \(s \)-wave symmetry of the electron pairing gap in the folded Brillouin zone. But it is an anisotropic \(s \) wave in the MBZ, if we identify the antinodal regions connected by a reciprocal lattice vector \(\mathbf{Q} = (\pi, \pi) \). Note that a nonzero \(\Delta_{c} \) before projection does not guarantee a long-range order, which is strongly suppressed by the nonlinear Gutzwiller projection.\(^{5}\)

For completeness, we also write down the variational wave function for an exotic fully paired state,

\[
|\psi_{\text{PPFS}}\rangle \equiv |m, \Delta_{c}, \Delta_{h}\rangle = \hat{P}_{G} \prod_{\mathbf{k} \in \text{MBZ}} \left[U_{k}^{(h)} + V_{k}^{(h)} \right] \hat{e}_{\mathbf{k}_{c}}^{\dagger} \hat{e}_{\mathbf{k}_{c}} \prod_{\mathbf{p} \in \text{MBZ}} \left[U_{p}^{(h)} + V_{p}^{(h)} \right] \hat{h}_{\mathbf{p}_{+}}^{\dagger} \hat{h}_{\mathbf{p}_{-}}|0\rangle,
\]

where \(U_{k}^{(h)} \) and \(V_{k}^{(h)} \) are the Bogoliubov parameters in the hole pockets. As noted in Ref. 20, the hole pairing must have a \(p \)-wave character in order to reproduce the known \(d \)-wave symmetry in the unfolded picture. However, only in the absence of a long-range Néel AF order and if both the electron and hole gaps are nonzero, the state reduces to the more conventional projected \(d \)-wave BCS state expressed in terms of the physical electrons, \(|\psi_{\text{PBCS}}\rangle = \hat{P}_{G} \prod_{\mathbf{k} \in \text{BZ}} [U_{k} + V_{k} \hat{e}_{\mathbf{k}_{c}}^{\dagger} \hat{e}_{\mathbf{k}_{c}}]|0\rangle \).

We now focus on states (5) and (6) to calculate their energy and determine the optimal variational parameters in the framework of Gutzwiller renormalized mean-field theory (RMFT).\(^{3,4,26}\) The basic assumption of RMFT is that the expectation value of any operator \(\mathcal{O} \) in the projected state

![FIG. 1. (Color online) (a) Separated nodal hole pockets (red) and antinodal electron pockets (green) in a doped antiferromagnet. (b) In the paramagnetic phase, the hole and electron pockets touch each other. The dashed line marks the antiferromagnetic Brillouin zone.](image-url)
is proportional to that in the corresponding unprojected state, i.e., $\langle \Psi | \hat{O} | \Psi \rangle \equiv \langle \psi | \hat{O}_\text{G} \hat{O}_\text{G} | \psi \rangle \approx g_\text{O} \langle \psi | \hat{O} | \psi \rangle$. The proportionality factor g_O is called the Gutzwiller factor. The first step in building RMFT is to determine the Gutzwiller factors for all operators in the tJ Hamiltonian (1).

We first consider the relation between the on-site densities in the projected states $n_{r,\sigma}$ and that in the unprojected states $n_{r,\sigma}^{(0)}$. In an AF-ordered state, we have $n_{r,\sigma}^{(0)} = n_{r,-\sigma}^{(0)} = (n_0/2)(1 + \alpha m)$, where m is the staggered magnetization in the unprojected states. Note that the unprojected AF metal state is an eigenstate of the total particle number, hence $\langle \text{PFAFM} | \hat{N} | \text{PFAFM} \rangle = \langle \text{PFAFM} | \hat{N} | \text{PFAFM} \rangle$, where $| \text{PFAFM} \rangle$ is the unprojected AF metal wave function. Therefore, we have in this case $\sum_r n_{r,\sigma}^{(0)} = \sum_r n_{r,\sigma}$, which leads to $n_{r,\sigma} = n_{r,\sigma}^{(0)}[1 - n_{r,\sigma}^{(0)}]/[n - 2n_{r,\sigma}^{(0)}n_{r,\sigma}]$, where the “bare density” n is related to the doping level x simply as $n = 1 - x$.

Consider now the hopping terms $\hat{c}_{\sigma}^\dagger \hat{c}_{-\sigma}$. In a projected state, this term contributes in a configuration which has a hole at site r and a spin σ at site r', and the action of the operator is to reverse this configuration $r \leftrightarrow r'$. The probabilities for such a process to occur in a projected/unprojected states are $\alpha(n_{r,\sigma}(1 - n_{r,\sigma})/n_{r,\sigma}^{(0)}(1 - n_{r,\sigma}^{(0)}))^{1/2}$. Their ratio determines the Gutzwiller factor for hoppings:

$$
g_{\text{G}}^{\sigma r r' \sigma} = (1 - n)\sqrt{n_{r,\sigma}n_{r',\sigma}/[n_{r,\sigma}^{(0)}(1 - n_{r,\sigma}^{(0)})]}. $$

Using the relation between $n_{r,\sigma}$ and $n_{r,\sigma}^{(0)}$ derived above, we obtain the following Gutzwiller factors for intersublattice hopping $g_{\text{G}}^{AB} \equiv g_1 = 2x/(\eta_1^{(\downarrow)}(x))$, and the spin-dependent intersublattice hopping $g_{\text{G}}^{\text{AA} \uparrow \downarrow} = g_{\text{G}}^{\text{BB} \uparrow \downarrow} = g_{\delta}^{\text{AB}} \equiv g_2 = 2x/(\eta_1^{(\downarrow)}(x)/\eta_1^{(\uparrow)}(x))$, where $\eta_1^{(\uparrow)}(x) = 1 + x + m^2(1 - x)$ for brevity. The spin-flip renormalization factor can be obtained similarly and reads $g_{\text{S}} = 4x/(\eta_1^{(\downarrow)}(x))^{-2}$. Interestingly, in the limit of a nearly perfect Néel spin polarization $m \rightarrow 1$ at low dopings ($x \ll 1$), we find $g_1 \sim x$, $g_2 \sim g_2 \sim 1$, and $g_3 \sim x^2$. This is consistent with the idea by Kane et al. that holes in an AF background are coherent due to intersublattice hopping. We note that in evaluating the Gutzwiller factors, we have only taken into account on-site correlations due to projection and neglected nonlocal correlations of the wave functions.

