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Abstract

Multiple objects may be sold by posting a schedule consisting of one price for each
possible bundle and permitting the buyer to select the price-bundle pair of his choice. We
identify conditions that must be satisfied by any price schedule that maximizes revenue within
the class of all such schedules. We then provide conditions under which a price schedule
maximizes expected revenue within the class of all incentive compatible and individually
rational mechanisms in the n-object case. We use these results to characterize environments,
mainly distributions of valuations, where bundling is the optimal mechanism in the two and
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1 Introduction

It is not uncommon to sell a given number of indivisible objects by offering them in bundles,
i.e., subcollections of objects. Bundling may be carried out by posting a schedule of prices, one
price for each possible bundle, thus permitting the buyer to select the price-bundle pair of his
choice. We consider a model with a seller with n indivisible objects, and a consumer with linear
preferences (over goods and money) whose valuations for the objects are private information.
Our goal is to identify environments in which bundling is optimal in that it maximizes the seller’s
expected revenue. (Henceforth the adjective optimal is used in this sense.) First, we study the
revenue-maximizing price schedule within the class of all such schedules. We identify neces-
sary conditions for optimality. Second, we investigate the optimality of price schedules within
the class of all incentive compatible (henceforth IC) and individually rational (henceforth IR)
mechanisms. We provide sufficient conditions for the optimality of bundling. These conditions
can be expressed as a pair of functional inequalities. We illustrate how the conditions can be
used to identify a class of environments for n = 2 and n = 3 in which bundling is the optimal
mechanism.

It has long been known that when there is only one good, posting an appropriately selected,
take-it-or-leave-it price generates the highest expected revenue among all feasible trading mecha-
nisms.1 This remarkable result implies that, despite the enormous class of incentive compatible,
individual rational bilateral trading mechanisms, in the one-good case, the search for expected
revenue-maximizing mechanisms can be restricted to a very simple class of institutions. Posting
a price schedule, i.e. bundling, is the natural extension of the one dimensional mechanism to the
case n > 1.2 In addition bundling is ‘simple’ in that randomization in the assignment of goods
is not used; a buyer of certain type will buy a given bundle with probability zero or one. It is
therefore valuable to understand when these deterministic posted price mechanisms are optimal.

In spite of its attractive characteristics, surprisingly little is known about the consequences
of bundling for revenue. For instance, it is not known, even in the n = 2 case, what the revenue
maximizing price schedule is, or under what circumstances posting a price schedule is indeed
the best trading institution. We show by example that, unlike in the one good case, revenue
maximization may require the randomization of assignments even for n = 2.3

As an intermediate step in searching for environments where bundling is optimal with respect
to all IC and IR mechanisms, we provide conditions that the best price schedule (within the class
of all price schedules) must satisfy. We illustrate the usefulness of these conditions by providing
sufficient conditions for when the optimal price schedule is submodular.

1See, for example, [11] or [15].
2[9] show that posting prices both for individual goods and for bundles typically strictly dominates in terms

of revenue the posting of prices for only the individual goods.
3As part of a 1988 piece, [8] describe an environment with n = 2 in which bundling is optimal. Our example

shows that their claim is not accurate. A related counterexample was discovered independently and simultaneously

by [16].
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We next use our characterization of the best price schedule to explore our main goal. Our
approach yields sufficient conditions for the optimality of the price schedule within the class of
all IC and IR mechanisms. Those conditions are not easily interpretable but, nevertheless, prove
very useful: we use them in the n = 2 and n = 3 cases (and they could potentially be used
in other cases) to identify environments, mainly restrictions on the distribution of valuations,
where bundling is indeed the revenue-maximizing institution.

Our approach is loosely based on the methodology we employed in [6]. Consider any specific
trading institution. To such an institution corresponds an incentive compatible and individually
rational direct mechanism. The direct mechanism is a solution to the seller’s linear program
if there is a feasible solution to the dual program such that dual and primal programs have
the same value. We identify environments in which the proposed mechanism solves the primal
program by constructing the relevant dual variables. The described approach could be applied,
in principle, to any trading institution. We focus on price schedules (or bundling) because
we believe they are simple, easily implemented institutions, and are natural extensions of the
optimal mechanism in the one good case. Price schedules offer, in addition, a technical advan-
tage: since the (sequentially rational) behavior of a buyer choosing among price-bundle pairs is
straightforward, the implicit direct mechanism is immediate.

This paper is a contribution to the research on multidimensional mechanism design. [8]
examined the question of when deterministic mechanisms, i.e., mechanisms where the assignment
is not random, are optimal in cases of multidimensional uncertainty. [1] showed that under
optimal mechanisms there is a set (of positive measure) of buyer types who never trade. [13]
and [14] extended both of these papers and show that optimal mechanisms typically require
‘bunching’ (even in the case where goods are divisible). Bunching implies that buyer types
virtually always pool into a set of positive measure of other buyer types. [13] also offers an
example of discretely distributed buyer types in which deterministic mechanisms are suboptimal.

Our work contributes to the literature on bundling as a form of second degree price dis-
crimination, and might also shed some light on a related problem. When n = 1, the optimal
take-it-or-leave-it price in the seller’s problem corresponds to the optimal reserve price in a stan-
dard auction with m buyers in an independent private values environment. In addition such
auctions are optimal over the class of all IC and IR mechanisms.4 Similarly the optimal price
schedule might play a role in the auctioning of n indivisible goods to m buyers.

The outline of the paper is as follows. In Section 2, the model and some notation is intro-
duced. Section 3 provides some preliminary results that describe how buyer types self-select in
response to price schedules. In Section 4, we provide necessary conditions for the optimality
of a price schedule within the class of all price schedules. In Section 5, we provide a two-good
example where the expected revenue generated by an optimal price schedule is strictly lower
than that generated by another, more complicated mechanism. This leads to the question: Un-
der what conditions are price schedules optimal over all incentive compatible and individually

4See [11], for example.

3



rational mechanisms? In Section 6 we obtain sufficient conditions for the optimality of the price
schedule within the class of all IC and IR mechanisms and show that they can be expressed as
a pair of functional inequalities. In Section 7, we apply the results in Section 6 to the n = 2 and
n = 3 cases.

2 Notation and Preliminaries

A seller with n different objects attempts to maximize expected revenue by trading with a single
buyer (that is, we assume zero marginal costs). The buyer’s preferences over consumption and
money transfers are given by

U(x, q, t) = x · q − t,

where x is the vector of buyer’s valuations, q is the quantity consumed of each good, and t is
the monetary transfer made to the seller. Since the buyer has demand for at most one unit of
each good, the vector q is an element of {0, 1}n; x is assumed for simplicity to be in In where
I = [0, 1], and t is in IR.

Index the n goods by i = 1, . . . , n and let N represent the set of all available goods. Given a
vector x in IRn, xi represents its ith component, x−i the remaining components, and (y, x−i) the
vector where the ith component is y and the other components are x−i. Similarly, for J ⊂ N ,
Jc denotes the bundle N \ J , xJ denotes the |J |-dimensional vector with components in J , IJ

the |J |-cartesian product of I, and we may write (xJ , xJc) when convenient. Similar notation
will be applied to other objects.

The seller does not observe the buyer’s valuation—the buyer’s private information—but it
is common knowledge that valuation x is distributed according to a prior density function f(x).
Assumption 1 is maintained throughout.

Assumption 1 The density f(x) is a continuously differentiable, strictly positive function in
In.

Additional requirements on f will be imposed at different points in our analysis. We list the
requirements here for future reference.

Assumption 2 The density f(x) satisfies
(a) f(x) = Πn

i=1fi(xi),
(b) ∀i ∀x, f(x) + xi

∂f(x)
∂xi

≥ 0.

Assumption 2a states that the buyer’s valuations for the n goods are independently dis-
tributed. When Assumption 2a is invoked, it will be convenient to use the notation f ′i(xi) ≡
dfi(xi)/dxi.

Given a function f(x), ∇f(x) denotes the gradient of f evaluated at x. Note that Assumption
2b implies (n+1)f(x)+x ·∇f(x) ≥ 0, which is an assumption invoked by [8]. In the case where
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n = 1, the restriction implies that the ‘virtual valuation function’, x− 1−F (x)
f(x) crosses zero only

once. This implies the uniqueness of the optimal take-it-or-leave-it price in that case and is an
alternative assumption to the monotone hazard condition that is sometimes invoked.

In searching for an optimal mechanism, one may restrict attention to direct revelation mech-
anisms where buyers report their types truthfully. A direct revelation mechanism is a pair of
functions

p : In −→ In

t : In −→ IR,

where pi(x), the ith component of p(x), is the probability that the buyer will obtain good i

when his valuation is x, and t(x) is the transfer made by the buyer to the seller when valua-
tions are x.5 In addition, the buyer must have adequate incentives to reveal his information
truthfully—incentive compatibility (IC)—and to participate in the mechanism voluntarily—
individual rationality (IR). The buyer’s expected payoff under the mechanism (p, t) when the
buyer has valuation x and reports x′ is p(x′) · x − t(x′). The equilibrium expected utility of a
buyer of type x is denoted π(x). Then, (p, t) must satisfy 6

(IC) ∀x, π(x) ≥ p(x′) · x− t(x′) ∀x′

(IR) ∀x, π(x) ≥ 0.

We informally describe some readily available properties of IC and IR mechanisms—well
known in one dimensional problems—that have been noted and used in the literature in higher
dimensional environments (See [12], [1], and [3], [5], [7]). Graphically, a mechanism is IC if and
only if the corresponding buyer’s payoffs π(x) are convex, with partial derivatives ∂π(x)/∂xi

between zero and one. Furthermore, ∂π(x)/∂xi represents the probability that the buyer of type
x receives good i in equilibrium.

The preceding discussion completely characterizes IC mechanisms in terms of the buyer’s
expected-payoff function π(x). Individual rationality requires in addition that π be non-negative.
Define

C = {π : In → IR+ | π(x) is increasing and convex} .

Thus, π is an incentive compatible, individually rational mechanism if and only if π belongs to
C and ∇π(x) ∈ In almost everywhere (since the ith component of the gradient is the probability
that good i is traded).

Given any π ∈ C, a buyer with type x receives a payoff π(x) = ∇π(x) · x− t(x). Therefore,
the seller’s expected revenue when using the mechanism π(·) is

E[t(x)] =
∫

In

[∇π(x) · x− π(x)] f(x) dx.

5In order to compute expected payoffs, the functions p and t must be integrable.
6As stated, the constraints hold everywhere; it suffices that they hold almost everywhere in x and everywhere

in x′.
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Given Assumption 1, we can apply integration by parts (as done in [8]) or the divergence theorem
(as done in [14]) to obtain a representation of the seller’s expected revenue in terms of π(·) alone:

E[t(x)] =
n∑

i=1

∫

I{i}c
π(1, x−i)f(1, x−i)dx−i −

∫

In

π(x) [(n + 1)f(x) + x · ∇f(x)] dx. (1)

The seller’s expected revenue is a linear functional of the mechanism π employed in the
transaction; we denote the linear functional by T , and the expected revenue of using the mech-
anism π by 〈π, T 〉. The seller’s problem is to maximize expected revenue over all IC and IR
mechanisms:

maxπ∈C,∇π≤1〈π, T 〉. (2)

When there is only one good, maximum seller’s revenue can be achieved with a mechanism
that, depending on the buyer’s reported valuation, either assigns the object for certain (i.e. with
probability one), or not at all (i.e., with probability zero). Posting the good’s price implements
this mechanism; the potential buyer acquires the good if his/her valuation exceeds the posted
price. With many goods there are additional issues to consider. The seller can post a price not
only for each good but also for each combination of goods, i.e., for each bundle.

