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Knowledge of the conformational evolution of a polymer chain provides invaluable information for
all polymer properties. However, the chain evolution is usually determined by monitoring single
beads for short times only. In this paper, we numerically determine the configuration evolution over
extended time periods by monitoring the eigenvalues of the gyration tensor and applying the scaling
law methodology. Results of Brownian dynamics simulations of initially straight chains reveal that
after the early free transverse diffusion, flexible polymers exhibit a transverse intermediate-time
behavior of t3/4, while stiff polymers reveal two intermediate-time behaviors: an early t5/6 power law
accompanied by a late t3/4 evolution. These results are associated with the inherent nonlinearity of
the problem. The scaling law methodology we develop in this paper for monitoring the chain
configuration should have wide applications in the study of polymer rheology. © 2003 American
Institute of Physics. @DOI: 10.1063/1.1607957#

I. INTRODUCTION

The present study considers the conformational relax-
ation of a single flexible or stiff polymer chain from an initial
straight configuration in a viscous solvent. This problem
commonly arises when strong flows are turned off in both
industrial and biological applications. The problem is also
motivated by recent experiments with single DNA molecules
relaxing after being fully extended by applied forces as well
as by the recent development of microdevices involving
stretched tethered biopolymers.1–3 Our interest lies on flex-
ible and stiff polymers, both synthetic such as polyacryla-
mides, Kevlar, and polyesters as well as biopolymers such as
DNA, actin filaments, and microtubules.

Knowledge of the conformational evolution of a poly-
mer chain provides invaluable information for all polymer
properties including stress and birefringence. In theoretical
studies the configuration evolution is determined by either
analytical solutions or numerical calculations. The analytical
solutions can predict the chain evolution over extended time
periods, but, due to the complexity ~and perhaps nonlinear-
ity! of the relevant problems, they are commonly based on
unproved assumptions, while their range of validity is not
well known. For example, for stiff chains the analytical pre-
dictions are commonly based on the assumption of a straight
chain; in this case the following question arises: how
‘‘straight’’ should a chain be for a specific analytical predic-
tion to be valid? While this weakness of the analytical stud-
ies is valid in any area of science, in the polymer science it is
more severe due to the presence of many different length and
time scales which give rise to more than one behaviors. For
example, in the current problem we show that the polymer
chain is practically straight during both short and intermedi-
ate times. Should an analytical result based on the straight

chain assumption be valid for short times only, for interme-
diate times, or for both?

On the other hand, numerical calculations, which can
determine the chain evolution accurately ~i.e., without the
need for any assumption!, have been commonly restricted to
monitoring single beads over short time periods only. For
example, for the problem of the relaxation of an initially
straight polymer chain we study in this paper, the chain’s
transverse evolution was determined by monitoring the trans-
verse motion of the central bead in the chain4 or the motion
of individual beads along the chain.5 In both studies the
monitoring was restricted to short time periods and/or short
chains while only the configuration’s dependence on time
was found, i.e., not the dependence on the problem param-
eters ~in this case, the polymer length!.

This seems to contradict with the computational deter-
mination of the stress evolution. In recent numerical studies
the polymer stress has been successfully determined over
extended time scales by calculating the stress over short time
periods only but for different ~increasing! polymer lengths,
and then applying proper scaling laws. For example, the lin-
ear viscoelasticity of semiflexible polymers have been deter-
mined over 12 time decades in Refs. 6 and 7, while in Ref. 8
the nonlinear stress relaxation of an initially straight flexible
chain was determined over the same time period. Recently,
we were able to determine the stress relaxation of an initially
extended stiff chain over more than 25 time decades with the
utilization of scaling laws.9 In principle, the procedure em-
ployed for the polymer stress can be extended to the confor-
mational evolution of the polymer chain. Unfortunately, by
monitoring the evolution of single beads, one is unable to
achieve this goal. The reason is that the single bead motion is
affected by local scales only, i.e., the neighbor beads; thus
after awhile ~usually a few time decades! the single bead
relaxation has decayed. The result is that we are unable to
verify and understand the full impact of the chain configura-a!Electronic mail: dimitrak@eng.umd.edu
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tion on the polymer properties. This is especially true for the
polymer stress, which obviously is affected by the motion of
all the length scales of a polymer chain.

