Lecture Six

Market Games in Quantities and Prices

Outline of Lecture:
Quantities

- Description of market, perfectly competitive outcome and monopoly outcome.
- Description of duopoly competition in quantities (Cournot)
- Computation of Best Response
- Finding equilibrium using Best Responses.
- Comparison of Cournot Equilibrium with perfect competition and monopoly.
- Graphical Approach
- Adding more firms.
Cournot Competition: The Market

Market Price, \(P = 130 - Q \) when \(Q \leq 130 \)
\[= 0 \] otherwise

Market Quantity, \(Q = x_1 + x_2 + \ldots + x_n = \sum x_i \)

Quantity vector, \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \)
here \(x_i \) represents firm i’s quantity delivered to the market

\[\therefore \] For a market with 2 firms,
\[Q = x_1 + x_2 \quad \text{and} \quad \mathbf{x} = (x_1, x_2) \]

Constant marginal cost = \(c \)

Perfectly Competitive Equilibrium

- Market price equals marginal cost
- In this market, marginal cost = \(c = $10 \)
- \(Q = 130 - P = 130 - 10 = 120 \)
- With \(n \) firms:
- \(\mathbf{x}^* = (120/n, 120/n, \ldots, 120/n) \)
- Profit for any firm = \((10 - 10) \times x_i \)
 \[= 0 \]
Monopoly Equilibrium

Market profits are as large as possible

A monopoly will maximize total market profit, \(\Pi = (P - c) Q \)

\[\Rightarrow \quad \Pi = (120 - Q) Q \]

For maximizing profit, marginal profit of producing one more unit needs to be zero

\[\Rightarrow \quad 0 = \frac{\partial \Pi}{\partial Q} = 120 - 2Q \]

\[\therefore \quad Q^* = 60 \quad \text{and} \quad P^* = 70 \]

Total profits = \((120-60) \times 60 = \$3600\)

Cournot Equilibrium

In a perfectly competitive market, all firms select \(x \) taking \(P \), market price as given.

In a monopoly, the single firm selects \(x \) recognizing that \(P \) will change with \(x \) according to the market demand curve.

In a Cournot world, each firm \(i \) chooses \(x_i \) simultaneously. They treat all other firms' choice of \(x_j \) as given.

Their choice of \(x_i \) will affect price.
Cournot competition for two firms: A firm’s profits

Firm i’s profits:

$\Pi_i(x) = \text{revenue} - \text{cost}$

$= Px_i - cx_i$

$= (P - c)x_i$

$\therefore \Pi_1(x) = (P - c)x_1$ and

$\Pi_2(x) = (P - c)x_2$

Cournot Competition: Two Firms

- Quantity as a continuous strategy
- Finding Cournot equilibria using the calculus
- The best response function
Cournot Competition, two firms, Deriving a Firm’s Best Response

Profit function of firm i: \(\Pi_i(x) = (P - c)x_i \)

Consider firm 1

Firm 1 maximizes its profit by producing up to the point where marginal profit equals zero:
\[
0 = \frac{\partial \Pi_1}{\partial x_1} = (P - c) + x_1 \frac{\partial P}{\partial x_1} \\
\Rightarrow \quad 0 = (120 - x_1 - x_2) + x_1(-1) \\
\Rightarrow \quad 0 = 120 - 2x_1 - x_2 \quad \text{Or} \\
(120 - x_2)/2 = x_1
\]

Cournot Competition, two firms, Deriving a Firm’s Best Response

Similar computations for Firm 2 yield
\[
(120 - x_1)/2 = x_2
\]

In finding a Nash Equilibrium, we are looking for a pair \((x^*_1, x^*_2)\) such that \(x^*_1\) is a best response for Firm 1 to \(x^*_2\) and \(x^*_2\) is a best response for Firm 2 to \(x^*_1\).
Cournot Competition, two firms, Solving for the equilibrium

This means that \((x^*_1, x^*_2)\) must solve both
\[
\frac{120 - x^*_1}{2} = x^*_2 \quad \text{AND} \\
\frac{120 - x^*_2}{2} = x^*_1
\]
We can plug in \(x^*_1\) from equation 2 into equation 1 to solve for \(x^*_2\). The solution gives us:

Cournot Equilibrium:
\[x^*_2 = x^*_1 = x^* = (40, 40)\]
Notice that total market quantity is 80 and price is \(130-80=50\).
Each firm earns profits, \((50-10)*40=1600\)
Total industry profits are $3200
Cournot equilibrium in the market

- Monopoly is associated with the highest price, lowest quantity, and highest profit
- Perfect Competition is associated with the lowest price, highest quantity, and zero profit
- Cournot equilibrium lies in between on all three dimensions

Cournot Competition, Two Firms, Many Strategies

Cournot competition between two firms leads to an outcome between monopoly and perfect competition
Cournot equilibrium in the market

Finding Cournot best responses

- Firm 1’s first-order condition is:
 \[2x_1 + x_2 = 120 \]

- Solving for \(x_1 \) as a function of \(x_2 \) yields firm 1’s best-response function:
 \[x_1 = f_1(x_2) = 60 - \frac{x_2}{2} \]

- Similarly, firm 2’s best-response function:
 \[x_2 = f_2(x_1) = 60 - \frac{x_1}{2} \]
Cournot best responses, \(x^* = \text{Cournot equilibrium} \)

\[
x_2 = f_2(x_1) = 60 - x_1/2
\]

\[
x_1 = f_1(x_2) = 60 - x_2/2
\]

Cournot Variations, Including Many Firms

- Cost advantage translates into market share advantage
- The Cournot limit theorem: the higher the number of firms, the closer Cournot equilibrium gets to perfect competition
- The Cournot limit is good for the economy
Cournot variations, including many firms

- For any firm, profit \(\Pi_i(x) = (P - 10)x_i \)
- Since all firms face the same costs and sell identical products, the game is symmetrical. The profit maximization strategy for all the firms will be the same.
- We will focus on firm 1 to derive the Cournot equilibrium

Firm 1 wants to maximize profit,
\[\Pi_1(x) = (P - 10)x_1 \]

Firm 1 maximizes profit when
\[0 = \frac{\partial \Pi_1}{\partial x_1} = (P - 10) + x_1(\partial P/\partial x_1) \]
\[= 120 - \sum x_i - x_1 \]

By Symmetry, \(\sum x_i = nx_1 \)
\[\therefore 0 = 120 - (n+1)x_1 \]
\[\Rightarrow x_1^* = \frac{120}{n+1} \]
Cournot variations, including many firms

- Market Quantity,
 \[Q^* = \sum x_i = nx_i = \frac{120n}{n+1} \]
and Market Price,
\[P^* = 130 - Q^* = 130 - \left[\frac{120n}{n+1} \right] \]

- \(n \to \infty \Rightarrow P^* = $10 \) and \(Q^* = 120 \)

- Cournot equilibrium becomes perfect competition equilibrium as \(n \) goes to infinity

Cournot Limit Theorem, surplus analysis: \(n = 1 \)

![Diagram showing surplus analysis for Cournot equilibrium with \(n = 1 \)]
Cournot Limit Theorem, surplus analysis: $n = 2$

Cournot Limit Theorem, surplus analysis: $n = \infty$
Is a Cournot Equilibrium Collusion?

- Cartels vs. Cournot equilibrium