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Abstract

We introduce an unsplit staggered mesh scheme (USM) that solves multidimensional magnetohy-
drodynamics (MHD) by a constrained transport method with high-order Godunov fluxes, incorporating
three new developments that enhance performance. The USM scheme handles multidimensional MHD
terms, proportional to∇ ·B, in a new directionally unsplit data reconstruction step. This reconstruction
step maintains in-plane dynamics very well, as shown by two-dimensional tests. The scheme uses a
compact form of the discrete induction equation and since the accuracy of the computed electric field
directly influences the quality of the magnetic field solution, we address the lack of proper dissipative
behavior in previous electric field averaging schemes and present a new modified electric field construc-
tion (MEC) that includes multidimensional derivative information and is more accurate. We also obtain
a relation between the induction equation and its difference form and use this to derive a set of cor-
responding modified equations which show anti-dissipative behavior of cell-face magnetic fields. We
present an efficient treatment suppressing the anti-dissipative terms by introducing a difference formula-
tion with balancing dissipation control (DC) that maintains the divergence-free property on a staggered
meshes. We use this difference scheme to highlight important properties that avoid unphysical growth
of field variables. Our numerical tests show that numerical instability can occur if the anti-dissipation
terms are ignored or otherwise not explicitly controlled. A series of comparison studies demonstrates
the excellent performance of the full USM-MEC-DC scheme for many quite stringent multidimensional
MHD test problems. The scheme is implemented and currently available in the University of Chicago
ASC FLASH Center’s FLASH 3 release.

1 Introduction

A well-designed numerical MHD algorithm should generate solutions that reflect the fact that there
are no isolated magnetic monopoles. Brackbill and Barnes (1980) [6] showed that violating the∇ ·B = 0
constraint can cause fictitious forces to develop parallel to the magnetic fields. This can result in extra source
terms in the momentum, induction and energy equations. For instance, the Lorentz force per unit volume
(assuming overall charge neutrality) can be written as

j ×B = (∇×B)×B (1)
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= (B ·∇)B− 1
2

∇B2 (2)

= ∇ · (BB)− (∇ ·B)B− 1
2

∇B2, (3)

wherej andB are the current density and magnitude of the magnetic fields. The first and second terms in
equation (2) represent the forces from magnetic tension and magnetic pressure, respectively.

From (3), if ∇ ·B 6= 0 the nonzero value of∇ ·B will grow proportionally withB producing an extra
compressive magnetic component parallel to the magnetic field and an unphysical magnetic acceleration
along the field lines. Since the gas pressure,

p = (γ−1)(E− 1
2

ρU2− 1
2

B2), (4)

whereE,U , andB are the total energy density, magnitudes of velocity fields and magnetic fields respectively,
in simulations, nonzero∇ ·B value will increase the magnetic pressure1

2B2 and from (4), the gas pressurep
will correspondingly be reduced relative to the divergence-free case. In many numerical simulations,∇ ·B
is typically small, but not exactly zero, and being a discretization error, the resultant error can accumulate
over the computational domain and produce erroneous solutions.

More generally, unphysical growth of the magnetic field in a simulation can lead to negative pressure
states in very lowβ plasma flows in a region where a predictive magnetic pressure exhibits spurious growth
rates, which in turn, fails to preserve the physical positivity of gas pressure. On the other hand in very high
β regimes it is also hard to maintain correct plasma flow properties because very weak magnetic fields can
easily be affected at the level of discretization errors. In either case, erroneous magnetic field growth rates
influence the energy balance between the thermal and magnetic pressures, potentially changing the topology
of the magnetic fields, affecting the global field configuration and attendant particle propagation.

For these reasons attention has been paid to staggered mesh schemes which naturally avoid these issues.
Here we develop a new such discrete formulation for the induction equation which avoids unphysical growth
of the magnetic fields, and produces accurate and stable plasma solutions over a wide range of plasmaβ.

1.1 Cell-centered Fields Algorithms in High-Order Godunov MHD

Over the last decade high-order Godunov methods, originally developed in hydrodynamics, have be-
come of great interest in MHD because of their accuracy and robustness. A brief list of developments
includes the work of Brio and Wu (1988) [8], Zachary, Malagoli, and Colella (1994) [37], Dai and Wood-
ward (1994) [11], Powellet al. (1994) [28], Ryu and Jones (1995) [30], Balsara and Spicer (1998) [2],
Londrillo and Del Zanna (1999) [24], Penet al. (2003) [27], Londrillo and Del Zanna (2004) [25], Balsara
(2003) [4], Crockettet al. (2005) [10], and Gardiner and Stone (2005) [17].