Based on the reasoning presented above, to be able to
determine the chain evolution over extended time periods,
we should monitor a configuration function which involves
all length scales, from that of the single bead to the length
scale of the entire chain. To achieve this goal, we monitor the
evolution of the three eigenvalues of the gyration tensor,

RG
2

5

1

NB
(
i51

NB

~Xi2Xc!~Xi2Xc!, ~1!

where Xi is the position of bead i of the discretized chain, NB

is the number of beads, and Xc5( i51
NB Xi /NB is the center of

mass of the chain. Determining the eigenvalues of the gyra-
tion tensor is not a new idea. Early studies include the deter-
mination of the three eigenvalues of a flexible coil at equi-
librium 25 years ago.10 But most studies restrict their
analysis to the static ~equilibrium! values of the eigenvalues
along with the associated value of the radius of gyration and
the end-to-end distance.

In this paper we determine numerically the dynamic evo-
lution of the three eigenvalues of the gyration tensor RG

2 .
The first ~largest! eigenvalue measures the size of the chain
along its major axis and can be used to monitor the chain’s
longitudinal length. ~This eigenvalue usually shows a similar
behavior to the square of the end-to-end distance and the
square of the radius of the gyration RG

2 .) The other two
eigenvalues measure the size of the chain along its two mi-
nor axes ~i.e., the chain’s width!, and may be used to study
the transverse evolution of the polymer chain. We note that
the evolution of the polymer chain is related to the ~average!
evolution of the chain’s monomers ~or beads!. For example,
the transverse evolution of a bead along the polymer contour
scales similarly to that for the polymer chain. The numerical
procedure is identical to that for the polymer stress, and both
properties may be determined simultaneously. In this paper
we apply this methodology to a specific problem; namely, to
study the configuration relaxation of initially straight flexible
and stiff polymer chains. With our methodology, we are able
to determine the configuration’s dependence on both time t
and the problem parameters ~for our problem, the polymer
length N and chain stiffness E).

We emphasize that an exception in the general trend of
the computational studies so far is the recent work of Ever-
aers et al.11 who calculated both the longitudinal and trans-
verse fluctuations of semiflexible polymers near equilibrium,
and introduced in an organized manner the utilization of
scaling laws for the determination of the configuration relax-
ation over extended time periods. To achieve this goal, the
authors recorded the coordinates of one end of the chain as
well as both end points as a function of time, and calculated
the evolution of the moments and the axis of inertia of the
point cloud. ~The chain was restricted to relax in the two-
dimensional space only!. In the present paper, we extend the
methodology presented in Ref. 11 by considering other con-
formational functions ~i.e., the eigenvalues of the gyration
tensor! appropriate to describe both the length and the width
of a polymer chain. We also present a more systematic way

to apply the concept of the scaling laws considering a physi-
cal problem with more than one relaxation behaviors.

Thus the purpose of this article is threefold. First, we
present configuration functions appropriate to determine both
the transverse and longitudinal evolution of the entire poly-
mer chain, from very early times associated with the motion
of single beads, to very late times associated with the motion
of the entire polymer chain. Second, we further develop the
scaling law methodology presented in Ref. 11; the properties
of this method are presented with special interest to problems
with multiple time behaviors. Third, we apply our methodol-
ogy to study the conformational relaxation of initially flex-
ible and stiff single polymer chains over extended time peri-
ods. Our results are shown to represent the entire relaxation
of a long chain over 17 time decades for flexible polymers
and over 28 time decades for stiff ones. After a short-time
free sideways diffusion, the transverse evolution of flexible
chains is shown to exhibit only one intermediate-time behav-
ior described by the power law t3/4. On the other hand, stiff
polymers reveal two intermediate-time behaviors: an early
t5/6 evolution accompanied by a late behavior of t3/4. The
transition at times tmid;N4E23 is also identified. At long
times, the chains show only longitudinal relaxation. Our nu-
merical results are accompanied with scaling arguments
which help to further understand the polymer relaxation.