Definition 1 A bundle of goods is a set J ⊂ N .7 A bundle J can also be represented by an
n-dimensional vector of zeros and ones, aJ = (aJ

1 , aJ
2 , ..., aJ

n) where aJ
i takes the value 1 if i ∈ J

and the value 0 otherwise.

Both representations of a given bundle are used in the paper.
Casual observation suggests that indeed sellers frequently set prices for different bundles

leaving consumers the choice of what bundle to purchase. It may be profitable for the seller to
set a price for a bundle that is higher than the sum of the prices of its components. In this
case, the potential buyer has an incentive to bypass the bundle price, and acquire the bundle by
purchasing the individual components.

The above discussion prompts the following definition.

Definition 2 A price schedule is a collection of prices P = {PJ}J⊂N , one price per bundle;
potential buyers select the bundle they prefer and pay the quoted price for that bundle (i.e.,
buyers cannot aggregate individual sub-bundles independently).

Given that IR must be satisfied, without loss of generality, for all price schedules, we set
P∅ = 0. Note that, as defined, price schedules are deterministic—purchasing bundle J implies
obtaining all goods in J with probability one. This restriction is significant. Section 5 provides
an example where deterministic price schedules are suboptimal.

Any price schedule P implicitly segments buyer types by grouping them according to the
bundles they choose to consume. Employing the notation in Definition 1, the utility of a buyer
of type x ∈ In who acquires the bundle J at price PJ is aJ · x− PJ .

7Note that the expression, J ⊂ N includes the empty set.
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Definition 3 Given a price schedule P and a bundle J , the market segment acquiring bundle
J is

AJ = {x ∈ In | aJ · x− PJ ≥ aK · x− PK ∀K ⊂ N}.

Note that AJ is the intersection of In with finitely many half spaces in Rn. If, given any two
bundles J and K, AJ ∩AK 6= ∅, then AJ ∩AK is a subset of the hyperplane {x | (aJ −aK) ·x =
PJ − PK} and has Lebesgue measure zero in In.

Fix a bundle J and its corresponding market segment AJ . For each i ∈ J ,

Bi
J = {x−i ∈ I{i}

c | (1, x−i) ∈ AJ}

represents the intersection of AJ with the boundary of In along the coordinate xi = 1. If AJ

has positive measure in IRn, then Bi
J also has positive measure in IRn−1.

For some results, we restrict attention to price schedules that satisfy a submodularity con-
dition.

Definition 4 A price schedule P is submodular (SM) if

(SM) ∀J,K ⊂ N,PJ∪K ≤ PJ + PK − PJ∩K .

If SM is not satisfied, then a type of arbitrage incentive is present. Suppose that a buyer was
allowed to buy and sell at the outstanding prices, P . If K and J overlap (that is, K ∩ J 6= ∅)
and the condition is violated, a buyer could form bundle K ∪ J more cheaply by buying K and
J separately and then selling back the duplicated goods in K ∩ J.

We emphasize that we do not impose SM as a constraint on the type of mechanisms the
seller may use. (Such an imposition would correspond to mechanisms where the seller is unable
to monitor the bundle acquired by the buyer and would require modifying the seller’s program
considered in this essay.) In Section 4, it is shown that in some environments the optimal price
schedule must satisfy SM and we take advantage of the additional restrictions it implies.8

A final restriction concerns price schedules such that all bundles are purchased with positive
probability.

Definition 5 A price schedule P sells all bundles (ABS) if

(ABS) ∀J 6= ∅,
∫

AJ

f(x)dx > 0.

The condition ABS is typically invoked for technical reasons as it allows us to ignore some
arguments that apply only on sets of zero measure.

8Condition SM does not appear to hold generally in optimal bundling mechanisms; we can show computa-

tionally, however, that in the case of independent and identically distributed valuations with F i(xi) = xα
i , n = 3

for α ≤ 3, optimal bundling mechanisms satisfy this condition. Computations suggest that SM is violated with

α > 3.
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3 Price Schedules–Some Properties

We introduce here some technical observations, used in later sections in the proofs of our main
results.

The first lemma illustrates that Bi
J corresponds to the projection of AJ on the boundary,

I{i}c
.

Lemma 1 Let P be any price schedule and {AJ}J⊂N the corresponding market segments. For
J ⊂ N , i ∈ J, if (xi, x−i) ∈ AJ then (x′i, x−i) ∈ AJ for all x′i > xi. For i /∈ J, if (xi, x−i) ∈ AJ

then (x′i, x−i) ∈ AJ for all x′i < xi.

Proof In the Appendix.

The lemma implies that for i ∈ J, if (xi, x−i) ∈ AJ then (1, x−i) ∈ AJ . Conversely, if x−i is
such that x−i /∈ Bi

J , then there does not exist any xi such that (xi, x−i) ∈ AJ .

In general, the construction of the market segment AJ requires the comparison of utility
obtained from purchasing J with the utility obtained from purchasing any other set K. The
next lemma shows that if the price schedule satisfies SM , the number of relevant comparisons
is much smaller since it implies that, for any J , we need only compare the purchase of J with
any K such that either K ⊂ J or J ⊂ K. The result also yields a type of independence of the
set of valuations for the goods outside of the set J from the valuations for the goods in J .

Lemma 2 Suppose the price schedule P satisfies SM and let {AJ}J⊂N be its corresponding
market segments. Then,

(i) x ∈ AJ if and only if aJ · x− PJ ≥ aK · x− PK for all K such that K ⊂ J or K ⊃ J .

(ii) For all K, J,K 6⊂ J and J 6⊂ K, AJ ∩AK has zero Lebesgue measure in IRn−1.

(iii) Define

AJ
J = {xJ ∈ IJ | (xJ , y) ∈ AJ for some y},

AJc

J = {y ∈ IJc | (xJ , y) ∈ AJ , for some xJ ∈ AJ
J}

Di
J = {z ∈ IJ/{i} | (1, z) ∈ AJ

J} where i ∈ J.

Let x = (xJ , xJc) ∈ AJ , x′ = (x′J , x′Jc) ∈ AJ . Then (x′J , xJc) ∈ AJ . Thus,

(a) AJ = AJ
J ×AJc

J for J 6= N ; and

(b) Bi
J = AJc

J ×Di
J for N 6= J 6= {i}.

Proof In the Appendix.
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4 Necessary Conditions for Optimal Price Schedules

Suppose the seller—perhaps due to industry regulations, convenience, or practice—is constrained
to choosing a price schedule in order to sell his wares. How is the price schedule determined?
Theorem 1 identifies a necessary condition for a price schedule to maximize expected revenue
within this class. The remainder of the section offers some simple applications of the result.

In Section 6 we use the results of this section to identify sufficient conditions for the optimality
of price schedules over all IC and IR mechanisms. In those environments the necessary conditions
found in this section become sufficient as well.

Theorem 1 Suppose f satisfies Assumption 1. Let P be a price schedule generating {AJ}J⊂N .
If P is optimal among all price schedules, then for all J 6= ∅ such that

∫
AJ

f(x)dx > 0, the
following equation must hold,

∫

AJ

[(n + 1)f(x) + x · ∇f(x)] dx−
∑

i∈J

∫

Bi
J

f(1, x−i) dx−i = 0.

Proof 9 We will state the seller’s revenue R(P ) as a function of P and then compute the first
order conditions. A P such that PJ = 0 for some J 6= ∅ cannot be optimal, since this would
imply that the seller gains zero on buyers who purchase J and can always do better by charging
a slightly higher price (See [1] for a fuller discussion.)

For a given price schedule, P, the utility of a buyer of type x is given by maxK⊂N{aK ·x−PK}.
Thus, the revenue function is given by (utilizing the representation in Equation 1)

R(P ) =
n∑

i=1

∫

I{i}c
maxK⊂N{aK · (1, x−i)− PK}f(1, x−i)dx−i

−
∫

In

maxK⊂N{aK · x− PK} [(n + 1)f(x) + x · ∇f(x)] dx.

For any set B ⊂ IRn, let Bo be its interior and ∂B its boundary.
Note that

∂

∂PJ
maxK⊂N{aK · x− PK} =

{
−1, if x ∈ (AJ)o

0, if x /∈ AJ .

The derivative may be undefined on ∂(AJ)∩ (In)o but since this set has measure zero in In,
and f is a density, we ignore this component in what follows.

The assumption that the measure of AJ is strictly positive implies that Bi
J has positive

measure in IRn−1 and aJ · (1, x−i)− PJ > 0, x−i ∈ Bi
J . Therefore,

∂

∂PJ
maxK⊂N{aK · (1, x−i)− PK} =

{
−1, if x−i ∈ (Bi

J)o,
0, if x−i /∈ Bi

J

9The present proof, suggested by Jean-Charles Rochet, is much simpler than our original proof.
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and, again, is undefined on the (IRn−1) measure zero boundary. Since these derivatives converge
almost everywhere to a bounded, integrable function, we can apply the Lebesgue Bounded
Convergence Theorem ([4], pp. 303-305) to take the derivative of R(P ) inside the integral and
obtain the first order condition so the optimal selection of PJ must satisfy

0 = −
∑

i∈J

∫

I{i}c
f(1, x−i)1(1,x−i)∈AJ

dx−i +
∫

IN

[(n + 1)f(x) + x · ∇f(x)]1x∈AJ
dx.

Since 1(1,x−i)∈AJ
= 1 if and only if x−i ∈ Bi

J , the conclusion follows. Q.E.D.

Theorem 1 states, for any market segment AJ (determined by an optimal price schedule P ),
the integral of (n + 1)f(x) + ∇f(x) · x on the interior of AJ must equal the integral of f(x)
restricted to the intersection of AJ with the “outside boundary” of the set In.

When there is only one good, it is well known that the optimal price P must be a zero of
the buyer’s ‘virtual valuation’ function x − 1−F (x)

f(x) ([10]). Theorem 1 generalizes this property.
To see this, note that for n = 1, the condition in Theorem 1 becomes

0 =
∫ 1

P
{2f(x) + xf ′(x)}dx− f(1) = −{Pf(P )− (1− F (P ))}.

We conclude the section with some applications of Theorem 1. The first order condition
yielded by Theorem 1 provides an insight about how to compute the optimal price schedule
when the prior density f is the uniform. In this case, f ′i ≡ 0. If the optimal price schedule
satisfies SM , Lemma 2(iii) implies that

A{i} = [P{i}, 1]×Bi
i .

Thus, the necessary condition determining the price of good i, call it P{i}, can be expressed as

0 =
∫

Bi
i

{
1−

∫ 1

P{i}
(n + 1)dxi

}
dx−i.

Solving this equation yields that the optimal price schedule (when f represents the uniform
distribution) includes single good prices given by

P{i} =
n

n + 1
.