The high-order Godunov scheme, first developed by van Leer (1979) for Euler flows has thereafter
opened a new era of robust and accurate performance in numerical simulations of MHD as well as hydro-
dynamics. Early efforts in high-order Godunov MHD schemes focused entirely on numerical formulations
that collocated the magnetic fields at cell centers because the underlying aspects of Godunov algorithms are
based on conservation laws in which the cell-centered variables are conserved. Thus the MHD equations
were treated as a straightforward system of conservation laws in earlier Godunov formulations.

In formulations with cell-centered fields there is no particular difficulty encountered except in multidi-
mensions. This is because in one-dimensional MHD the normal field is held constant and divergence-less
evolution of the magnetic fields is obtained naturally. In multidimensional MHD, however, the requirement
of maintaining the solenoidal constraint involves solving the induction equation, which for ideal MHD has
the form,

∂B
∂t

+∇×E = 0. (5)
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Taking the divergence of the induction equation (5) gives,

∂∇ ·B
∂t

= ∇ · (−∇×E) = 0, (6)

and we see that the induction equation implies the divergence-less evolution of the magnetic fields. This
analytical result may not hold true numerically, because the discrete divergence of the discrete curl may not
give zero identically.

Until recently, two traditional approaches have been proposed to enforce the divergence-free constraint
in formulations using cell-centered fields. The first is the projection method, proposed by Brackbill and
Barnes in the context of MHD[6] (see also early works cited in [1,30,37] and recently in [10]), which takes
a divergence-cleaning step in their high-order Godunov based MHD scheme. In this approach two choices
are available, a scalar or vector divergence-cleaning, depending on the choice of real or Fourier spaces in
which the divergence-cleaning is performed. The disadvantage of the approach is the cost of the associated
Poisson equation solution by either direct or iterative methods. In addition to the computational expensive,
the projection methods has restrictions on types of boundary conditions and associated difficulties on non-
Cartesian domains. On a parallel or distributed computer, since the method requires a global solution to a
Poisson equation, there is an additional coding burden and cost of all-to-all communication. Yet another
disadvantage is extra complexity because the discretization of the elliptic equation must be compatible with
that of the MHD equations. An adaptive mesh refinement (AMR) scheme can be implemented in the scalar
divergence-cleaning approach, but become progressively computationally expensive as the AMR hierarchy
increases in the Poisson solve. The situation is even more acute for implementing a vector divergence-
cleaning approach for an AMR algorithm. For more details on these and other numerical issues for this
approach see [5,35].

The second method, the so-called 8-wave formalism, proposed by Powellet al. [29], utilizes the modi-
fied MHD equations that explicitly includes source terms proportional to∇ ·B. An additional eighth wave
reflects the propagation of the magnetic monopole ”field,” designed to be convected with local flow speeds,
and eventually advected out of the computational domain. Although the scheme is found to be robust and
accurate (as compared to the basic conservative scheme), this results in a non-conservative form of the MHD
governing equations and is susceptible to producing incorrect jump conditions and propagation speeds across
discontinuities in certain problems [29, 35]. Because of its inherent formalism allowing a truncation error
of ∇ ·B this scheme lacks the divergence-free property and can potentially fail to capture correct magnetic
field topologies. There have also been other approaches [13, 20] to extend 8-wave schemes that manifest
∇ ·B as a source term.

1.2 Cell Face-centered Fields Algorithms in High-Order Godunov MHD: the Staggered
Mesh Algorithm

To overcome issues raised in formulating high-order Godunov based MHD using cell-centered fields,
researchers have developed various staggered mesh algorithms that use a staggered collocation of the mag-
netic field and solve the induction equation (5) via a discrete form of Stokes’ Theorem.

The staggered mesh algorithm, first introduced by Yee (1966) [36] to compute divergence-free MHD
flows in a finite difference formulation that transports the electromagnetic fields, has resulted in numerous
approaches. Bretchtet al. (1981) [7] used a staggered mesh formulation for their global MHD modeling of
Earth’s magnetosphere for which they used a non-linear FCT flux limiter. Evans and Hawley 15] followed
a vector potential approach on a staggered grid for evolution of the MHD induction equation. Another ap-
proach by DeVore (1991) [14] also used the staggered mesh arrangement and applied it using a flux corrected
transport (FCT) algorithm. Following Evans and Hawley (1988) [15], the termconstrained transport(CT)
has become popular and encompasses all the various methods developed with a staggered mesh approache
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[2,4,12,14,15,17,24,31,35]. The original CT method placed the surface variables – the components of the
magnetic field – at the cell face centers (cell-faces), and the rest of the volumetric variables such as mass,
momentum and energy at the cell-centers on a staggered grid. A variant CT approach by Tóth [35] placed
all of the variables at the cell centers and used central differencing for the induction equation. Tóth also
made an extensive comparative study of different MHD schemes focusing on the divergence-free property
of each scheme. and compared various approaches differing in how the base scheme (e.g.van Leer’s TVD-
MUSCL, or Yee’s TVD-Lax Friedrich) is modified with regard to the induction equation. Tóth’s study not
only compared three major algorithms (e.g. projection schemes, 8-wave schemes, and CT based staggered
mesh schemes) but also different approaches within the CT formulation.