We emphasize that the problem we study in this paper is
inherently nonlinear, and thus our results should not be con-
fused with those in the linear regime. In this sense, our study
complements other studies of nonlinear problems including
the inverse problem of the chain straightening by applied
forces.12,13

II. MATHEMATICAL FORMULATION

To describe the polymer chain, a discretized version of
the wormlike chain model15,16 is employed based on a
Brownian dynamics method developed in Ref. 4. This
method considers a bead-rod model with fixed bond lengths
and ignores hydrodynamic interactions among beads as well
as excluded-volume effects. The polymer chain is modeled
as NB5(N11) identical beads connected by N massless
links of fixed length b ~which is used as the length unit!. The
position of bead i is denoted as Xi , while the link vectors are
given by di5Xi112Xi . To account for polymer stiffness, a
bending energy proportional to the square of the local curva-
ture is added. For a continuous chain fbend

5(1/2)Eb*0
L(] d̂/]s)2ds , where L is the ~constant! contour

length of the chain and d̂ the local unit tangent. The bending
energy E is related to the persistence length Lp via E/kBT
[Lp /b , where kB is the Boltzmann constant. The bending
energy of the discrete model is given by fbend

5E ( i51
N21(1

2di"di11 /b2). For a fixed b , the properties of the polymer
chain are specified by the number of links N and the dimen-
sionless bending energy E5E/kBT , or equivalently by the
~constant! contour length of the chain L and its persistence
length Lp .

Assuming that the bead inertia is negligible, the sum of
all forces acting on each bead i must vanish, which leads to
the following Langevin equation:
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z
dXi

dt
5Fi

bend
1Fi

rand
1Fi

ten
1Fi

cor , ~2!

where the friction coefficient z is assumed to be uniform.
The bending force Fi

bend is derived from the chain bending
energy, and Fi

rand is the Brownian force due to the constant
bombardments of the solvent molecules. The force Fi

ten

5T idi2T i21di21 , where T i is a constraining tension along
the direction of each link di , ensures the link inextensibility.
Finally, Fi

cor is a corrective potential force added so that the
equilibrium probability distribution of the chain configura-
tions is Boltzmann. The resulting system of equations may
be solved in O(N) operations.4 Ensemble averages are de-
termined employing 104 – 105 independent initial configura-
tions. All properties presented in this paper are calculated as
ensemble averages of the corresponding instantaneous val-
ues. For example, the three eigenvalues of the gyration ten-
sor presented below are calculated as ensemble averages of
the instantaneous values of the eigenvalues ~and not as the
eigenvalues of the ensemble average gyration tensor!.

The Brownian forces give rise to a microscopic time
scale associated with the diffusive motion of one bead,
trand5zb2/kBT , which is used as the unit for the times re-
ported in this work if no other unit is used. The numerical
method employed in this work has been used to study the
linear viscoelasticity of semiflexible polymers7 and the non-
linear stress relaxation of initially straight flexible polymers,8

and will not be discussed further in the present paper.

III. CONFIGURATION RELAXATION OF AN INITIALLY
STRAIGHT CHAIN

The transverse evolution of an initially straight flexible
(E50) chain is shown in Fig. 1, where we plot the second
eigenvalue RG ,2

2 of the gyration tensor for two representative
chain lengths, N55 and 160. The curve for the short chain
(N55) reveals the entire transverse relaxation of the poly-
mer chain. At short times the beads follow a free diffusion;
the mean-square sideways displacement grows as RG ,2

2 ;t .
At intermediate times a slower sideways displacement is ob-
served. For the short chain the intermediate-time behavior is
limited but it is extended for longer chains. As the figure
reveals, for N5160 the second eigenvalue RG ,2

2 shows a

growth of t3/4. Finally, at long times no transverse configu-
ration relaxation is observed; the polymer transverse con-
figuration has come to equilibrium and the evolution of RG ,2

2

shows a plateau. We note that the evolution of the third ei-
genvalue RG ,3

2 is similar and thus the corresponding figure
has been omitted. The final value of the two minor eigenval-
ues is well predicted by the results of Kranbuehl and
Verdier,10 RG ,2

2
50.176 RG

2 and RG ,3
2

50.065RG
2 ~i.e., both ei-

genvalues scale as N at equilibrium!.
Immediately after the chain is left to relax from the

straight configuration, the transverse component of the ten-
sion force on each bead is F

'

ten;Td';N2t1/2 since the ten-
sions of the ~nearly! straight chain show a T;N2 scaling,4

while the transverse growth of each bead scales similarly to
that of the polymer chain d';R';t1/2. By combining the
transverse evolution of each bead with the equation of mo-
tion, we conclude that the transverse component of the ~ef-
fective! Brownian force on each bead scales as F