The next theorem shows that there exists a price schedule P , optimal among price schedules,
that satisfies SM .

Theorem 2 Suppose f satisfies Assumptions 1 and 2. Let n = 2. If P satisfies ABS and is
optimal among price schedules then P satisfies SM .

Proof Suppose PN > P{1} + P{2}. Applying the definition of AJ yields

AN = {x|xi ≥ PN − Pj , j 6= i}
A{1} = {x|x2 ≤ PN − P{1}, x1 ≥ max{P{1}, P{1} − P{2} + x2}}.
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Applying Theorem 1 to the set J = N yields,

0 =
∑

i,j 6=i

[∫ 1

PN−P{i}
fj(xj)fi(1)dxj

]
−

∫

AN

[
2∑

i=1

xif
′
i(xi)

fi(xi)
+ 3

]
fi(xi)fj(xj)dxidxj

=
∑

i,j 6=i

∫ 1

PN−P{i}
fj(xj)

{
fi(1)−

∫ 1

PN−P{j}

[
xif

′
i(xi)

fi(xi)
+

3
2

]
fi(xi)dxi

}
dxj .

Therefore, at least one element of the sum is non-positive. Suppose it is the element i = 1.
Assumptions 1 and 2 imply xif

′
i(xi) + 3

2fi(xi) > 0, i = 1, 2. Therefore, for all z < PN − P{2},

f1(1)−
∫ 1

z

[
x1f

′
1(x1)

f1(x1)
+

3
2

]
f1(x1)dx1 < 0. (3)

Applying Theorem 1 to A{1}, then yields

0 =
∫ PN−P{1}

0
f2(x2)

{
f1(1)−

∫ 1

max{P{1},P{1}−P{2}+x2}

[
x1f

′
1(x1) +

3
2
f1(x1)

]
dx1

}
dx2

−
∫ PN−P{1}

0

∫ 1

max{P{1},P{1}−P{2}+x2}
f1(x1)

[
x2f

′
2(x2) +

3
2
f2(x2)

]
dx1dx2

≤
∫ PN−P{1}

0
f2(x2)

{
f1(1)−

∫ 1

max{P{1},P{1}−P{2}+x2}

[
x1f

′
1(x1) +

3
2
f1(x1)

]
dx1

}
dx2

< 0.

The first inequality follows from Assumption 2b. The second inequality from the fact that
PN > P{1} + P{2} implies max{P{1}, P{1} − P{2} + x2} < PN − P{2} for x2 < PN − P{1} and
applying (3). A contradiction. Q.E.D.

5 An Example Where Price Schedules Are Suboptimal

The following example illustrates that every price schedule may be dominated in terms of ex-
pected revenue by a mechanism involving random assignments.10

Let f(x) be a constant on the region above the line joining the points (0, 1) and (1, .5) and
zero elsewhere. Note that f(x) is (weakly) increasing on the unit square and ∇f(x) = 0 almost
everywhere, so the McAfee and McMillan condition ([8]) is satisfied almost everywhere and a
continuous approximation to this density would satisfy the condition everywhere. Note that a
separate price for good 1 is never optimal if it is such that the line x1 = P{1} intersects the line
x1 + x2 = PN below the line .5x1 + x2 = 1 since it must be strictly less than 1 and, in this case,
will only draw buyers away from the more profitable bundle priced at PN . If the intersection is

10[8] claim that if n = 2 and if 3f(x) +∇f(x) · x ≥ 0, then a price schedule maximizes expected revenue within

the class of all IC and IR mechanisms. Our example indicates that their claim is not correct. [16] independently

discovered a related example.
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above this line, it is conceivable that a price for good one below 2(PN − 1) could add more sales
but, intuitively, it would have to be significantly below to add much and the costs from lost
bundle sales are correspondingly large. For conciseness, we restrict attention here to two-price
mechanisms. A formal analysis which shows that three price mechanisms are not optimal is
provided in the Appendix (Section 9.2).

A two-price schedule in this framework consists of the prices (P{2}, PN ) where P{2} is the
price for good 2, and PN is the price for the bundle. A typical two-price schedule is represented
in Figure 1. Buyer types who buy good 2 alone are in the set A{2}. Types who buy the bundle
are in AN . The triangle below these regions represents types who do not trade. Note that as
the Figure is constructed, it is assumed both that P{2} < 1 and that the intersection of the lines
x2 = P{2} and x2 = PN −x1 lies in the support of buyer types. The former fact is shown below,
the latter is true since if the intersection were below, the alternative randomized mechanism
illustrated below is easily shown to dominate this mechanism.

-

6

x1

x2

HHHHHHHHHHHHHHHHHH

@
@
@
@

1
PN − P{2}

2(1− P{2}) 2(PN − 1)

1

P{2}

2− PN

A{2}

AN

Figure 1: Price Schedules Can Be Dominated

Computing the area of a quadrilateral with two parallel sides, the probability mass of A{2}
is given by 11 ∫

A{2}
dx = (1− P{2})(PN − 1).

The probability mass of AN is given by
∫

AN

dx =
1
2

[
(PN + P{2} − 2)(PN − P{2}) + (3− 2PN )(PN − 1/2)

]
.

11To be probability density functions, all integrals should be multiplied by a factor of 4. For conciseness, the

computations presented here ignore this inessential normalization.
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Expected revenues from a given P{2}, PN are P{2}
∫
A{2}

dx + PN

∫
AN

dx. Using the above equa-
tions and differentiating with respect to P{2} yields a value that is strictly negative at P{2} = 1
(unless PN = 1 which is easily shown to be dominated) and the optimal P{2} as a function of
PN is given by

P̂{2} = (2PN − 1)/(3PN − 2).

Substituting this value for P{2} into the expected revenue function and maximizing over PN

gives via Mathematica, P̂N = 1.26, P̂{2} = 0.85 with expected revenues 1.16.
Suppose that instead of the price schedule, a buyer is offered the bundle at price P̂N = 1.26

or a stochastic bundle at price equal to 1 which consists of good two with probability one and
good one with probability one-half . This mechanism can also be seen in Figure 1. Observe that
if a buyer type (x1, x2) is indifferent between the two choices, then x2 +x1−PN = x2 + .5x1−1,
so a buyer of type (x1, x

′
2), x

′
2 > x2 is also indifferent. Therefore the set of buyers who choose

the full bundle is given by the region above the bottom of the support and to the right of the
dotted line. The remaining region represents buyers who choose the random bundle.

The probability mass of these regions are given by (3− 2PN )(PN − 1/2)/2 for buyer types
who get the full bundle and (PN − 1)2 for those who buy the random bundle. Therefore, profits
from this mechanism are

(PN − 1)2 +
1
4
(3− 2PN )(2PN − 1)PN .

Evaluated at PN = 1.26, i.e. the optimal two-price schedule, the expression above indicates
profits of 1.19, higher than those obtained with the two-price schedule. Optimizing within this
class of random mechanisms improves profits slightly to 1.192 and yields a bundle price of 1.28.
Notice that this random mechanism is more efficient than the optimal price schedule because
the latter never sells good 1 unless it is sold as part of the full bundle. The random mechanism
offers at least a chance at good one. This increased efficiency also raises seller revenues.12

Compared to price schedules, random mechanisms may be very complicated to compute and
difficult to implement. It is therefore of great interest to understand when attention can be
restricted to price schedules. This is the subject of the following sections.

6 Revenue-Maximizing Price Schedules

We now identify environments where a price schedule is the optimal mechanism within the class
of all IC and IR mechanisms. We find conditions under which a price schedule is the solution
to the optimization problem in (2). To that effect we use the following Lemma. The Lemma
resembles a duality result from linear programming. Therefore, we use in its statement the
abbreviations CSD, CSP, FD, and NN, that stand for complementary slackness in the dual,

12For computational ease, the density in the example is only continuously differentiable in a strict subset of the

unit square with Lebesgue measure one. By continuity of expected revenue with respect to measures, there are

continuously differentiable densities that yield similar results.
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complementary slackness in the primal, feasibility of the dual, and the non-negativity of the
dual operator, respectively.13

Lemma 3 Let π̂ ∈ C, ∇π̂ ≤ 1. Suppose there exists a linear functional ω on C such that

(CSD) 〈π̂, T − ω〉 = 0,

(CSP) 〈1 · x− π̂, ω〉 = 0,

(FD) 〈π, T − ω〉 ≤ 0,∀π ∈ C,

(NN) 〈1 · x− π, ω〉 ≥ 0, ∀π ∈ C,∇π ≤ 1.

Then π̂ ∈ arg maxπ∈C,∇π≤1〈π, T 〉.

Proof Using the four hypotheses, it follows that

〈π̂, T 〉 = 〈1 · x, ω〉
≥ 〈1 · x, ω〉+ 〈π, T − ω〉, ∀π ∈ C

= 〈π, T 〉+ 〈1 · x− π, ω〉, ∀π ∈ C

≥ 〈π, T 〉, ∀π ∈ C,∇π ≤ 1.

The first line comes from CSP and CSD, the second line from FD, the third line from linearity,
and the last line from NN . Q.E.D.

Let P be the revenue-maximizing price schedule within the class of such schedules. Suppose
in addition that P satisfies SM and ABS. Let {AJ}J⊂N be the corresponding market segments,
and π̂(x) be the expected utility of a buyer of type x in this mechanism.

Theorem 3 essentially shows that under certain conditions on the density f , P is globally
optimal if FD and NN in Lemma 3 hold. After stating and proving Theorem 3, we discuss
the case n = 1, and then offer an alternative representation of one of the Theorem’s conditions,
later used in the applications.

We begin with some useful definitions. Suppose Assumptions 1 and 2 hold. The sets
AJ

J , AJc

J , Di
J are defined in Lemma 2. Define KN = 0 and, for any bundle J 6= N , let

KJ =

∫
AJc

J

∑
i/∈J

xif
′
i(xi)

fi(xi)

∏
k/∈J fk(xk)dxJc

∫
AJc

J

∏
k/∈J fk(xk)dxJc

. (4)

Since AJ has positive measure, KJ is well-defined. Define the functions tJ : AJ
J → IR by t∅ ≡ 0,

and
tJ(xJ) = n + 1 +

∑

i∈J

xif
′
i(xi)

fi(xi)
+ KJ . (5)

13The duality theorem from linear programming yields both necessary and sufficient conditions. Our statement

offers only sufficient conditions because we do not possess a complete characterization of the adjoint of the linear

functional that corresponds to the constraint, ∇π ≤ 1.
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Note that by definition of tN and (1), the objective function 〈π, T 〉 can be expressed as,

〈π, T 〉 =
n∑

i=1

∫

In−1

π(1, x−i)f(1, x−i) dx−i −
∫

In

π(x)tN (x) f(x)dx, (6)

and that when P satisfies SM and x ∈ AJ , Assumption 2 and Lemma 2 imply

tJ(xJ)
∫

AJc
J

f(x)dxJc =
∫

AJc
J

tN (x)f(x)dxJc . (7)

Assumption 2 implies tN (·) ≥ 0; therefore tJ(·) ≥ 0 for all J .
Before stating Theorem 3, two additional assumptions are necessary:

Assumption 3 Fix a density f and a price schedule P . Let {AJ} and {Bi
J} be the market

segments and their boundaries corresponding to P and let {tJ} be the functions defined using
(4) and (5).14 Then,

∀π ∈ C,∇π ≤ 1,

∑

J⊂N

{∑

i∈J

∫

Bi
J

[1 · (1, x−i)− π(1, x−i)] f(1, x−i)dx−i −
∫

AJ

[1 · x− π(x)] tJ(xJ)f(x)dx

}
≥ 0.