In CT schemes, different approaches are adopted in obtaining the electric field,E = −u×B (in ideal
MHD). Theflux-CT scheme of Balsara and Spicer [2] uses second-order Godunov fluxes to constructE by
using the so-called duality relationship between the components of the flux vector and the electric fields.
Thefield-interpolatedCT scheme of Dai and Woodward [12] uses interpolated magnetic and velocity fields
to obtain the electric field in their Godunov-type formulation. Ryuet al. [31] also proposed atransport-flux-
interpolatedCT scheme which basically transports the upwind fluxes along with the upwind correction terms
for maintaining the TVD property. Balsara studied [3, 4] a new reconstruction algorithm for cell-centered
magnetic fields. In thismodified-CT approach the magnetic fields at each cell center are reconstructed di-
rectly from divergence-free cell-face field components using a reconstruction polynomial. By design such
reconstructed magnetic fields at the cell centers (and not only the cell-face fields) are also guaranteed to
maintain the divergence-free constraint. Recently, Gardiner and Stone [17] have developed a multidimen-
sional CT scheme that is consistent with plane-parallel, grid-aligned one-dimensional base flow problems
by modifying the simple arithmetic electric field averaging scheme of Balsara and Spicer [2]. Another ap-
proach,upwinding-CT (UTC) scheme, was proposed by Londrillo and Del Zanna [25]. Their approach used
a similar reconstruction algorithm as in [3,4] for the magnetic field and evaluates the electric field based on
an upwinding strategy in their Godunov-type scheme. In the UTC scheme, the divergence-free property is
maintained intrinsically. Yet it is evident from their test results that the scheme suffers from keeping∇ ·B
only approximately low, allowing values up to an order of 10−4 (See [24]), while, as shown later the scheme
presented here preserves∇ ·B to the order of 10−12−10−16 in simulations. It is worth mentioning that, in
Tóth’s work [35], one of the most accurate high-order MHD schemes is the flux-CT scheme of Balsara and
Spicer [2]. Balsara [3, 4] has also extended his original flux-CT scheme and implemented it on an AMR
grid.

In developing our scheme we adopt the flux-CT approach of [2] and extend its basic ideas to develop a
new unsplit staggered mesh scheme. Upon systematically developing a modified electric field construction
(MEC) and dissipation control (DC) we term our complete schemes USM-MEC-DC.

The paper is organized as follows. In Section 2, we first introduce a new second-order MUSCL-Hancock
type data reconstruction scheme using a single step characteristic tracing formalism. This step includes
multidimensional MHD terms important in nonlinear evolutionary plasma flows. The data reconstruction
step is followed by solving a Riemann problem that produces high-order Godunov fluxes. Using these
fluxes, in Section 3, we present a new modified electric field construction (MEC) algorithm that extends
the basic construction scheme of Balsara and Spicer [2] to a scheme containing multidimensional gradient
information. In Section 4, we examine a discrete form of the induction equation that has been used in
CT-type schemes and its address anti-dissipative properties by studying associated modified equations. We
use this relationship to present a new discrete formulation that controls anti-dissipation and also ensures the
divergence-free constraint. In Section 5 we present results of various test problems that demonstrate the
significant quantitative and qualitative performance of our scheme. We conclude the paper in Section 6.
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2 The USM scheme in Ideal MHD

We focus on solving the equations of ideal magnetohydrodynamics (MHD) formulated as hyperbolic
system of conservation laws as

∂ρ
∂t

+∇ · (ρu) = 0, (7)

∂ρu
∂t

+∇ · (ρuu−BB)+∇ptot = 0, (8)

∂B
∂t

+∇ · (uB−Bu) = 0, (9)

∂E
∂t

+∇ · (ue+uptot−BB ·u) = 0. (10)

The above equations represent the continuity, momentum, induction, and energy equations respectively.
The conservative variables include the plasma mass densityρ, momentumρu, magnetic fieldB, and total
energy densityE. The plasma velocity isu, current densityj = ∇×B, total pressureptot = p+B2/2, and
thermal pressurep = (γ−1)(E− 1

2ρU2− 1
2B2), with U2 = u2 +v2 +w2, B2 = B2

x +B2
y +B2

z, andγ is ratio
of specific specific heats. In addition, the MHD equations should satisfy the solenoidal constraint∇ ·B = 0,
which is implicit in the conservation form. The above equations can be written in a matrix form, e.g., in
two-dimension,