'

rand

;t21/2. Thus at short times t!N22, F
'

ten
!F

'

rand and the
beads show a free sideways diffusion. During these times the
transverse tension force grows faster than the corresponding
Brownian force. At the transition times t[t ten;N22, F

'

ten

;F
'

rand;N and the free diffusion of the beads is arrested.
To show the transverse evolution of the polymer chain at

short times and to accurately identify the exact point of the
transition, in Fig. 2~a! we plot our results for the full set of
polymer lengths ~i.e., N55, 10, 20, 40, 160, 400) scaling the
time t by its scale at short times N22 and the transverse
eigenvalue RG ,2

2 with its corresponding value N22. Now the
curves for different N fall on each other revealing the chain’s

FIG. 1. Transverse evolution of a completely flexible (E50) polymer
chain: evolution of the second eigenvalue RG ,2

2 of the gyration tensor for two
representative chain lengths N55, 160.

FIG. 2. Scaling law for the evolution of RG ,2
2 ~a! at short times and ~b! at

intermediate times for a completely flexible chain (E50). Both laws were
generated by employing chains with N55, 10, 20, 40, 160, 400.
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transverse evolution R
'

2 ;t over seven times decades. The
exact location of the transition is also revealed; as this figure
shows, the transition occurs at times t ten'1022N22.

At times t ten;N22 the link inextensibility is enforced,
and thus during intermediate times the transverse motion of
each bead affects and is affected by its neighbors. Therefore
during these times the transverse evolution of all the chain’s
segments contribute to the chain relaxation. We note that the
chain relaxation is associated with relaxation of tensions
~necessary to ensure link inextensibility! from a magnitude
of T5O(N2) at times t;N22 to a magnitude of T5O(1) at
the end of the intermediate-time behavior at times t;N2 for
flexible chains.4 To reveal the behavior of the chain’s trans-
verse evolution at intermediate times N22

!t!N2, it is still
computationally impractical to study a long polymer chain
for an extended time period. Clearly a scaling law should be
used to match the behavior of chains with different lengths.
This idea is employed in Fig. 2~b! where we present the
evolution of the second eigenvalue RG ,2

2 scaled with N ~i.e.,
its scale at long times! for our full set of polymer lengths.
Note that the time t has been scaled with the exact value of
the time scale for the relaxation of the first normal mode of
the Rouse model,

trouse5trandF12 sin2S p

2~N11 !
D G

21

~3!

or trouse5trandN2/(3p2);N2 for long chains. As this fig-
ure reveals, at intermediate times the mean-square sideways
displacement shows a clear growth

RG ,2
2

N
;S t

N2D
3/4

or RG ,2
2 ;N21/2t3/4 ~4!

over nine time decades.
We emphasize that the t3/4 scaling law is associated with

the inherent nonlinearity of the current problem. This scaling
behavior is further supported by simple scaling analysis. In
particular, given the transverse growth of the polymer chain
for short and long times, scaling analysis predicts that the
observed power-law decay at intermediate times is the sim-
plest power law which can match the transverse growth at
short and long times. Observe that at short times t
5O(1/N2) the transverse growth is RG ,2

2
5O(N22), while

RG ,2
2

5O(N) at long times t5O(N2). Matching these two
growths at intermediate times with a single power law ta

gives

~RG ,2
2 !short5N22~ tN2!a

5~RG ,2
2 ! long5NS t

N2D
a

~5!

which is only valid for a53/4 and thus at intermediate times
RG ,2

2 ;N21/2t3/4 in agreement with our numerical results
shown in Fig. 2~b!. Our numerical results are also supported
by the results of Doyle et al.5 who numerically calculated the
transverse diffusion of individual beads along a single chain
with 50 beads and found a growth rate of t3/4 over two time
decades ~as shown in their Fig. 14!.