Using these Gutzwiller factors, we calculate the energy of a generic variational projected state as follows:

$$
\langle \Psi | \hat{H}_J | \Psi \rangle = \sum_{k \in \text{MBZ}, \sigma = \pm} S_v(k)[n_{\sigma}(k, \sigma) + v_{\sigma}(k, \sigma)] \\
+ \sum_{k,k', \in \text{MBZ}, \sigma} I(k,k')[n_{\sigma}(k, \sigma) - n_{\sigma}(k', \sigma)] \\
\times [n_{\sigma}(k, \sigma) - n_{\sigma}(k', \sigma)] \\
+ \sum_{k,k', \in \text{MBZ}} P(k,k')[U_{\sigma}(k, k')^{(e)}v_{\sigma}^{(e)} + U_{\sigma}(k, k')^{(b)}v_{\sigma}^{(b)}].
$$

where $S_\sigma(k) = \varepsilon_1(k)(g_2 + g_3)/2$, $S_\sigma(k) = 2g_1\varepsilon(k)\alpha_k\beta_k + \varepsilon_1(k)(\beta_k^2 - \alpha_k^2)(g_2 + g_3)/2$, $I(k,k') = [J g_2/(2\pi t)][3/2](\varepsilon(k - k')\alpha_k\beta_{k'} - t(\beta_k^2 - \alpha_k^2)\beta_{k'}^2 - \alpha_k^2)\beta_k^2 - \alpha_k^2)]$, $P(k,k') = [3J g_2/(8\pi t)]\varepsilon(k - k')$, and $Q(k,k') = -[J g_3/(8\pi t)]\varepsilon(k - k')\beta_k^2 - \alpha_k^2)](\beta_k^2 - \alpha_k^2)$. In Eq. (8), the functions $n_{\sigma}(k, \sigma)$ and $n_{\sigma}(k, \sigma)$ are the occupation numbers of the electrons and holes in the corresponding unprojected states. For example, in the AF metal state, they are simply the Fermi-Dirac distributions.

We first focus on the unpaired AF metal state (5), where $U_{\text{K}}V_{\text{K}} = 0$. Minimizing the energy functional (8), we obtain the staggered magnetization as a function of doping. The magnetization goes down with doping with the precise slope, and the critical doping at which the magnetization vanishes is dependent upon the value of t'/t (see Fig. 2).

We next look at the paired-electron-pocket wave function (6). An energetics analysis shows the electron gap Δ_2 increasing monotonically with underdoping (cf. Ref. 5) and indicates that small but finite values of m lead to higher energies, hence $\hat{m} \rightarrow 0$ is the optimal parameter at the mean-field level. Figure 3 compares the $T = 0$ energies of the projected AF metal (5) and the paired-electron-pocket state (6) for a specific reasonable choice of the hopping parameters. Interestingly, the two energies cross, indicating that in the corresponding window of doping levels, a partially paired state is energetically preferable. However, the precise value and even the existence of this window depends strongly on the details of quasiparticle dispersion and hence is nonuniversal and is strongly susceptible to fluctuation renormalizations.
to model the impact of (uniform) magnetization and pairing fluctuations. Here, T is temperature and $F(m, \Delta_e) = \alpha_m m^2 + \beta_m |\Delta_e|^4 + \beta_\rho |\Delta_h|^4 + \gamma |\Delta_e|^2 m^2$ is a Landau-type functional with α, β, and γ being the variational parameters determined by minimizing the energy $\epsilon[F] = \text{Tr}[\hat{H}/\beta]/\text{Tr} \beta$, where the trace is over the truncated Hilbert space. Note that, in general, a nonzero fluctuating Δ_h is also allowed in (9). However, such a state does not reduce to the projected d-wave superconductor, and therefore the fluctuating gaps Δ_e and Δ_h are described by two independent sets of variational parameters. If AF fluctuations are strong enough, the pseudogap state (9) (with Δ_h being strongly suppressed) is selected by energetics. We note here that a proper quantitative analysis of the energetics should include spatial dispersion for fluctuations, restoring a larger Hilbert space and bringing us back to a field theory.20

In conclusion, we have proposed a set of Gutzwiller-projected wave functions (6) and a related “variational density matrix” (9), where unpaired nodal holes coexist with paired antinodal electrons, to describe the pseudogap state of the underdoped high-temperature cuprate superconductors. Finally, we mention that a smoking-gun experiment that could confirm the pseudogap state proposed in Ref. 20 and here would visualize the electron pocket in the underdoped region by suppressing the strong pairing there. Apart from the transport measurements in ultrahigh magnetic fields,10–12 this could also be achieved by performing angle-resolved photoemission spectroscopy measurements in the nonlinear regime of high currents (exceeding the critical current for the electron pocket) that should destroy a strong s-wave pairing near the antinodes and open up the hidden electron pocket.

V.G. is grateful to Phil Anderson for his critical comments on this work and an illuminating discussion. The authors are also indebted to Subir Sachdev for reading the manuscript and providing valuable comments. This research was supported by the Department of Energy (V.G.) and DARPA-QuEST (R.S.).

7P. A. Lee et al., Rev. Mod. Phys. 78, 17 (2006).