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (11)

whereU contains the eight MHD conservative variables andF,G represent corresponding conservative
fluxes inx,y directions. The conserved variable vector

U =(ρ,ρu,ρv,ρw,Bx,By,Bz,E)T , (12)

and multidimensional fluxesF,G are

F =



ρu
ρu2 + ptot−B2

x
ρuv−ByBx

ρuw−BzBx

0
uBy−vBx(=−Ez)
uBz−wBx(= Ey)

(E + ptot)u−Bx(uBx +vBy +wBz)


, (13)

G =



ρv
ρvu−BxBy

ρv2 + ptot−B2
y

ρvw−BzBy

vBx−uBy(= Ez)
0

vBz−wBy(=−Ex)
(E + ptot)v−By(uBx +vBy +wBz)


. (14)

Note that Ohm’s law for perfectly conducting plasma,E =−u×B, has been used, whereE≡ (Ex,Ey,Ez)T ,
is the electric fields.
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2.1 Data Reconstruction for High-order Godunov Scheme

The first step of the USM scheme for multidimensional MHD uses a second-order MUSCL-Hancock
type TVD algorithm for data reconstruction. The reconstruction uses cell-centered data to calculate cell
interface values that are required to solve a Riemann problem. In this reconstruction step it is important to
include terms that reflect the multidimensional character of the MHD equations. These relationships have
usually been ignored in one-dimension based dimensionally split type data reconstruction formulations but
were recently highlighted by Crockettet al. [10] and Gardineret al. [17].

In this section we present a new directionally unsplit data reconstruction algorithm that includes these
multidimensional MHD terms. This approach is computationally more efficient than previous predictor-
corrector based data reconstruction schemes because it does not involve a Riemann problem solution which
arises in the usual corrector step [9, 10, 17]. Additionally, it is mathematically more consistent with the
governing multidimensional MHD equations than a one-dimension based data reconstruction algorithm used
in [10] and [17].

We being the discussion by the rewriting of the conservative form of equation (11) in primitive variables,

Q
∂V
∂t

+
∂F
∂U

Q
∂V
∂x

+
∂G
∂U

Q
∂V
∂y

= 0, (15)

with U = QV such that the matrixQ relates the primitive variables to the conserved ones. Then

∂V
∂t

+Q−1 ∂F
∂U

Q
∂V
∂x

+Q−1 ∂G
∂U

Q
∂V
∂y

= 0, (16)

gives rise to the exact flux Jacobian matrices,

Ax = Q−1 ∂F
∂U

Q = Q−1 ∂F
∂V

, Ay = Q−1 ∂G
∂U

Q = Q−1 ∂G
∂V

, (17)

and equation (16) can be written as

∂V
∂t

+Ax
∂V
∂x

+Ay
∂V
∂y

= 0. (18)

After algebraic manipulations the well-known matrices,

Ax =



u ρ 0 0 0 0 0 0
0 u 0 0 −Bx

ρ
By

ρ
Bz
ρ

1
ρ

0 0 u 0 −By

ρ −Bx
ρ 0 0

0 0 0 u −Bz
ρ 0 −Bx

ρ 0
0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −ku ·B 0 0 u


, (19)

Ay =



v 0 ρ 0 0 0 0 0
0 v 0 0 −By

ρ −Bx
ρ 0 0

0 0 v 0 Bx
ρ −By

ρ
Bz
ρ

1
ρ

0 0 0 v 0 −Bz
ρ −By

ρ 0
0 −By Bx 0 v −u 0 0
0 0 0 0 0 0 0 0
0 0 Bz −By 0 −w v 0
0 0 γp 0 0 −ku ·B 0 v


, (20)
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are obtained, wherek = 1− γ. Note that, from relations (13) and (14), there are seven non-trivial equations
and one trivial equation for which the time derivative becomes zero. This yields the zeros located in each
corresponding row in the above 8×8 matrices (19) and (20). In general, the primitive form of the equations
can be replaced by a quasi-linear system of equations,

∂V
∂t

+ Ā ·∇V =
∂V
∂t

+(Āx, Āy) ·∇V = 0, (21)

whereĀ ≡ Ā(V̄) = Ā(VL,VR) with left and right states,VL,VR, assuming these and the solution are close
to a constant state,̄V.

In one-dimensional MHD the full eight set of MHD equations can be reduced to seven. Should the
gradient of the normal magnetic field be zero, such a constant normal field is not to be evaluated. For
multidimensional MHD, however, the terms∂Bx/∂x and∂By/∂y do not vanish in general, and play crucial
roles that cannot be ignored. Dimensional splitting based on a one-dimensional MHD system of equations
lacks these gradient terms and can produce incorrect solutions.