We now turn our attention to stiff polymers and consider
the configuration evolution of an initially straight chain with
stiffness ratio E/N510. A similar analysis to that for flexible

chains reveals that at early times the transverse components
of the tension and Brownian force on each bead scale simi-
larly to those for flexible chains, i.e., F

'

ten;Td';TR'

;N2t1/2 and F
'

rand;t21/2. For stiff chains there is an addi-
tional force: the transverse bending force F

'

bend;Ed'

;ER';Et1/2. ~The scaling for this force can be readily de-
rived from the definition of the bending energy fbend.) Thus
just after the chain is left free to relax, the effective trans-
verse Brownian force dominates the dynamics and the beads
show a free diffusion ~i.e., d

'

2 ;R
'

2 ;t) similar to that for the
flexible chain. ~This conclusion is also supported by our nu-
merical results as we discuss later.! During these times the
transverse tension and bending forces grow faster than the
corresponding effective Brownian force. The transition from
short to intermediate times occurs when one of the two
forces, F

'

ten or F
'

bend , balances the transverse Brownian
force F

'

rand . Requiring that F
'

ten<F
'

rand results in t<N22,
while the requirement of F

'

bend<F
'

rand is valid for t<E21.
Therefore the first balance reveals the tension time scale
t ten;N22 while the second one reveals the bending time
scale tbend;E21. The latter time scale is the shortest bend-
ing mode associated with the transverse fluctuations of two
successive links due to the bending energy. ~We note that the
scaling for tbend provided above is valid only for large bend-
ing energy E@1; in a previous work we provided its scaling
for any bending energy.7!

For stiff chains with N<E!N2, such as the chains of
interest in this paper (E/N510), we can easily prove that for
long enough chains, t ten!tbend , and thus the transition
from short to intermediate times occurs when the transverse
tension force on each bead balances the corresponding
Brownian force. On the other hand, a careful examination
reveals that for short enough stiff chains the opposite hap-
pens, and chains with N<(E/N) show tbend<t ten . A more
accurate description is obtained if we include the numerical
coefficient of the two time scales. From Fig. 2~a! we know
that t ten'1022N22, while from Fig. 1~c! in Ref. 7 tbend

'1023E21. Thus the requirement of tbend<t ten is valid for
N<10(E/N). For our problem with E/N510 we expect that
for chains with length N<100 the transition from short to
intermediate times occurs due to the balance on each bead
between the transverse bending and Brownian forces. After
this transition at times tbend , we expect the appearance of an
intermediate-time behavior until the end of the transverse
relaxation at times t';N4/E . ~The time scale t' represents
the longest bending mode associated with the transverse
fluctuations of the entire chain due to the bending energy.!
For longer chains, the transition from short to the ~early!
intermediate-time behavior should occur when the growing
F

'

ten balances F
'

rand at times t ten . Afterwards, the relaxation
of tensions T ~due to the increased transverse evolution! will
reduce the tension force F

'

ten . On the other hand, during
these times the transverse bending force F

'

bend increases and
at some transition times tmid ~to be identified later! will
dominate the dynamics. Therefore the evolution of long stiff
chains is expected to revert to the evolution of the short stiff
chains at late intermediate times ~after times tmid and until
the end of all transverse fluctuations at times t'). Thus long
enough stiff chains should reveal two different intermediate-
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time behaviors. Based on the analysis above, for ultrastiff
chains with E@N2, tbend!t ten for any polymer length N .
~Ultrastiff chains is a stiffness regime we identified in our
earlier work.7! These chains are expected to follow only one
intermediate-time evolution identical to that of short stiff
chains.

To prove our reasoning, we plotted our numerical results
for the evolution of the second and third eigenvalues at early
times for short chains ~up to N5100), and verified the free
transverse diffusion R

'

2 ;t at short times t!tbend . The cor-
responding figure is similar to Fig. 2~a! above ~although now
we scale the time t with tbend and RG ,2

2 with E21), and thus
it has been omitted. To show the relaxation of short chains at
intermediate times tbend!t!t' , in Fig. 3 we plot our nu-
merical results for the evolution of the second eigenvalue for
chains up to N5100, scaling the time t with t' and RG ,2

2

with N3/E . We note that the latter value is the scaling of RG ,2
2

at the final plateau, i.e., when all transverse fluctuations have
been decayed, and also its scaling at equilibrium.11,14 To un-
derstand this scale, we may consider that at equilibrium, RG ,2

2

should scale as cN2 where N2 is the scale for the square
length of a stiff chain at equilibrium and c is a coefficient
which should be a decreasing function of the stiffness ratio
E/N . Our numerical results for different stiffness ratios
verify that the coefficient obeys the simple decreasing func-
tion c5(E/N)21. Figure 3 reveals that short chains show
initially a free sideways diffusion followed by a slower trans-
verse evolution at intermediate times; the latter evolution
shown over seven time decades can be described as