Assumption 4 Fix a density f and a price schedule P . Let {AJ} be the market segments
corresponding to P and let {tJ} be the functions defined using (4) and (5). Then,

∀π ∈ C,
∑

J⊂N

∫

AJ

π(x)[tN (x)− tJ(xJ)]f(x)dx ≥ 0.

Assumptions 1 and 2 do not imply NN and FD in general, however, the next section
identifies environments where, given Assumptions 1 and 2, there exists a price schedule P ,
optimal among all price schedules, that satisfies SM , ABS and Assumptions 3 and 4. It will
then follow from Lemma 3 that P maximizes expected revenue over all IC and IR mechanisms.
Assumptions 3 and 4 serve the role of ensuring that conditions NN and FD respectively are
satisfied more generally. They are by no means transparent. Their role, here, is mainly to
illustrate that the problem of checking the optimality of price schedules can be distilled to
checking these conditions. We defer discussion of the assumptions until after the Theorem.

Theorem 3 Let the density f satisfy Assumptions 1 and 2. Suppose P is optimal among all
price schedules and satisfies SM and ABS.

1. Then, there exists a linear functional ω such that conditions CSP and CSD hold.

2. If in addition Assumptions 3 and 4 hold at the optimal P , ω satisfies conditions FD and
NN .

14Note that all these objects depend on P . Note as well that Assumptions 3 and 4 require the inequalities to

hold for a wide class of functions, π, not just the candidate optimal π̂.

15



Proof The proof proceeds by defining a candidate linear functional and then showing that,
under the hypotheses of the Theorem, all four conditions of Lemma 3 are satisfied where π̂(x) =
maxJ⊂N (aJ · x − PJ) is the equilibrium utility of a buyer of type x offered a price schedule P .
Throughout, the market segments, {AJ}, the boundaries, {Bi

J}, and the functions, {tJ}, are
determined by P .

We first prove an intermediate result that follows from Theorem 1. At the optimal P , for
any J ⊂ N ,

0 =
∑

i∈J

∫

Bi
J

f(1, x−i) dx−i −
∫

AJ
J

∫

AJc
J

tN (x)f(x)dxJcdxJ

=
∑

i∈J

∫

AJc
J

∫

Di
J

∏

k 6=i

fk(xk)fi(1)dx−i −
∫

AJ
J

∫

AJc
J

tJ(xJ)f(x)dx

=
∫

AJc
J

∏

k/∈J

fk(xk)dxJc


∑

i∈J

∫

Di
J

∏

k∈J,k 6=i

fk(xk)fi(1)dxJ/i −
∫

AJ
J

tJ(xJ)
∏

j∈J

fj(xj)dxJ


 .

The first equality follows from Theorem 1 and (6). The second equality follows from Lemma 2,
independence, and (7). The final equality collects the terms in k /∈ J . ABS implies that the
first term is strictly positive. The case for J = {i} follows identically noting that Bi

J = AJc

J .
Therefore,

∀J 6= ∅, 0 =
∑

i∈J

fi(1)




∫

Di
J

∏

j∈J,j 6=i

fj(xj)dxJ/i


−

∫

AJ
J

tJ(xJ)
∏

j∈J

fj(xj)dxJ , (8)

where it is to be understood that
∫
Di

J

∏
j∈J,j 6=i fj(xj)dxJ/i = 1 if J = {i}.

We now prove the Theorem. The following expression defines the linear function ω. For any
continuous function π : In → IR,

〈π, ω〉 =
∑

J⊂N

{∑

i∈J

[∫

Bi
J

π(1, x−i)f(1, x−i)dx−i

]
−

∫

AJ

π(x)tJ(xJ)f(x) dx

}
. (9)

To show CSP , x ∈ AJ implies that 1 · x− π̂(x) = aJc · x + PJ . This implies that for x ∈ AJ ,
1 · x − π̂(x) does not vary with xJ and, in particular, 1 · (1, x−i) − π̂(1, x−i) = 1 · x − π̂(x).
Therefore, applying the definition in (9)

< 1 · x− π̂, ω > =
∑

J⊂N

∫

AJc
J

(aJc · x + PJ)
∏

j /∈J

fj(xj)dxJc ×

∑

i∈J

fi(1)
∫

Di
J

∏

j∈J,j 6=i

fj(xj)dxJ/i −
∫

AJ
J

tJ(xJ)
∏

j∈J

fj(xj)dxJ




= 0.

The first equality exploits Assumption 2a and Lemma 2(iii). The second equality applies Equa-
tion 8.
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To prove CSD, we show first that, for any i, I{i}c
and ∪J,i∈JBi

J are equivalent. Note that
ABS implies P{i} < 1. Therefore (1, x−i) /∈ A∅ for any i. Suppose there exists i and x−i such
that x−i /∈ Bi

J for any J containing i. Then there is a K 6= ∅, i /∈ K such that

aK · (1, x−i)− PK > aK∪{i} · (1, x−i)− PK∪{i}.

But this implies
PK∪{i} > 1 + PK > PK + P{i}

which violates SM . Thus I{i}c
= ∪J,i∈JBi

J . Noting that ∪i∈N ∪J,i∈J Bi
J = ∪J⊂N ∪i∈J Bi

J yields

n∑

i=1

∫

I{i}c
π(1, x−i)f(1, x−i)dx−i =

∑

J⊂N

∑

i∈J

∫

Bi
J

π(1, x−i)f(1, x−i)dx−i.

Therefore, using this expression in the definition of 〈π, ω〉, we have (using (6))

< π, T − ω >= −
∑

J⊂N

∫

AJ

π(x)[tN (x)− tJ(xJ)]f(x)dxJcdxJ . (10)

Since x ∈ AJ implies that π̂(x) = aJ · x − PJ which does not vary with xi, i ∈ Jc, and x ∈ A∅
implies π̂(x) = 0, (10) becomes

−
∑

J⊂N,J 6=∅

∫

AJ
J

π̂(x)

{∫

AJc
J

[tN (x)− tJ(xJ)]f(x)dxJc

}
dxJ = 0.

The equality follows using (7), SM and Assumption 2a.
FD follows immediately from Assumption 4 since this implies Expression 10 is non-positive

for all π ∈ C.
The definition of ω implies 〈1 · x − π, ω〉 is the same as the left side of the inequality in

Assumption 3. Thus Assumption 3 implies NN is satisfied. Q.E.D.

Consider briefly the content of Theorem 3 in the special case of one good, i.e. n = 1.
Assumption 4 is trivially satisfied because the only case to consider is J = N = {1}. Let P

solve 0 = P − 1−F (P )
f(P ) . The left side of the inequality in Assumption 3 can be written as

(1− π(1))f(1)−
∫ 1

P
[x− π(x)] tN (x)f(x)dx =

∫ 1

P
[1−∇π(x)]

[
x− 1− F (x)

f(x)

]
f(x)dx,

by noting that tN (x)f(x) = 2f(x) + xf ′(x) = d
dx{xf(x)− (1−F (x))} and integrating by parts.

Assumption 2 implies that {x− 1−F (x)
f(x) } is positive for all x ≥ P so the integrand is positive over

the region of integration for all π ∈ C,∇π ≤ 1. Thus Assumption 3 is satisfied as well. When
n = 1, both SM and the independence of f are trivially satisfied and thus Assumptions 1 and
2 are sufficient to conclude the optimality of a price schedule. Theorem 3, therefore, specializes
although in a somewhat weaker form (because it requires Assumption 2b), the known result for
n = 1. Assumption 2b remains useful even for n = 1 because it implies that the requirement
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that the buyer expected utility function be convex, more precisely that IC is satisfied, does
not bind at the optimal solution. (Recall that π ∈ C implies π is convex.) If Assumption 2b
failed, so that x − 1−F (x)

f(x) becomes positive and then negative, setting 1 − ∇π(x) = 0 when it
turns negative would satisfy Assumption 3 but would violate convexity. For the one-good case,
without Assumption 2b, the solution involves the ‘ironing’ approach on tN (x) to eliminate the
double-crossing. (See, for example, [14].) We conjecture that Assumption 2b plays a similar role
in the general n-good case.

Assumptions 3 and 4 are only indirectly assumptions on the primitives of the environment
(the fis) since, in principle, testing whether they hold requires determining the optimal price
schedule for the given fis and then checking the conditions on the resulting market segments.
The usefulness of Theorem 3, thus, relies to a large extent on the feasibility of verifying Assump-
tions 3 and 4. Admittedly, the assumptions do not possess a simple economic interpretation.
However, the conditions are implied by a more familiar mathematical property. Inspection of
Assumption 4 reveals that it is a type of covariance condition. Once the market segments have
been constructed, if every feasible mechanism, π covaries positively with tN − tJ over AJ for all
subsets J , then FD in Lemma 3 is satisfied. For some families of distributions, this feature
follows readily. For example, if F i(xi) = xα

i , then

tJ(xJ) = n + 1 + n(α− 1),∀J

so tN−tJ = 0, and the condition follows directly. In other circumstances, more knowledge about
the behavior of tN − tJ and the structure of the market segments will be required. Theorem 4
below offers an example of such an application.

We conclude this section with a lemma and corollary that play the role analogous to inte-
gration by parts in the one dimensional case. Under Assumption 2b, these results offer a second
covariance condition that implies Assumption 3. The next section uses the new condition to
verify Assumption 3 in two different environments.

For x ∈ AJ , i ∈ J , define

T i
J(xi, x−i) = f(1, x−i)−

∫ 1

xi

tiJ(v, xJ/i)f(v, x−i)dv (11)

for some tiJ : AJ
J → IR, tiJ(xJ) ≥ 0,

∑

i∈J

tiJ(xJ) = tJ(xJ).

Setting tiJ ≡ tJ for some i ∈ J , and tkJ ≡ 0 for k 6= i, k ∈ J illustrates that there always exists a
collection of tiJ ’s that satisfy the conditions in the definition. By construction and Assumption
2b, T i

J(xi, x−i) is increasing in xi and T i
J(1, x−i) = f(1, x−i).

By Lemma 1, we can define the functions xi : In−1 → IR by

xi(x−i) = min{xi | (xi, x−i) ∈ ∪J⊂N,i∈JAJ}. (12)
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Lemma 4 Let Assumptions 1 and 2 hold. Suppose P is a price schedule satisfying SM and
ABS and let {T i

J , tiJ} be a collection of functions satisfying (11) and let xi(x−i) be defined as in
(12). Then,

(i)

< π, ω >=
∑

J⊂N

∑

i∈J

∫

Bi
J

{∫ 1

xi(x−i)
[π(1, x−i)− π(x)]tiJ(xJ)f(x)dxi + π(1, x−i)T i

J(xi(x−i), x−i)

}
dx−i.