In order to include the gradient terms for multidimensional MHD in a data reconstruction fomulation, we
present an approach which is built upon a directionally unsplit second-order MUSCL-Hancock algorithm.
We treat the evolution of the normal field,BN, separately from the other primitive variables, i.e., for a case
with BN = Bx, define

V̄ =
[

V̂
Bx

]
andĀx =

[
Âx ABx

0 0

]
. (22)

HereV̂ is a 7×1 vector excludingBx, Âx is a 7×7 matrix omitting both the fifth row and column in the
original matrixAx (19), andABx is a 7×1 vector,

ABx =
[
0,−Bx

ρ
,−

By

ρ
,−Bz

ρ
,−v,−w,−ku ·B

]T

. (23)

Similarly, for BN = By, Ây is constructed by omitting both the sixth row and column in the original matrix
Ay (20), andABy is

ABy =
[
0,−Bx

ρ
,−

By

ρ
,−Bz

ρ
,−u,−w,−ku ·B

]T

. (24)

A similar approach was adopted by Crockettet al. [10] but their equivalent terms for̂Ax andÂy omitted
the factork in the last entry. The termsABx andABy will be referred to as multidimensional MHD terms
in the following. Note that the hat (ˆ) notation has been introduced for the reduced system (i.e., the one
corresponding to the usual one-dimensional MHD equation) and the bar (-) notation retained for the re-
assembled full system.

The reconstruction of the four multidimensional Riemann statesVn+1/2
i, j,N , Vn+1/2

i, j,S , Vn+1/2
i, j,E andVn+1/2

i, j,W
at cell boundaries, illustrated in Figure 1, is achieved to second-order accuracy by using a TVD MUSCL-
Hancock approach. In extrapolating the cell-center values to the cell interfaces we use a TVD slope limiter
applied to characteristic variables.

We mention an important strategy for employing TVD limiting at this stage. The limiting is applied
to the cell-centered variables, such as density, velocity fields, and pressure, in both normal and transversal
directions, while the limiting is applied only in the transversal direction for the cell-centered magnetic fields;
hence no limiting is applied to the normal field variables and we directly use the divergence-free field values
from the previous time step at the cell-faces. As a consequence, theC0 continuity of the normal component
of the magnetic field at cell-faces is maintained. This strategy is based on numerical considerations to
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prevent undesirable jumps in the normal components of the fields at the cell boundaries. Indeed, Powell
et al. [28] noticed that if the normal fields have jumps at the cell boundaries, the resultant cell-centered
field based MHD formulation using a Riemann solver becomes ill-defined. They eventually resolved this by
introducing the 8-wave model with modified MHD equations.

In the current scheme using divergence-free cell face-centered fields the continuity consideration of the
normal fields at the cell interfaces is thus met straightforwardly.

∗(i, j)

Vn+1/2
i, j−1,N

Vn+1/2
i, j,S

Vn+1/2
i, j,N

Vn+1/2
i, j+1,S

Vn+1/2
i−1, j,E Vn+1/2

i, j,W Vn+1/2
i, j,E Vn+1/2

i+1, j,W

Figure 1: The boundary extrapolated values on a 2D cell geometry. The values are subscripted byN,S,E
andW accordingly. These are used as the state values for solving Riemann problem at each cell boundary
interface.

Given the quasi-linearized MHD equations,

Vn+1/2
i, j,E,W = Vn

i, j +
1
2
[±I − ∆t

∆x
Ax(Vn

i, j)]∆
n
i −

∆t
2∆y

Ay(Vn
i, j)∆

n
j , (25)

Vn+1/2
i, j,N,S = Vn

i, j −
∆t

2∆x
Ax(Vn

i, j)∆
n
i +

1
2
[±I − ∆t

∆y
Ay(Vn

i, j)]∆
n
j , (26)

where the plus and minus signs correspond to directions ofN,E andS,W respectively, andAx(Vn
i, j), Ax(Vn

i, j)
represent matrices calculated atVn

i, j , we first consider data reconstruction in the normal direction (e.g., the
first two terms in the left hand side of (25)),[