RG ,2
2

N3E21 ;S t

N4E21D
3/4

or RG ,2
2 ;E21/4t3/4, ~6!

i.e., it does not depend directly on the polymer length N .
In the case of long stiff chains, by plotting our numerical

results for the two minor eigenvalues for long chains (100
,N<40 000) at early times, we verified the free sideways
diffusion R

'

2 ;t at short times t!t ten . Note that for these
chains the short times extend up to t ten , and not up to tbend

as for short stiff chains. For this reason the corresponding
figure is similar to Fig. 2~a! above with the same scaling for
RG ,2

2 and time t ~and thus it has been omitted!. Our numerical

results for these chains also show that after the enforcement
of the link inextensibility at times t ten , the polymer shows a
transverse evolution of t5/6 valid for all long chains we study
in this paper (100,N<40 000). From the knowledge of this
evolution and the conditions at the transition from short to
~early! intermediate times @i.e., RG ,2

2
5O(N22) at times t

5O(N22)], the transition time scale tmid can be found
through scaling arguments. Matching the conditions at the
early transition with the scaling law at late intermediate
times,

~RG ,2
2 !early;N22S t

N22D
5/6

;~RG ,2
2 ! late;E21/4t3/4, ~7!

we can verify that t[tmid;N4E23.
The transverse evolution of long stiff chains at interme-

diate times is shown in Fig. 4, where we plot RG ,2
2 scaled

with N3E25/2 and time t with tmid;N4E23. We note that
RG ,2

2 ;N3E25/2 is the value of the minor eigenvalue at the
transition times tmid . @At these times, the chain’s transverse
evolution at early intermediate times matches that for late
intermediate times given by Eq. ~6! above.# Figure 4 shows
the free sideways diffusion at short times, the power law t3/4

evolution at late intermediate times, and also reveals the
scaling law at early intermediate times over eight time de-
cades,

RG ,2
2

N3E25/2 ;S t

N4E23D
5/6

or RG ,2
2 ;N21/3t5/6. ~8!

This evolution does not depend directly on the chain stiffness
E as we may expect based on our reasoning on the cause for
the appearance of this behavior. As happens with the flexible
chains, this power-law evolution of the stiff chains is associ-
ated with the inherent nonlinearity of the current problem.

While so far we have focused on the transverse evolu-
tion of the polymer chain, our methodology may be used to
study the relaxation of the longitudinal length of the polymer
chain as well. This is shown in Fig. 5 where we plot the
evolution of the first eigenvalue RG ,1

2 of the gyration tensor
for an initially straight flexible chain. At short and interme-
diate times the chain is practically straight; this conclusion is
also supported by the small values of the chain’s transverse

FIG. 3. Scaling law for the evolution of RG ,2
2 of short stiff polymer chains

with E/N510 at ~late! intermediate times. The curve was generated by
employing chains with N55, 10, 40, 100. Also shown is the free transverse
diffusion at short times.

FIG. 4. Scaling law for the evolution of RG ,2
2 of long stiff polymer chains

with E/N510 at early intermediate times. The curve was generated by
employing chains with N5100, 400, 1000, 4000, 10 000, 40 000. Also
shown are the free transverse diffusion at short times and the t3/4 evolution
at late intermediate times.
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evolution shown in Figs. 1 and 2 above. At times t;trouse

the chain shows a sharp decrease in the average polymer
length; as revealed in Fig. 5~b!, at long times the polymer
length shows an exponential decay

DRG ,1
2 ~ t !;N2 exp~22.3t/trouse!, ~9!

where DRG ,1
2 (t)[RG ,1

2 (t)2(RG ,1
2 )eq and (RG ,1

2 )eq is the
value of the first eigenvalue at equilibrium, (RG ,1

2 )eq

50.76(RG
2 )eq .10 @Note that the slope of 21 shown in Fig.

5~b! has been multiplied by ln10'2.3 in Eq. ~9! above.# Our
results for stiff chains reveal an exponential decay at long
times t[trod;N3 but with extended noise due to the fact
that a stiff chain at these times is very close to equilibrium.
Since at long times the chain shows negligible transverse
evolution, we may conclude that the longitudinal relaxation
of the polymer chain is the only relaxation mechanism at
these times.