If, in addition, P is optimal among price schedules,

(ii) 0 =
∑

i∈J

∫
Di

J
T i

J(xi(xJ/i, xJc), xJ/i, xJc)dxJ/i,∀J ⊂ N, xJc ∈ AJc

J ; and

(iii) T i
J(xi(x−i), x−i) = 0, ∀J = {i}, ∀x−i ∈ Bi

J .

Proof In the Appendix.

The following Corollary, based on Lemma 4(i), is useful to verify that Assumption 3 holds.
It requires that the functions T i

J(xi(·), ·) covary positively with any increasing function over Bi
J .

Corollary 1 Let Assumptions 1 and 2 hold. Suppose P satisfies SM and ABS. Let {T i
J , tiJ} be

a collection of functions satisfying (11), and let xi(x−i) be defined as in (12). If for all J ⊂ N ,
for all i ∈ J , for all π : In−1 → IR+, π increasing,

∫

Bi
J

π(x)T i
J(xi(x), x)dx ≥ 0,

then Assumption 3 is satisfied.

Proof If π ∈ C,∇π ≤ 1, then, for all x ∈ In, convexity implies

1 · (1, x−i)− π(1, x−i)− (1 · x− π(x)) ≥ 0.

Since tJ(xJ) ≥ 0 by Assumption 2, applying Lemma 4 (i) gives

〈1 · x− π, ω〉 ≥
∑

J⊂N

∑

i∈J

∫

Bi
J

(1 · (1, x−i)− π(1, x−i))T i
J(xi(x−i), x−i)}dx−i.

But π ∈ C,∇π ≤ 1, implies 1 · (1, x−i)−π(1, x−i) is increasing so the conclusion follows. Q.E.D.

Note that Lemma 4(iii), under the hypotheses of Theorem 3, implies that for J = {i}
∫

Bi
J

π(x−i)T i
J(xi(x−i), x−i)dx−i = 0, ∀π.

Therefore, we only need to check the hypothesis of Corollary 1 for J, |J | > 1. Of course, in the
case n = 1, the only relevant bundle has cardinality one, so Assumption 3 follows directly from
Assumptions 1 and 2.

The next section illustrates the usefulness of Theorem 3 by constructing the functions {T i
J , tiJ}

so that the hypothesis of Corollary 1 is satisfied.
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7 Applications

Although the features of revenue-maximizing mechanisms are well-understood in the one-good
case, far less is known in the very simple generalization to multiple goods. In this Section, we
use Theorem 3 to identify environments in which price schedules are optimal over all IC and
IR mechanisms. We first provide simple sufficient conditions for the optimality of posted price
mechanism in a general class of two-good models. Then we study a more specialized case for
n = 3 with a uniform distribution of valuations.

Corollary 1 illustrates that Assumptions 3 and 4 can be confirmed by checking whether
certain functions covary positively with increasing functions over the market segments or pro-
jections of the market sections. There exist a variety of results that inform us when two functions
covary positively. For example, if a function g : [a, b] → IR integrates to zero and crosses zero
once then the integral of the product of g with any increasing, positive function can be signed.
This fact is used frequently in this section to prove that the covariance conditions are satisfied.

Theorem 4 Let N = {1, 2}, (n = 2) and let f satisfy Assumptions 1 and 2. Suppose xif
′
i(xi)

fi(xi)

is increasing for i = 1, 2. If P is optimal among price schedules and satisfies ABS, then it is
optimal over all IR and IC mechanisms.

Proof By Theorem 2, P satisfies SM . Figure 2 illustrates the typical form of AJ and Bi
J given

SM :

A{i} = {(xi, x−i) | x−i ≤ PN − P{i}, xi ≥ P{i}},
AN = {x | x2 ≥ PN − P{1}, x1 ≥ max{PN − P{2}, PN − x2}},

Bi
{i} = {x−i | x−i ∈ [0, PN − P{i}]},

Bi
N = {x−i | x−i ∈ [PN − P{i}, 1]}.

We first verify that Assumption 4 holds by showing each component in the summation is
non-negative. This follows trivially for J = ∅ and J = N . For J = {1}, say, SM implies

∫

A{1}
π(x){tN (x)− tJ(xJ)}f(x)dx =

∫ 1

P{1}

∫ PN−P{1}

0
π(x)

[
x2f

′
2(x2)

f2(x2)
−K{1}

]
f(x)dx

≥
∫ 1

P{1}

{∫ PN−P{1}

0
π(x)f2(x2)dx2×

∫ PN−P{1}

0

[
x2f

′
2(x2)

f2(x2)
−K{1}

]
f2(x2)dx2

}
f1(x1)dx1

= 0.

The first equality follows by definition of A{1} and tJ , the inequality follows because π and
x2f ′2(x2)
f2(x2) −K{1} are both increasing in x2 and, so, covary positively. The final equality follows by

definition of K{1}. A similar argument holds for J = {2}.

20



-

6

x1

x2

@
@
@
@
@
@
@
@
@@

1P{1}PN − P{2}

1

P{2}

A{∅}

A{2}
t2N = tN ,

t1N = 0
t1N + t2N = tN

t1N = tN ,

t2N = 0

x̂1(β)

x̂2(β)

PN − x̂1(β)

PN − P{1}

1

AN

A{1}

Figure 2: Construction of tiN for Theorem 4

We now verify Assumption 3. We do so by defining the tiJ ’s required by Corollary 1.
Lemma 4 and Corollary 1 imply we need to check the result only for J = N . Lemma 5 shows
that the proposed definition satisfies the conditions of (11). The spirit of the definitions can be
seen in Figure 2.

Define

wi(z; β) ≡ fi(1)−
∫ 1

z

[
vf ′i(v)
fi(v)

+ 3/2 + (−1)iβ

]
fi(v)dv. (13)

Assumption 2 and β ∈ (−1/2, 1/2) imply that wi is strictly increasing in z. Since wi(1;β) >

0 > wi(0; β), x̂i(β) can be uniquely defined implicitly by

wi(x̂i(β);β) = 0. (14)

The next lemma characterizes the decomposition of tJ that is used to apply Corollary 1. The
proof is in the appendix.
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Lemma 5 For β ∈ (−1/2, 1/2), define x̂i(β) by (14) and define tiN (x;β) by

tiN (x; β) = tN (x), x−i ≤ x̂−i(β),

=
xif

′
i(xi)

fi(xi)
+ 3/2 + (−1)iβ, x−i ≥ x̂−i(β), xi ≥ x̂i(β),

= 0, xi ≤ x̂i(β).

There exists (β, β) ⊂ (−1/2, 1/2) such that for all β ∈ (β, β), tiN (x;β) is defined for x ∈ AN (ae),
tiN (x;β) ≥ 0, and t1N (x; β) + t2N (x; β) = tN (x) for x ∈ AN (ae).

Thus, the conditions in (11) are satisfied and T i
N (x; β) is defined as in (11) using tiN (·; β).

We prove that Assumption 3 is satisfied by showing the existence of a β such that the hypothesis
of Corollary 1 holds for T i

N (x; β).
Part (i) of the next lemma confirms a single-crossing property and Part (ii) shows how to

address the potential asymmetries of the fis. The proof is in the appendix.

Lemma 6 For i=1,2,

(i) T i
N (xi(x−i), x−i; β) ≤ 0, x−i ≤ x̂−i(β),

T i
N (xi(x−i), x−i; β) ≥ 0, x−i ≥ x̂−i(β),

(ii) ∃β ∈ (β, β) such that
∫ 1

PN−P{i}
T i

N (xi(x−i), x−i; β)dx−i = 0.

Thus, selecting a β satisfying Lemma 6(ii), for any increasing, positive π,
∫ 1

PN−P{2}
π(x1, 1)T 2

N (x1, x2(x1);β)dx1

=
∫ x̂1(β)

PN−P{2}
π(x1, 1)T 2

N (x1, x2(x1);β)dx1 +
∫ 1

x̂1(β)
π(x1, 1)T 2

N (x1, x2(x1);β)dx1

≥ π(x̂1(β), 1)
∫ 1

PN−P{2}
T 2

N (x1, x2(x1);β)dx1

= 0.

The inequality follows from the single-crossing property of T 2
N (x1, x2(x1);β) in x1 (Lemma 6(i))

and the monotonicity and non-negativity of π. The equality follows from Lemma 6(ii). A
similar argument follows for T 1

N . Applying Corollary 1 and Theorem 3, the conclusion follows.
Q.E.D.

The assumption that xif
′
i(xi)

fi(xi)
is increasing is unusual, and appears to arise specifically because

of the multidimensional character of the problem. As far as we know, it is not a commonly
imposed restriction. The conditions are strong but not empty. The class of distributions,
Πn

i=1x
αi
i , αi ≥ 0, and the class of distributions, KΠn

i=1(e
αixi − 1), αi ≥ 0,K > 0, both satisfy

this condition and Assumption 2. 15

15The family of beta distributions also satisfy the assumption for β ≥ 1. Neither the normal nor the Gamma

distributions satisfy it. See [2], pp. 37-40.
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Remark: Note that the program in Theorem 1, selecting an optimal price schedule among all
such schedules, is typically not concave. Thus, in general the necessary conditions obtained
need not be sufficient. Since Theorem 4 solves an optimization problem over a larger feasible
set, it illustrates that, for n = 2, if f satisfies Assumptions 1 and 2, and if xf ′i(x)

fi(xi)
is increasing,

the necessary conditions in conjunction with ABS are also sufficient. (The requirement that all
bundles be sold with positive probability serves, in part, to rule out the possibility that the first
order conditions are identifying minima to the seller’s problem.)

Checking that Assumptions 3 and 4 are satisfied becomes progressively more challenging as
n increases. If more structure is placed on the problem, however, it is still possible to verify
both assumptions. We do so for n = 3 in the following theorem.

Theorem 5 Let N = {1, 2, 3}, (n = 3) and let fi = 1, i = 1, 2, 3. The price schedule P , P{i} =
3/4, P{i,j} ≈ 1.14, j 6= i, PN ≈ 1.22 is optimal among all such schedules. It is also optimal over
all IR and IC mechanisms.

Proof Direct computation shows that the best price schedule is P{i} = 3/4, P{i,j} ≈ 1.14, j 6=
i, PN ≈ 1.22. Note that this satisfies SM , ABS and is symmetric.16

Assumption 4 holds because the uniform density implies f ′i(x) = 0 and thus tN (x)−tJ(x) = 0
for all J and x.

It remains to verify that Assumption 3 holds. The proof proceeds as follows. First, the tiJ ’s
are defined and it is shown they satisfy (11). Second, it is verified that Assumption 3 holds
for two and three good bundles. The symmetry of prices implies that if (v, w, y) ∈ A{1}, then
(w, v, y) ∈ A{2} and so on. Thus we can restrict attention to the argument for one good and
bundles containing it, say, good 3.

The next lemma exploits the symmetry of the optimal price schedule to construct the de-
composition of tJ(xJ) that is used to apply Corollary 1. The proof is in the appendix.

Lemma 7 Define
Si

J = {x ∈ AJ | xi ≥ xk, i ∈ J, k 6= i}.
tiJ(xJ) = tJ(xJ)1Si

J
.

Then tiJ(x) is defined for all x ∈ AJ , tiJ(x) ≥ 0, and
∑

i∈J tiJ(x) = tJ(x) for all x ∈ AJ .