V̂
Bx

]n+1/2,‖

i, j,E,W

=
[

V̂
Bx

]n

i, j

+
1
2

(
±
[

Î 0
0 1

]
− ∆t

∆x

[
Âx ABx

0 0

]n

i, j

)
∆̄n

i , (27)

where∆̄n
i =

(
∆̂n

i ,∆Bn
x,i

)T
and∆Bn

x,i = bn
x,i+1/2, j −bn

x,i−1/2, j (the meaning of̂∆n
i becoming clear shortly). The

notationBτ andbτ denote cell-centered and cell-face magnetic field components respectively, withτ = x,y,z.
In the staggered mesh CT algorithm,∆Bn

x,i is constructed such that the numerical divergence is zero using
the cell-centered magnetic fields. In other words,∆Bn

x,i and∆Bn
y, j are chosen such that

∆Bn
x,i

∆x
+

∆Bn
y, j

∆y
= 0, (28)
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where we analogously define∆Bn
y, j = bn

y,i, j+1/2−bn
y,i, j−1/2. As noted previously no TVD limiting is applied

to ∆Bn
x,i or ∆Bn

y, j . Solving (27) is equivalent to considering two subsystems V̂n+1/2,‖
i, j,E,W = V̂n

i, j +
1
2

(
±Î − ∆t

∆xÂx

)n

i, j
∆̂n

i − ∆t
2∆x(ABx)

n
i, j∆Bn

x,i ,

(Bx)
n+1/2,‖
i, j,E,W = Bn

x,i, j ± 1
2∆Bn

x,i .
(29)

where the second relation in (29) becomes

(Bx)
n+1/2,‖
i, j,E,W = Bn

x,i, j ±
1
2

∆Bn
x,i = bn

x,i±1/2, j , (30)

when the cell-centered magnetic field is reconstructed as

Bn
x,i, j =

1
2

(
bn

x,i+1/2, j +bn
x,i−1/2, j

)
. (31)

We apply the eigenstructure of the one-dimensional based MHD equations and use characteristic tracing
for the first two terms in the first equation in (29). Applying characteristic tracing results in

V̂n+1/2,‖
i, j,W = V̂n

i, j +
1
2 ∑

k;λk
i, j<0

(
−1− ∆t

∆x
λk

i, j

)
r k

x,i, j ∆̂αn
i −

∆t
2∆x

(ABx)
n
i, j∆Bn

x,i , (32)

V̂n+1/2,‖
i, j,E = V̂n

i, j +
1
2 ∑

k;λk
i, j>0

(
1− ∆t

∆x
λk

i, j

)
r k

x,i, j ∆̂αn
j −

∆t
2∆x

(ABx)
n
i, j∆Bn

x,i , (33)

with characteristic limiting in the normal direction,

∆̂αn
i = TVD_Limiter

[
lkx,i, j · ∆̂n

i,+, lkx,i, j · ∆̂n
i,−

]
. (34)

Hereλk
x,i, j , r

k
x,i, j , l

k
x,i, j represent the eigenvalue, and the right and left eigenvectors ofÂx, calculated at the

corresponding cell center(i, j) in thex-direction at time stepn, and∆̂n
i,+ = V̂n

i+1, j − V̂n
i, j , ∆̂n

i,− = V̂n
i, j − V̂n

i−1, j

(similarly for ∆̂n
j,±).

The next step includes the transversal flux contribution to the calculated normal state variables. This
transversal step, using the eigenstructure of the MHD equations, completes the update from the transversal
flux contributions, e.g., the third and second terms in (25) and (26), respectively. For instance, in (25) the
transversal step can be updated as

Vn+1/2
i, j,E,W = Vn+1/2,‖

i, j,E,W − ∆t
2∆y

Ay(Vn
i, j)∆

n
j . (35)

Again, this can be written as[
V̂
By

]n+1/2

i, j,E,W

=
[

V̂
By

]n+1/2,‖

i, j,E,W

− ∆t
2∆y

[
Ây ABy

0 0

]n

i, j

∆̄n
j . (36)

This reduces to solving just one subsystem,

V̂n+1/2
i, j,E,W = V̂n+1/2,‖

i, j,E,W − ∆t
2∆y

(Ây)n
i, j ∆̂

n
j −

∆t
2∆y

(ABy)
n
i, j∆Bn

y, j . (37)
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Using the eigensystem at the cell center (i, j) in they-direction, we get,

V̂n+1/2
i, j,E,W = V̂n+1/2,‖

i, j,E,W − ∆t
2∆y

7

∑
k=1

λk
y,i, j r

k
y,i, j ∆̂αn

j −
∆t

2∆y
(ABy)

n
i, j∆Bn

y, j , (38)

where
∆̂αn

j = TVD_Limiter
[
lky,i, j · ∆̂n

j,+, lky,i, j · ∆̂n
j,−

]
. (39)