As a summary, the transverse relaxation of initially
straight flexible polymers shows a free diffusion at short
times t!t ten , followed by a power-law evolution of t3/4 at
intermediate times t ten!t!trouse , and then by a plateau at
long times t>trouse . On the other hand, for stiff chains with
N<E!N2, after the short-time free diffusion the transverse
evolution follows an early t5/6 power law which is accompa-
nied by a t3/4 power law during the late intermediate times.
At long times, all chains show only longitudinal relaxation.

IV. PROPERTIES OF THE SCALING LAW
METHODOLOGY

In this paper we calculate the transverse and longitudinal
evolution of both flexible and stiff chains by monitoring the
evolution of the eigenvalues of the gyration tensor and ap-
plying proper scaling laws. Based on this methodology, we
determine the chain’s transverse evolution over extended
time periods. The two plots provided in Fig. 2 reveal the
transverse evolution of a long flexible chain with N5400
from several time decades before the tension time scale t ten

up to the end of all fluctuations at times trouse . In particular,
the conformational evolution is determined from t/trand

51027N22
50.625310212 up to t/trand510N2/(3p2)

50.5431025, i.e., over nearly 17 time decades. On the
other hand, by combining Figs. 3 and 4, the evolution of a
long stiff chain with N540 000 is revealed from t/trand

510214N4/E3
50.4310212 up to t/trand5N4/E50.64

31016, i.e., over 28 time decades.
We emphasize that the scaling law methodology em-

ployed in this paper for the configuration evolution can be
used to study other polymer properties as well. We have
already mentioned that by employing this methodology we
determined the full stress tensor over extended time and
length scales.7–9 Thus the properties of the methodology pre-
sented below are valid for any polymer property of interest.

~i! The first property of the methodology is that we can
extend the scaling laws to any time period we wish. Since
short-time scaling laws @such as the one shown in Fig. 2~a!
above# represent the earliest time behavior, we can easily
extend these laws by adding new curves for any length N and
starting the monitoring at earlier times. Scaling laws for in-
termediate times @such as the ones shown in Figs. 2~b!, 3,
and 4 above# can be extended by considering longer chains
over a proper short time period. Usually five to seven time
decades are sufficient for any length N; the first two to three
decades represent the short-time behavior for this length N ,
while the rest time decades contribute to the scaling law at
intermediate times.

We note that to achieve this goal, the different curves
should be scaled with the corresponding values at the end of
the relevant behavior @as shown in Figs. 2, 3, 4, and 5~a!
above#. On the other hand, the long-time behavior ~which
can only be scaled with the corresponding values at the be-
ginning of the behavior! cannot be extended by utilizing the
scaling law methodology @e.g., see the scaling law behavior
depicted in Fig. 5~b! above#.

~ii! The second property of the methodology is that we
should monitor a function which is present during the desired
time intervals. The polymer stress is such a function. For the
study of the configuration evolution, monitoring the eigen-
values of the gyration tensor always produces useful infor-
mation, unlike the monitoring of single beads where the use-
ful information is valid for a limited time period only.

~iii! For the best utilization of the scaling law methodol-
ogy, it is important to realize that the behavior of short chains
represents the late behavior of longer chains. This is shown
clearly in Figs. 2~b!, 3, and 4 above, where the intermediate-
time scaling behavior based on any ~short! chain is extended
to earlier times by considering the relaxation of longer

FIG. 5. Longitudinal evolution of the polymer chain. ~a! Scaling law for the
evolution of the first eigenvalue RG ,1

2 of the gyration tensor at short and
intermediate times for chain length N55, 10, 20, 40, 60, 80. Note that we
plot the difference DRG ,1

2 [RG ,1
2 (t)2(RG ,1

2 )eq @where (RG ,1
2 )eq is the value of

the first eigenvalue at equilibrium# scaled by the value of the difference at
time t50, i.e., DRG ,1

2 (0)[RG ,1
2 (0)2(RG ,1

2 )eq . ~b! Scaling law for the evo-
lution of RG ,1

2 at long times for the same values of chain length N as in ~a!.
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chains. Thus starting from short chains, we can extend the
polymer behavior by adding longer and longer chains. This
procedure can be repeated indefinitely to any length and
stiffness for which the equation of motion, Eq. ~2!, is valid.
Therefore we are able to identify all different time behaviors
affecting a specific problem.