Define
xi(x−i) = min{xi | (xi, x−i) ∈ Si

J , i ∈ J}.
Recall from Lemma 2 that, for x ∈ AJ , both xi(·) and xi(·) are independent of components in
Jc. Since tiJ(xJ) = 0 for xi < xi(xJ/i, z), z ∈ AJc

J , and tiJ(xJ) = 4 for xi > xi(xJ/i, z), z ∈ AJc

J ,
(because of the uniform independent density assumption) direct integration in (11) yields

T i
J(xi(x−i), x−i) = 4xi(x−i)− 3, x−i ∈ Bi

J . (15)
16The computed price schedule also satisfies the necessary conditions derived in Theorem 1.
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Two-good Bundles: For (say) J = {1, 3}, SM and Lemma 2(ii), imply that B3
{1,3} is bounded

on the interior of [0, 1] × [0, 1] by B3
{3} and B3

{1,2}1. Using the definition of B3
{3} and the fact

that x ∈ A{1,3} ∩AN implies x2 = PN − P{1,3} yields

B3
{1,3} = {(x1, x2) | x1 ≥ P{1,3} − P{3}, x2 ≤ PN − P{1,3}},

and, applying the definition of S3
{1,3},

x3(x−3) = P{1,3} − x1, x1 ∈ [P{1,3} − P{3}, P{1,3}/2]

= x1, x1 ∈ [P{1,3}/2, 1]

which does not vary with x2. This implies that for x−3 ∈ B3
{1,3}, x3(x−3) < P{3} if and only if

x1 < P{3} and, thus,
T 3
{1,3}(x3(x−3), x−3) < 0 ⇔ x1 < P{3}. (16)

Since T 3
{1,3}(x3(x−3), x−3) does not vary with x2 for x−3 ∈ B3

{1,3}, Lemma 4(ii) along with
symmetry implies

∀x2 ≤ PN − P{1,3},
∫ 1

P{1,3}−P{3}
T 3
{1,3}(x3(x−3), x−3)dx1 = 0. (17)

Thus, for all increasing π,
∫

B3
{1,3}

π(x−3, 1)T 3
{1,3}(x3(x−3), x−3)dx1dx2

≥
∫ PN−P{1,3}

0
π(P{3}, x2, 1)

∫ 1

P{1,3}−P{3}
T 3
{1,3}(x3(x−3), x−3)dx1dx2

= 0.

The inequality follows from the definition of B3
{1,3}, (16) and the restriction to π increasing.

The equality follows from (17). The symmetric argument shows the same inequality for J ∈
{{2, 3}, {1, 2}}.

Three-good Bundle: Figure 3 in the appendix represents the set B3
N ∩ {(x1, x2) | x1 ≥ x2} in

(x1, x2) space. By SM and Lemma 2(2), B3
N is bounded on the interior of [0, 1]× [0, 1] by the

sets B3
{1,3}, B

3
{3}, B

3
{2,3}. Thus,

B3
N = {(x1, x2) | x1 ≥ PN − P{2,3}, x2 ≥ max{PN − P{1,3}, PN − P{3} − x1}}.

We use the following lemma, shown in the appendix. For i = 1, 2, j 6= i, define the function,

Gi(xi) ≡
∫ 1

max{xi,PN−P{3}−xi}
T 3

N (x3(x−3), x−3)dxj . (18)
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Lemma 8 For i = 1, 2,

(i) T 3
N (x3(x−3), x−3) > 0 ⇔ max{x1, x2} > P{3}.

(ii) ∃a < P{3} such that Gi(xi) > 0 ⇔ xi > a.

(iii)
∫ 1

PN−P{1,3}
Gi(xi)dxi = 0.

Let π be any increasing, positive function. We can now apply the following inequalities:
∫

B3
N

π(x−3, 1)T 3
N (x3(x−3), x−3)1{x1≥x2}dx1dx2

=
∫ 1

PN−P{1,3}

∫ 1

max{x2,PN−P{3}−x2}
π(x−3, 1)T 3

N (x3(x−3), x−3)dx1dx2

≥
∫ 1

PN−P{1,3}

∫ 1

max{x2,PN−P{3}−x2}
π(P{3}, x2, 1)T 3

N (x3(x−3), x−3)dx1dx2

=
∫ 1

PN−P{1,3}
π(P{3}, x2, 1)G2(x2)dx2

=
∫ a

PN−P{1,3}
π(P{3}, x2, 1)G2(x2)dx2 +

∫ 1

a
π(P{3}, x2, 1)G2(x2)dx2

≥ π(P{3}, a, 1)
∫ 1

PN−P{1,3}
G2(x2)dx2

= 0.

The equality follows by applying the characterization of B3
N . The first inequality follows be-

cause π is positive and increasing in x1 and applying Lemma 8(i). The next equality applies
the definition of G2(·) in (18). The second inequality follows from Lemma 8(ii) and because
π(P{3}, x2, 1) is positive and increasing in x2. The final equality follows from Lemma 8(iii).

A symmetric argument shows
∫

B3
N

π(x1, x2, 1)T 3
N (x3(x−3), x−3))1{x2≥x1}dx2dx1 ≥ 0.

Thus, for all increasing π,
∫

B3
N

π(x−3, 1)T 3
N (x3(x−3), x−3)dx−3 ≥ 0.

Applying the same arguments to B2
N , B1

N yields the conditions required by Corollary 1 to
show that Assumption 3 holds for J = N . Combining with the argument for |J | = 2 and
applying Corollary 1 we have Assumption 3 is satisfied and Theorem 3 yields the conclusion.
Q.E.D.
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8 Conclusion

We conclude with a brief discussion of the possibilities for weakening some of the conditions
invoked in Theorems 4 and 5.

The identified environments are quite restrictive even in the n = 2 case. We believe this is
no accident. In a companion paper, [7], we note that the set of IC and IR mechanisms is convex
and has extreme points. Since the seller’s objective functional is linear, the solution set will
always contain an extreme point of the feasible set. In the case of n = 1, the extreme points are
simply the set of take-it-or-leave-it prices. Thus, the well-known result for n = 1 is immediate.
The set of extreme points when n > 1 is far richer and includes mechanisms with significant
randomization in the allocation of objects.

Some conditions arise as a consequence of the strategy of proof. Assumption 2b also appears
(in various forms) in many single-dimensional applications. In the one good, one buyer case, it
is known not to be required, however, it is often invoked to simplify the analysis. It implies the
monotonicity of the virtual valuation function. In the context of our approach, it allows us to
ignore the convexity constraint on the utility functions that comes from incentive compatibility
because the requirement that utility be convex is not binding at a solution.

The example in Section 5 suggests that negative covariance of valuations poses problems, so,
it may be possible to weaken Assumption 2a (independence). A potential conjecture to explore
is whether this can be weakened to the requirement that f satisfy affiliation. One hurdle to such
an extension is that sufficient conditions for multivariate functions to covary positively against
affiliated densities (and therefore, to check Assumptions 3 and 4) require the domain of the
functions to be sublattices – a condition that is not typically satisfied by market segments even
when SM holds.

The requirement that xif
′
i(xi)

fi(xi)
be increasing is the most unusual condition. It does not arise in

the one good case. However, ensuring that Assumption 4 in Theorem 3 is satisfied relies critically
on this restriction and its role is clearly tied to the multiple good problem. We have constructed
examples which satisfy Assumptions 1 and 2 but not this final restriction and which appear to
show that price schedules can be dominated. However, the comparisons lead to differences in
the order of the sixth digit and we do not have that much confidence in these results.

Finally, the extension to n > 2 brings forth additional difficulties. To verify that Assumption
4 is satisfied additional restrictions on the family of distributions may be necessary. A density
such that xif

′
i(xi)

fi(xi)
is increasing need not suffice because sets such as AJc

J are not generally sub-
lattices and the covariance argument used in the proof of Theorem 4 no longer can be applied.
If we restrict attention, however, to distributions of the form Fi(xi) = xα

i , then it can be shown
that Assumption 4 is always satisfied.
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9 Appendix

9.1 Proofs

Proof of Lemma 1 (xi, x−i) ∈ AJ implies that aJ · x− PJ ≥ aK · x− PK for all K. If i ∈ K,

then raising xi to x′i raises both the left and right side without affecting the inequality. If i /∈ K,

then raising xi to x′i increases the left side but the right remains fixed. The argument for the
second statement is similar. Q.E.D.

Proof of Lemma 2 (i). Necessity follows from the definition of AJ . To show sufficiency,
suppose x, J satisfy the hypotheses of Part (i) but x /∈ AJ . Then, there exists a set K such that

aJ · x− PJ ≥ aJ∩K · x− PJ∩K

aJ · x− PJ ≥ aJ∪K · x− PJ∪K

aK · x− PK > aJ · x− PJ .

Summing the inequalities and using aJ + aK = aJ∩K + aK∪J yields PK∪J > PJ + PK − PJ∩K

which violates SM .
(ii) Now suppose that x ∈ AJ ∩AK ,K ∩ J /∈ {J,K}. Applying the same argument as above

implies

aJ · x− PJ ≥ aJ∩K · x− PJ∩K

aJ · x− PJ ≥ aJ∪K · x− PJ∪K

aK · x− PK = aJ · x− PJ .

Summing the three inequalities and applying SM implies that all three must hold with equality.
But this means that AJ∩AK is the intersection of at least three linearly independent hyperplanes
(we could have K ∩ J = ∅) which has zero measure in IRn−1.

(iii) Let x̃ = (x′J , xJc). Part (i) implies if x̃ /∈ AJ there must exist K, K ⊂ J or J ⊂ K such
that aK · x̃− PK > aJ · x̃− PJ .

Suppose aK · x̃− PK > aJ · x̃− PJ for K ⊂ J. x′ ∈ AJ implies

aJ · x′ − PJ = aJ · x̃− PJ ≥ aK · x′ − PK = aK · x̃− PK ,

a contradiction.
Observe that J ⊂ K, implies aK · x̃− aJ · (x′ − x) = aK · x and aJ · x̃− aJ · (x′ − x) = aJ · x.

Therefore, aJ · x̃ − PJ < aK · x̃ − PK implies aJ · x − PJ < aK · x − PK which contradicts the
hypothesis that x ∈ AJ .

The cartesian product representation of the sets AJ now follows. Q.E.D.
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Proof of Lemma 4 (i) By definition of ω in (9) and tiJ , in (11)

〈π, ω〉 =
∑

J⊂N

∑

i∈J

∫

Bi
J

π(1, x−i)f(1, x−i) dx−i −
∑

J⊂N

∑

i∈J

∫

AJ

π(x)tiJ(xJ)f(x)dx

=
∑

J⊂N

∑

i∈J

∫

Bi
J

π(1, x−i)f(1, x−i)dx−i −
∑

J⊂N

∑

i∈J

∫

Bi
J

∫ 1

xi(x−i)
π(x)tiJ(xJ)f(x)dx

=
∑

J⊂N

∑

i∈J

{∫

Bi
J

[
π(1, x−i)f(1, x−i)−

∫ 1

xi(x−i)
π(x)tiJ(xJ)f(x) dxi

]
dx−i

}

=
∑

J⊂N

∑

i∈J

{∫

Bi
J

[π(1, x−i)(f(1, x−i)− T i
J(xi(x−i), x−i))

−
∫ 1

xi(x−i)
π(x)tiJ(xJ)f(x) dxi + π(1, x−i)T i

J(xi(x−i), x−i)] dx−i

}

=
∑

J⊂N

∑

i∈J

{∫

Bi
J

∫ 1

xi(x−i)
(π(1, x−i)− π(x))tiJ(xJ)f(x) dxi + π(1, x−i)T i

J(xi(x−i), x−i) dx−i

}
.