Thus, the four Riemann statesVn+1/2
i, j,N ,Vn+1/2

i, j,S ,Vn+1/2
i, j,E and Vn+1/2

i, j,W are obtained for each cell. At this

stage, however, it should be noticed that upon taking the transversal steps (e.g., in (38)) theC0 continuity of
the normal fields at the cell boundaries imposed in the second equation of the normal steps (e.g., (29) and
(30)) have been lost. Maintaining this continuity requirement of the normal fields at the boundaries has been
previously recognized as an important issue in the MHD Riemann problem[4, 10, 17]. This requirement is
essential for physical consistency when solving the MHD Riemann problem. Computationally, allowing
jumps in the normal fields at the cell boundaries can lead to more diffusive solutions to Riemann problems
stemming from the upwinding procedure in the Riemann solvers. For the transversal components of the
magnetic field, however, discontinuities are allowed and mediate the proper upwinding for them. As a last
step, therefore, it is desirable to enforce the continuity of the normal field components at the cell faces, based
on the relationship in equation (30). This leads to

Bn+1/2
x,i, j,E = bn

x,i+1/2, j , Bn+1/2
x,i, j,W = bn

x,i−1/2, j , (40)

Bn+1/2
y,i, j,N = bn

y,i, j+1/2, Bn+1/2
y,i, j,S = bn

y,i, j−1/2. (41)

The algorithm for our Riemann state data reconstruction is based on the method of multidimensional
characteristic analysis that can be achieved in one single step, without solving any Riemann problem for
transversal step. Other recent approaches to obtain second-order accurate approximations of the transversal
flux derivatives can be found in [9, 10]. There the transversal updating step used the normal predictor step
values to solve another set of two intermediate Riemann problems. The resulting interface fluxes were
then used to take numerical derivatives, completing the construction of the second-order Riemann states for
evaluating the multidimensional Riemann states.

The current data reconstruction method, which accommodates the MHD eigenstructure multidimen-
sionally in a single step, is simpler and computationally less expensive than the previous approach which
uses an extra Riemann solve to evaluate the transversal fluxes. This approach causes no loss of stability
for appropriately chosen Courant numbers. The characteristic method is mathematically consistent with the
quasi-linearized system of MHD equations.

Another desirable aspect of the current approach can be seen in that the multidimensional termsABx

andABy are included such that they are proportional to∆Bx,i/∆x and∆By, j/∆y. These derivatives are com-
puted using the cell-face magnetic fields that are divergence-free from the CT-type formulation of the USM
scheme. This implies that the quantitiesu,v,w,Bz, p are all evolved proportional to the sum∆Bx,i

∆x + ∆By, j

∆y ,
which is maintained to be zero numerically (see equation (28)). As a result, this dependence has an impor-
tant meaning: if perturbations to the divergence∆Bx,i

∆x + ∆By, j

∆y were to be introduced, such perturbation would
affect the behavior of all ofu,v,w,Bz, p. For example, as noted by Gardineret al. [17], maintaining planar
dynamics in two-dimensional MHD problems and not allowing erroneous growth of theBz component is
directly dependent on how the terms∆Bx,i/∆x and∆By, j/∆y are handled in the data reconstruction step. In
the current multidimensional predictor-corrector algorithm such growth inBz is avoided, and its success is
illustrated in the in-plane field loop advection test problem of Section 5.

The use of the transversal Godunov flux as in [10] can potentially yield incorrect results. Although
[10] used similar multidimensional termsABx∆Bn

x,i/∆x for computingE,W normal states andABy∆Bn
y, j/∆y
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for N,S normal states, the other set of the multidimensional terms,ABy∆Bn
y, j/∆y (for E,W states) and

ABx∆Bn
x,i/∆x (for N,Sstates), are not included in the transversal directions; instead the numerical derivative

of the transversal fluxes is included. Updating such transversal fluxes can be somewhat similar to including
ABy∆Bn

y, j/∆y (for E,W states) andABx∆Bn
x,i/∆x (for N,Sstates), but the transversal fluxes and the multidi-

mensional terms in the normal directions are not canceled identically to ensure the divergence-free property.
Now that the second-order accurate Riemann states,Vn+1/2

i, j,N,S,E,W, are available second-order Godunov
fluxes can be evaluated by solving Riemann problems (RP for short) at cell interfaces. That is,

F∗,n+1/2
i−1/2, j = RP

(
Vn+1/2

i−1, j,E,Vn+1/2
i, j,W

)
, F∗,n+1/2

i+1/2, j = RP
(

Vn+1/2
i, j,E ,Vn+1/2

i+1, j,W

)
, (42)

and
G∗,n+1/2

i, j−1/2 = RP
(

Vn+1/2
i, j−1,N,Vn+1/2

i, j,S

)
, G∗,n+1/2

i, j+1/2 = RP
(

Vn+1/2
i, j,N ,Vn+1/2

i, j+1,S

)
. (43)

2.2 The USM Cell-centered Solution Update

The algorithm updates the cell-centered conserved variables at time stepn+ 1 using an unsplit single
step,

Un+1
i, j = Un

i, j −
∆t
∆x

{
F∗,n+1/2

i+1/2, j −F∗,n+1/2
i−1/2, j

}
− ∆t

∆y

{
G∗,n+1/2

i, j+1/2 −G∗,n+1/2
i, j−1/2

}
. (44)

In general, after this update, non-zero divergence magnetic fields are still present at cell centers. In the
following two sections we describe a new modified electric field construction (MEC) scheme and an efficient
dissipation control (DC) algorithm for the discrete induction equation that keep the cell-face magnetic fields
divergence-free numerically.