~iv! In such a case the following question arises: can we
derive two scaling laws from the same figure? The answer is
no in the general case. To explain this property, we may
consider that having two or more scaling laws on the same
plot introduces a requirement for the scales of the y and t
axis. For example, in the case of two scaling laws showing a
power-law behavior of ta and tb, respectively, having the
laws on the same plot as that of the second law requires that

y scale for 1st law

~ t scale for 1st law!a ;
y scale for 2nd law

~ t scale for 2nd law!a

~10!

which in the general case is not true. ~Note that in order to
have the two laws on the same plot as that of the first law
produces a similar requirement with the only difference that
the denominators show a power of b instead of a .) In our
problem, expecting to derive the two scaling laws presented
in Figs. 3 and 4 above from the same plot as that for the late
t3/4 law requires that

N3E25/2

~tmid!5/6 ;
N3E21

~t'!5/6 ~11!

which does not hold. This property represents a very impor-
tant point of the scaling law methodology. In several cases
by plotting the numerical results from two different laws on
the same plot, one may be tricked to derive two laws from
the same plot, while only one is valid.

We emphasize that the ~negative! property presented
above is the reason we present the short- and intermediate-
time behaviors of flexible chains into the two plots shown in
Fig. 2 above. Similarly we present the early and late
intermediate-time behaviors of stiff chains into two different
plots ~shown in Figs. 3 and 4, respectively!. To avoid confu-
sion, we note that each figure shows only one scaling law
behavior. For example, Fig. 4 shows the power-law evolution
of t5/6; the power laws t1 and t3/4 represent single-length
evolution and are included in this figure to show the match-
ing with the short-time and late intermediate-time behaviors,
respectively.

V. CONCLUSIONS

In this paper we further developed the scaling law
methodology11 for calculating polymer properties over ex-
tended time periods. In a systematic way, we presented the
properties of the method and showed how all the possible
time behaviors can be determined for problems with multiple
behaviors. We emphasize that the scaling law methodology
can be employed to determine various polymer properties
simultaneously.

This methodology was employed to study the configura-
tion relaxation of initially straight flexible and stiff chains.
To achieve this, we monitored the dynamic evolution of the

eigenvalues of the gyration tensor; these eigenvalues were
shown to be appropriate functions to describe both the trans-
verse and longitudinal relaxation of the polymer chain.

The configuration evolution was determined over ex-
tended time scales ~i.e., over 17 time decades for flexible
chains and 28 time decades for stiff ones! as well as polymer
lengths. Based on the discussion for flexible chains presented
in the Introduction of Ref. 17, identifying our link length b
with half the Kuhn length results in b50.065 mm for DNA.
Thus the maximum length, N5400, we employed in this
study for flexible chains corresponds to a DNA molecule
with a contour length L526 mm. This flexibility parameter
~contour length over Kuhn length! corresponds to a polysty-
rene molecule of molecular weight '140 000.17 In the
present study we restricted our results for flexible chains up
to polymer lengths N5400 because in this length range all
the relevant behaviors were clearly revealed. However, we
can easily study much longer chains, at least up to N
540 000 as our numerical results for stiff chains verify.
These lengths correspond to DNA molecules up to 2.6 mm
long and to synthetic molecules of polystyrene with molecu-
lar weight of O(107)!

A comparison of the evolution of the second eigenvalue
RG ,2

2 at short and intermediate times presented in Figs. 1 and
2 above with the stress relaxation at the same times ~shown
in Figs. 1–3 in Ref. 8!, reveals that the transition from the
short- to the intermediate-time behavior and from the latter
to the long-time behavior occurs exactly at the same time for
both functions. A similar conclusion can be drawn for the
case of stiff polymers which show two different
intermediate-time behaviors, as we discuss in a future
publication.9 These comparisons reveal that the evolution of
the eigenvalues is a proper measurement of the configuration
evolution for the entire chain and its impact on the stress
relaxation.

By employing proper conformational functions ~such as
the eigenvalues of the gyration tensor! and applying the scal-
ing law methodology, we obtain invaluable information for
the chain’s evolution over extended time periods which may
be used for the understanding of other polymer properties.
We emphasize that doing this, we avoid the need to use
~approximate! analytical predictions for which the range of
validity is generally not well known. Therefore the method-
ology we developed for monitoring the polymer configura-
tion should have wide applications in the study of polymer
rheology.
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