The second equality follows from the definition of xi(·) and Lemmas 1 and 2. The next equality
collects all terms in the summation in i and the next one adds and subtracts T i

J(xi(x−i), x−i)π(1, x−i).
The final equality follows by (11) using the fact that π(1, x−i) does not vary in xi.

(ii) Applying Equation 8, Lemma 2 and the definition of tiJ yields for all J, x ∈ AJ ,

0 =
∏

k/∈J

fk(xk)
∑

i∈J




∫

Di
J

∏

j∈J,j 6=i

fj(xj)fi(1)dxJ/i −
∫

AJ
J

tiJ(xJ)
∏

j∈J

fj(xj)dxJ




=
∑

i∈J

∫

Di
J

∏

j 6=i

fj(xj)

[
fi(1)−

∫ 1

xi(x−i)
tiJ(xJ)fi(xi)dxi

]
dxJ/i

=
∑

i∈J

∫

Di
J

T i
J(xi(x−i), x−i)dxJ/i.

The second equality follows from the definition of xi(·) and Lemmas 1 and 2. The next equality
uses the definition of T i

J .
(iii) If | J |= 1, then the integration operation vanishes and x−i ∈ Bi

J implies T J
i (xi(x−i), x−i) =

0.

Proof of Lemma 5: The proof requires three intermediate results.

(i) β ∈ (−1/2, 1/2) implies x̂1(·) (resp. x̂2(·)) is continuous and strictly decreasing (increasing).

(ii) ∃(β, β) ⊂ (−1/2, 1/2) such that β ∈ (β, β) implies x̂i(β) ≥ PN − P{−i}, i = 1, 2.

(iii) ∀β ∈ (β, β), x̂i(β) ≤ PN − x̂−i(β).

(Part i) Total differentiate (13) to obtain

x̂′i(β) = (−1)i 1− F i(x̂i(β))
x̂i(β)f i′(x̂i(β)) + (3/2 + (−1)iβ)fi(x̂i(β))
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Assumption 2b implies that the denominator is strictly positive so the implicit function theorem
implies x̂i(·) is continuous. fi(1) > 0 implies x̂i(β) < 1 so the sign of the numerator is (−1)i.

(Part ii) We show first that we cannot have x̂i(β) ≤ PN − P{−i} for both i = 1, 2. The first
order condition from Theorem 1 and the definition of tN (x) imply

0 =
2∑

i=1,j 6=i

∫ 1

PN−P{i}
fj(xj)

{
fi(1)−

∫ 1

max{PN−P{j},PN−xj}

[
xif

i′(xi) + (3/2 + (−1)iβ)fi(xi)
]
dxi

}
dxj

=
2∑

i=1,j 6=i

∫ P{j}

PN−P{i}
fj(xj)wi(PN − xj ;β)dxj +

∫ 1

P{j}
fj(xj)wi(PN − P{j};β)dxj

Theorem 2 implies that PN − P{i} < P{j} so the first term has positive measure and for xj

in this range, PN − xj > PN − Pj . Since wi(·;β) is strictly increasing and wi(x̂i(β);β) = 0,
if x̂i(β) < PN − P{j}, then both terms are non-negative and the first term is strictly positive
yielding a contradiction. Therefore, suppose that x̂1(β) > PN − P{2} while x̂2(β) ≤ PN − P{1}.
Since x̂1(·) is decreasing and continuous and x̂1(1/2) = 0 we can raise β to β < 1/2 such that
x̂1(β) = PN −P{2} > 0 (since A{2} has positive measure) . By the above argument, this implies
x̂2(β) > PN − P{1}. To find β > −1/2 now reduce β so that x̂2(β) = PN − P{1} > 0.

(Part iii) The following inequality is used in the proof. For J = {i}, j 6= i, z ≤ PJ and
xj ≥ PN − PJ , Equation 8 implies using the definition of tJ and KJ ,

0 = fj(xj)
{

fi(1)−
∫ 1

PJ

[
vf ′i(v)
fi(v)

+ 3 + E[
wf ′j(w)
fj(w)

| w ≤ PN − PJ ]
]

fi(v)dv

}

≥ fj(xj)
{

fi(1)−
∫ 1

PJ

[
vf ′i(v)
fi(v)

+ 3 +
xjf

′
j(xj)

fj(xj)

]
fi(v)dv

}

≥ fj(xj)
{

fi(1)−
∫ 1

z

[
vf ′i(v)
fi(v)

+ 3 +
xjf

′
j(xj)

fj(xj)

]
fi(v)dv

}

= fj(xj)fi(1)−
∫ 1

z
tN (v, xj)f(v, xj)dv. (19)

The first inequality follows because
xjf ′j(xj)

fj(xj)
increasing and xj ≥ PN −PJ implies E[

wf ′j(w)

fj(w) | w ≤
PN −PJ ] ≤ xjf ′j(xj)

fj(xj)
. The second inequality follows by Assumption 2b and z ≤ PJ . The last line

comes by definition of tN .
Suppose that x̂i(β) > PN − x̂j(β), j 6= i. The first order condition from Theorem 1 applied
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to AN can be written as

0 =
∑

i,j 6=i

{∫ PN−x̂i(β)

PN−P{i}

[
fi(1)−

∫ 1

PN−xj

tN (x)fi(xi)dxi

]
fj(xj)dxj

}

+
∑

i,j 6=i

∫ x̂j(β)

PN−x̂i(β)

[
fi(1)−

∫ 1

PN−xj

(xif
′
i(xi) + (3/2 + (−1)iβ)fi(xi))dxi

]
fj(xj)dxj

+
∑

i,j 6=i

∫ 1

x̂j(β)

[
fi(1)−

∫ 1

PN−x̂j(β)
(xif

′
i(xi) + (3/2 + (−1)iβ)fi(xi))dxi

]
fj(xj)dxj

≤
2∑

i=1

∫ x̂j(β)

PN−x̂i(β)
wi(PN − xj ;β)fj(xj)dxj +

∫ 1

x̂j(β)
wi(PN − x̂j(β);β)fj(xj)dxj

< 0

which is a contradiction. The equality follows because the limits of integration divide AN into
three sections, disjoint except for a measure zero intersection. Two sections are reflected in the
limits of integration in the first term of the summation. The third section is repeated in the
second and third lines but adding each of the integrands yields t(x) (We exploit the hypothesis
that x̂i(β) > PN − x̂j(β). The expression assumes that PN −P{i} ≤ PN − x̂i(β). If this does not
hold, then the first line vanishes and the lower limit of integration in the second line becomes
PN − P{i}. The rest of the argument remains the same.) The first inequality follows since (19)
implies the first line is non-positive and by applying the definition of wi(·; β) in (13) . The second
inequality follows because wi(x;β) is strictly increasing in x and is zero at x = x̂i(β) and in both
terms of the fourth line, PN − xj < x̂i(β) (because xj ≥ PN − x̂i(β)) and PN − x̂j(β) < x̂i(β)
(by hypothesis).

The tiN s are seen to satisfy (11) as follows. The set of points

{x1 ≤ x̂1(β)} ∪ {x1 ≥ x̂1(β), x2 ≥ x̂2(β)} ∪ {x2 ≤ x̂2(β)}

covers the set AN . By construction, the intersection of the first two sets and the intersection of
the last two sets has measure zero. Suppose x2 < x̂2(β). Since x1 +x2 ≥ PN , Result (iii) implies

x1 ≥ PN − x2 > PN − x̂2(β) ≥ x̂1(β)

so the intersection of the first and last set has zero measure as well. Therefore, whenever,
tiN (x;β) = 0, t−i

N (x;β) = tN (x). The definitions of tiN now yield t1N (x; β) + t2N (x;β) = tN (x) for
all x ∈ AN . Assumption 2 and β ∈ (−1/2, 1/2) imply tiN (·;β) ≥ 0. .

Proof of Lemma 6 (Part i) Consider i = 2. The proof of Lemma 5, (19) implies for
x1 ∈ [PN − P{2}, x̂1(β)],

0 ≥
{

f2(1)−
∫ 1

PN−x1

t2N (x1, x2; β)f2(x2)dx2

}
f1(x1)

= T 2
N (x1, x2(x1);β).
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The inequality follows because in this region, t2N = tN and x2(x1) = PN − x1 ≤ P{2}.
For x1 ∈ (x̂1(β), PN − x̂2(β)],

T 2
N (x1, x2(x1);β) =

{
f2(1)−

∫ 1

PN−x1

t2N (x1, x2; β)f2(x2)dx2

}
f1(x1)

= w2(PN − x1;β)f1(x1)

≥ w2(x̂2(β);β)f1(x1)

= 0.

The second equality applies (13) and the definition of t2N . The inequality follows since PN−x1 ≥
x̂2(β) and w2(·; β) is strictly increasing. The equality is by definition of x̂2(β).

Finally, for x1 ≥ PN − x̂2(β),

T 2
N (x1, x2(x1);β) =

{
f2(1)−

∫ 1

max{PN−x1,PN−P{1}}
t2N (x1, x2; β)f2(x2)dx2

}
f1(x1)

=

{
f2(1)−

∫ 1

x̂2(β)
t2N (x1, x2; β)f2(x2)dx2

}
f1(x1)

= 0.

The second equality follows because Lemma 5 implies x̂2(β) ≥ max{PN − x1, PN − P{1}} and
for x2 ≤ x̂2(β), t2N (x) = 0. The final equality follows by definition of x̂2(β). The same argument
follows for i = 1

(Part (ii) Since T i
J(·; β) satisfies (11), applying Lemma 4(ii) to J = N gives

0 =
2∑

i=1,j 6=i

∫ 1

PN−P{i}
T i

N (xi(xj), xj ;β)dxj

=
2∑

i=1,j 6=i

{
∫ x̂j(β)

PN−P{i}
T i

J(PN − xj , xj ; β)dxj +
∫ PN−x̂i(β)

x̂j(β)
T i

J(PN − xj , xj ;β)dxj}

≡
2∑

i=1

{Fi(β) + Gi(β)}

The second equality uses the implication from Part (i) that T i
J(xj(xj), xj ; β) = 0 for xj ≥

PN − x̂i(β) and for xj ≤ PN − x̂i(β), xi(xj) = PN −xj . Suppose that for some i, Fi(β)+Gi(β) is
strictly negative (and therefore Fj(β)+Gj(β) > 0, j 6= i) for all β ∈ (β, β). Part (i) implies that
Fi(β) is non-positive and Gi(β) is non-negative. Note that Fi(β) + Gi(β) varies continuously
with β. Let β increase or decrease as necessary so that x̂j(β) approaches PN − P{i}. Since the
measure of (PN −Pi, x̂j(β)] goes to zero, Fi(β) goes to zero. But Gi(β) is non-negative by Part
i) and, by assumption, Fj(β) + Gj(β) is strictly positive. This yields a contradiction.

