Physics 604

Midterm #2

Fall '20

Dr. Drake

1. (35 points) The Coulomb Wave equation is given by

$$\rho \frac{d^2 w}{d\rho^2} + (\rho - 2\eta)w = 0 \tag{1}$$

where η is real and $\rho > 0$. This equation describes a wave propagating towards a turning point and an adjacent singularity.

- (a) Classify the singular points of this equation (don't worry about infinity).
- (b) Find the behavior of the solutions for ρ very close to zero. Show that the solutions are linearly independent.
- (c) Plot the square of the WKB wavevector $k^2(\rho)$ versus ρ . Calculate the behavior of the solutions for ρ very large.
- 2. (30 points) An integral representation for the Coulomb wave equation in (1) can be written as

$$w(\rho) = \int_C dk Y(k) e^{ik\rho}.$$
 (2)

(a) Derive a differential equation for Y(k) by inserting (2) into (1). Explicitly give the conditions on the contour C in order that the integral solution satisfy (1). The solution of your equation for Y(k) is given by (you don't need to show this)

$$Y(k) = \frac{1}{1 - k^2} \left(\frac{1 + k}{1 - k}\right)^{-i\eta}.$$
(3)

(b) Choose two contours in the complex k plane which satisfy the constraint given in part (a) and therefore give two linearly independent solutions to (1). Draw them.

Hint: You must define cuts for the singularities of Y(k) at $k = \pm 1$. The contours wrap around the cuts. Where do they end? Recall that $\rho > 0$.

3. (35 points) A wave in a one-dimensional medium is driven by a δ -function source at x = 0 that is turned on at t = 0 as follows:

$$\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} y = H(t)\delta(x) \tag{4}$$

where y = 0 for t < 0 and H(t) is zero for t < 0 and one for t > 0.

(a) Solve for the space/time dependence of y(x, t) by completing Laplace and Fourier transforms of the equation and then completing the subsequent inverse Laplace transform. The k space integral that you will obtain is given by

$$y(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikx} \frac{1}{k^2 c^2} \left(1 - \cos(kct)\right)$$
(5)

(b) Finally complete the inverse Fourier transform to obtain y(x, t). Plot the spatial dependence of y at a fixed time. Interpret the result on the basis of causality. Hint: To reduce the required algebra evaluate y(x, t) explicitly only x > 0 and use the symmetry of the problem to sketch the solution for x < 0.

Midterm #2 Solutions

$$\mathbb{D} \quad \mathbb{P} \quad$$

WKB solution lange e $\pm i \int de' \left(1 - \frac{m}{e}\right)$ ω e____1 tie figin(e) $\frac{e}{e^{\pm i2}}$

 $\frac{\partial^2 y}{\partial x^2} - c^2 \frac{\partial^2}{\partial x^2} y = H(t) S(x)$

Laplace transform and Fourier trans. Sax Sat e'wt eitx (

=> no contai butions from end points since y=0 at $x=\pm\infty$ and y = 0 at t = 0

 $-\omega^{2}Y(k,\omega) + k^{2}c^{2}Y(k,\omega) =$ Sdx S(X) Sdt eint $= \frac{e^{i\omega t}}{i\omega} = -\frac{1}{i\omega}$ and Imwoo so endpant

at t= m is zero.

 $\frac{1}{i\omega} \frac{1}{i\omega^2 - k^2 c^2}$ YKWI= $Y(k,t) = \frac{1}{U} \int \frac{d\omega}{2\pi} e^{i\omega t} \frac{1}{\omega} \frac{1}{(\omega - kc)(\omega + kc)}$

$$\frac{\omega \rho^{knc}}{-\kappa \omega \kappa c} \Rightarrow three \\ = ingular it is$$
For t >0 close contour in LHP. By Jordan's
Lemma contribution from semi-curcle is zero,
Calculate residue from three poks.

$$\frac{\omega}{\kappa c} = \frac{1}{c} \left(-2\pi i \right) \left[-\frac{1}{\kappa^2 c^2} + \frac{e}{2\kappa^2 c^2} + \frac{e}{2\kappa^2 c^2} \right]$$

$$= \frac{1}{\kappa^2 c^2} \left[1 - \cos(\kappa ct) \right]$$

$$\frac{\omega}{2\pi} \left[\frac{1}{\kappa^2 c^2} + \frac{e}{2\kappa^2 c^2} + \frac{e}{2\kappa^2 c^2} \right]$$

$$\Rightarrow note that no singularity at the constant of the the const$$

 $I_1 = \frac{1}{2\pi c^2} \int dk \frac{1}{k^2} e^{ikx} \implies close in$ uttp =) no enclosed poles c' kplane $I_1 \equiv 0$ $I_2 = -\frac{1}{2\pi} \frac{1}{2c^2} \int_{1}^{c^2} \frac{dk}{k^2} e^{ik(x-ct)}$ fou X set close in UHP \rightarrow 0 for X < ct close in LHP $\overline{I}_{2} = -\frac{-2\overline{\alpha}}{2\overline{\alpha}} \frac{1}{2r^{2}} \frac{d}{dk} e^{ik(x-ct)}$ $= \frac{i}{2}i(x-ct) = \frac{ct-x}{2t^2}$ $I_1 = 0$ X g > ct $= \frac{ct - x}{2} x < ct$ $T_3 = -\frac{1}{2\pi} \frac{1}{2c^2} \int_{1}^{\infty} dk + \frac{ik(x+ct)}{k^2}$ for all xso close in UHP $\Rightarrow I_3 = 0$

t 20 ct x -ct Note that y=0 for x>ct > wave proprigates at velocity C so no wave beyond $|\mathbf{X}| = ct$

	$e \frac{d^2}{de^2} w + (e - 27) w = 0$
	Let $w = \int dk e^{ike} Y(k)$
Ø	$= \int dk \left[(1-k^2) e^{-2\pi} \right] Y e^{ike}$
	$= \int dk \mathbb{I}\left[\left(1-h^2\left(-i\frac{d}{dk}\right)-27\right]^2\right] e^{ike}$
	=> integrate by pants
	$(1-k^2)$ Y e^{ike} = 0 end points of G
	$O = \int dk e^{ike} \left[i \frac{d}{dk} \left(1 - kr \right) Y - 2\pi Y \right]$
	$\Rightarrow i \frac{d}{dk} (1-k^2) Y - 23 Y = 0$
	define $\hat{Y} = (1-k^2)Y$
	$i \hat{Y}' - 22 Y/(1-k^2) = 0$

S

 $(1\pm k)^{\mp i \frac{3}{7}} \neq 0 \text{ at } k=\pm 1$ $\implies e^{ike}|=0$

 $\implies k \rightarrow i \infty$

Choose cuts from $k = \pm 1$ $\begin{vmatrix} 3 \\ -1 \\ -1 \end{vmatrix} = \begin{vmatrix} 4 \\ -1 \\ -1 \end{vmatrix}$ k p | ane $C = C_1 \text{ or } C_2$