Proof of Lemma 7 To ensure that the defined tiJ(xJ) satisfy (11), we must show that for
each J , Si

J ∩ Sj
J , i 6= j ∈ J has measure zero in IRn, and that {Si

J}i∈J covers AJ . The first
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requirement follows from the definitions. Thus, it only remains to show that there does not exist
an x ∈ AJ with component k /∈ J such that xk > xi, i ∈ J . Suppose there is such an element.
Define K = J ∪ k and for any set J , let 1J and 0J denote the | J | vector of all ones or zeroes
respectively. x ∈ AJ implies aJ · x ≥ PJ , which, in turn implies

xk > maxi∈J xi ≥ PJ

| J | . (20)

Symmetry and SM yield

(
PJ

| J |1
J ,0N/J) ∈ AJ ∩A∅.

(Consider, for example, J = N . Since P1,2,3

3 <
Pi,j

2 < P{i}, an agent with type (P1,2,3

3 ,
P1,2,3

3 ,
P1,2,3

3 )
would be indifferent between not buying any bundle and buying the whole bundle and would
strictly prefer not to buy any other bundle.) Since by hypothesis, (xJ , xJc) ≡ (xJ , xk, xKc) ∈ AJ ,
Lemma 2 implies

x̃ ≡ (
PJ

| J |1
J , xk, xKc) ∈ AJ . (21)

By construction, x̃ · aJ − PJ = 0, a buyer with valuation x̃ gains exactly zero utility from
purchasing the bundle J . If an agent of type x̃ bought K instead, he would receive

aK · x̃− PK = | J | PJ

| J | + xk − PK

> | J | PJ

| J | +
PK

| K | − PK

≥ | K | PK

| K | − PK

= 0,

where the first inequality follows from (20) and the second because SM implies PJ
|J | ≥ PK

|K| . Thus
the buyer of type x̃ does strictly better buying K than J , a contradiction to the conclusion in
(21).

Proof of Lemma 8 We first characterize x3(x1, x2) on B = B3
N ∩ {(x1, x2) | x1 ≥ x2}

shown in Figure 3. Observe that SM implies that P{3} > PN
3 >

PN−P{3}
2 > PN − P{1,3}.

Symmetry implies that x3(v, w) = x3(w, v) and T 3
N (x3(v, w), v, w) = T 3

N (x3(w, v), w, v)and,
therefore, G1(v) = G2(v) for all v ∈ [PN −P{1,3}, 1]. Thus, if we show the desired results on this
region, they follow with the appropriate permutation of variables on the complement.

The manifold,

{(x1, x2, x3) | x1 ∈ [PN/3, P{1,3}/2), x3 = x1, x2 = PN − 2x1}

belongs to AN∩A∅. This follows because the two endpoints, (PN/3, PN/3, PN/3) and (P{1,3}/2, PN−
P{1,3}, P{1,3}/2) are in AN ∩A∅ and AN ∩A∅ is a convex set. (The first inclusion follows from the
argument for S3

N in the proof of Lemma 7, the second because the full bundle and the bundle
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Figure 3: Level Sets of x3(x1, x2) on B3
N ∩ {(x1, x2) | x1 ≥ x2}

{1, 3} give exactly zero utility while SM implies P{1,3}
2 < P{3} so any single good bundle gives

strictly negative utility.) Since AN is increasing in xi, i = 1, 2, 3,

{x | x3 ≥ x1, x1 ≥ PN/3, x2 ≥ max{PN − 2x1, PN − P{1,3}}} ⊂ AN .

For any x such that x3 = x1, x1 ≤ P{1,3}/2, x2 < PN − 2x1, we have x1 + x2 + x3 < PN , so
buying the full bundle yields strictly negative utility. Thus, such points cannot be in AN and
the lower bound of S3

N in this region must be contained in the manifold AN ∩ A∅. Combining
these arguments yield

x3(x−3) = x1, x1 ≥ x2, x1 ≥ PN/3, x2 ≥ PN − 2x1,

= PN − x1 − x2, x1 ≥ x2, x1 ≤ P{1,3}/2, x2 ≤ PN − 2x1. (22)

The thick line with slope −2 divides the two regions. The level sets of x3(x−3) are illustrated
by the dotted lines in Figure 3. The arrows denote the direction of increase.

(Part i) Applying (22), x1 > P{3} = 3
4 implies T 3

N (x3(x−3), x−3) = 4x1 − 3 > 0.
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Similarly, x1 ≤ P{3} implies either T 3
N (x3(x−3), x−3) = 4x1 − 3 ≤ 0 or

T 3
N (x3(x−3), x−3) = 4(PN − x1 − x2)− 3

≤ 4(PN − (PN − P{3}))− 3

= 4P{3} − 3

= 0,

The inequality follows because x−3 ∈ B3
N implies x1+x2 ≥ PN−P{3} otherwise x1+x2+1−PN <

1− P{3} and a buyer with type (1, x−3) would do better buying good 3 alone.
(Part (ii)) The proof proceeds by showing that G2(x2) is positive for x2 in [P{3}, 1], non-

positive for x2 in [PN −P{1,3},
PN−P{3}

2 ] and quasi-convex over [PN−P{3}
2 , P{3}]. Since this implies

that G2(x2) crosses 0 at at most one interval with upper bound at, say, a, the conclusion then
follows.

Part (i) implies that G2(x2) > 0 for x2 > P{3}.

Now consider x2 ≤ PN−P{3}
2 . Restricting attention to the lower horizontal boundary of B3

N ,
since x3(x1, x2) is continuous over B3

N ∪B3
{1,3}, for x1 ≥ P{1,3} − P{3},

T 3
N (x3(x1, PN − P{1,3}), x1, PN − P{1,3}) = T 3

{1,3}(x3(x1, PN − P{1,3}), x1, PN − P{1,3}).

Furthermore, (22) implies x3(x1, x2) is either constant or decreasing in x2 in the region B3
N ∩

{(x1, x2) | x1 ≥ x2}. Since (x1, x
′
2) ∈ B3

N implies x′2 ≥ PN − P{1,3},

T 3
N (x3(x1, x

′
2), x1, x

′
2) ≤ T 3

{1,3}(x3(x1, PN − P{1,3}), x1, PN − P{1,3}), (23)

(x1, x
′
2) ∈ B3

N , x1 ≥ max{x2, P{1,3} − P{3}}.

Thus, for x2 ∈ [PN − P{1,3},
PN−P{3}

2 ],

G2(x2) =
∫ P{1,3}−P{3}

PN−P{3}−x2

T 3
N (x3(x1, x2), x1, x2)dx1 +

∫ 1

P{1,3}−P{3}
T 3

N (x3(x1, x2), x1, x2)dx1

≤
∫ 1

P{1,3}−P{3}
T 3

N (x3(x1, x2), x1, x2)dx1

≤
∫ 1

P{1,3}−P{3}
T 3
{1,3}(x3(x1, PN − P{1,3}), x1, PN − P{1,3})dx1

= 0

The first inequality comes because T 3
N ≤ 0 for x1 ≤ P{1,3} − P{3} ≤ P{3} (Part (i)). The second

comes from (23), the equality comes from (17).
For x2 ∈ [PN−P{3}

2 , PN/3],

G2(x2) =
∫ PN−x2

2

x2

{4(PN − x1 − x2)− 3}dx1 +
∫ 1

PN−x2
2

{4x1 − 3}dx1.
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Differentiating with respect to x2 twice (using the continuity of the integrand in x1) gives

d2G2(x2)
dx2

2

= 12 > 0,

so G2(x2) is convex in this range.
For x2 ∈ [PN/3, P{3}],

G2(x2) =
∫ 1

x2

{4x1 − 3}dx1.

Differentiating gives
dG2(x2)

dx2
= −4x2 + 3 > 0,

using the fact that x2 ≤ P{3} = 3/4, so G2(x2) is increasing in this range. Thus, G2(x2) is
quasi-convex and Part (ii) follows.

(Part (iii)) Lemma 4(ii) and symmetry implies

0 =
∫ 1

PN−P{1,3}
G2(x2)dx2 +

∫ 1

PN−P{2,3}
G1(x1)dx1.

G1 = G2 and P{1,3} = P{2,3} then implies Part (iii).

9.2 Proof of Suboptimality of Three Price Mechanisms For Counterexample

A mechanism with prices such that 1 > P{1} ≥ 2(PN − 1) (not shown but is a mechanism with
the point (P{1}, PN − P{1}) below the line x1/2 + x2 = 1) is never optimal. This mechanism is
dominated by instead offering P{1} > 1, holding PN , P{2} fixed. A seller can induce buyers who
purchased only one good at 1 > P{1} to buy two goods at PN > 1 because, in this case, x ∈ A{1}
and P{1} ≥ 2(PN − 1) implies

x1 + x2 =
x1

2
+

x1

2
+ x2

≥ P{1}
2

+ 1

≥ PN .

Therefore, Figure 4 illustrates a typical three price mechanism.
The uniform density and some geometry imply
∫

A{1}
dx =

1
2
(1− P{1})((PN − P{1})−

1
2

+ (PN − P{1})− (1− P{1}
2

))

=
1
2
(1− P{1})(2PN − 3

2
P{1} −

3
2
)

∫

A{2}
dx =

1
2
(1− P{2})(PN − P{2} + PN − P{2} − 2(1− P{2}))

= (1− P{2})(PN − 1)∫

AN

dx =
1
2
(2 + P{2} − P{1} − PN )(P{2} + P{1} − PN ) + (1− P{2})(1 + P{2} − PN ).
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Figure 4: A Three Price Mechanism

For any three-price profile,

R(P ) = P{1}

∫

A{1}
dx + P{2}

∫

A{2}
dx + PN

∫

AN

dx.

Partially differentiating this with respect to P{2} yields

P̂{2}(PN ) =
2PN − 1
3PN − 2

as before. Partially differentiating R(P ) with respect to P{1} yields

∂R(P )
∂P{1}

=
9
4
P 2
{1} − 3P{1}PN + (2PN − 3

4
).

Differentiating again gives
9
2
P{1} − 3PN

which is negative only if P{1} ≤ 2
3PN . The roots of ∂R(P )

∂P{1}
are

P̂+
{1}(PN ) =

2
3

(
PN +

√
P 2

N − 2PN +
3
4

)
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and

P̂−
{1}(PN ) =

2
3

(
PN −

√
P 2

N − 2PN +
3
4

)
.

The first equation exceeds 2
3PN so only the second root is a potential solution. Since the term

P 2
N − 2PN + 3

4 = (PN − 1
2)(PN − 3

2), the root has a real solution only if PN ≤ 1
2 or PN ≥ 3

2 .(If
this condition is violated, then the objective function is always increasing in P{1}.) The case
PN ≤ 1

2 is clearly suboptimal (PN = 1 dominates this.) Thus, we restrict attention to the case,
PN ≥ 3

2 .
We now examine R(P̂{1}(PN ), P̂{2}(PN ), PN ) computationally for PN ≥ 3

2 . This function has
its maximum at PN = 3

2 which implies P{1} = 1 or A{1} = ∅.
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