The choice of a time step∆t for our unsplit scheme is limited by the CFL condition, (in 2D),

∆t
(∣∣∣λmax

x,i, j

∣∣∣
∆x

+

∣∣∣λmax
y,i, j

∣∣∣
∆y

)
< c. (45)

We use a CFL number ofc = 0.5 for all calculations, except where otherwise noted.

3 Construction of Electric Fields

A new modified electric field construction (MEC) scheme that demonstrates full directional information
is introduced and studied in this section. The MEC scheme is obtained by using the second-order accurate
Godunov fluxes that are available in staggered mesh schemes (see [2]). Taylor expansions are applied to the
flux components of the magnetic fields (or electric fields by the duality relationship [2]) at the face centers to
obtain interpolations at each cell corners , where the electric fields are collocated on a staggered grid. These
electric fields are then used in the discrete induction equations to evolve divergenceless magnetic fields at
cell-faces.

3.1 Electric Field Averaging Scheme

As already mentioned the CT based scheme requires the evaluation of the electric fieldE. Balsara and
Spicer [2] proposed to evaluate the electric field on a staggered mesh using high-order Godunov fluxes.
There the original arithmetic averaging scheme for the cell-corner (cell edges in three-dimensions) electric
field values, uses the duality relationship between the high-order Godunov flux components for magnetic
fields and the electric fields. For instance, the negative of the sixth component of the flux inx (equation (13))
and the positive of the fifth component of the flux iny (equation (14)) can be interpreted as thezcomponent
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of the electric fields,Ez, at the cell face centers on the staggered grid. Their proposed way to constructEz at
each cell corner was by taking a spatial average directly from this duality relationship through

En+1/2
z,i+1/2, j+1/2 =

1
4

{
−F∗,n+1/2

6,i+1/2, j −F∗,n+1/2
6,i+1/2, j+1 +G∗,n+1/2

5,i, j+1/2 +G∗,n+1/2
5,i+1, j+1/2

}
=

1
4

{
E∗,n+1/2

z,i+1/2, j +E∗,n+1/2
z,i+1/2, j+1 +E∗,n+1/2

z,i, j+1/2 +E∗,n+1/2
z,i+1, j+1/2

}
, (46)

where the subscripts 6 and 5 denote the sixth and fifth components in the corresponding flux vectors in
equations (13)–(14), and the superscript∗ denotes the fluxes (or flux components) directly from the high-
order Godunov schemes. See Figure 2 for the staggered mesh arrangement in two-dimensions.

The electric fieldEz in equation (46) can be used to update the induction equation in an appropriate
discretization in different MHD solvers. To discretize the induction equation in a more general sense, we
consider integrating the differential form (5) over a single three-dimensional control volume[i− 1

2, i + 1
2]×

[ j− 1
2, j + 1

2]× [k− 1
2,k+ 1

2] in a Cartesian staggered grid (see Figure 3). Taking a surface integral yields

∂
∂t

Z Z
∑` F`

B ·ndA+
Z Z

∑` F`

∇×E ·ndA= 0, (47)

wheren is a unit normal vector and the summation is taken over the six bounding facesF`, ` = 1, . . . ,6.
Then for each faceF` of the control volume, applying Stokes’ Theorem, we get

∂
∂t

Z Z
F`

B ·ndA = −
Z Z

F`

∇×E ·ndA

= −
Z

∂F`

E ·Tdl (48)

whereT is a unit tangential vector anddl is a line element. Considering the associated normal (denoted by
η) and tangential (denoted byτ) components of the magnetic and electric fields for each faceF`, we let

bn
η =

1
µ(F`)

Z Z
F`

BηdA, (49)

En+1/2
τ =

1
µ(∂F`)

Z
∂F`

Eτdl, (50)

whereµ is the Lebesgue measure andη,τ = x,y,z. Note that in the CT formulation the magnetic field
componentsbn

η are the area-averaged values at cell faces, whereas the rest of the conservative variables such
as density, momentum, and energy are volume-averaged quantities.

Using (49) and (50) it is straightforward to rewrite the above equation (48) at each control volume’s face
in component-wise form as

∆y∆z
∂
∂t

bn
x,i± 1

2 , j,k

=−{∆z(En+1/2
z,i± 1

2 , j+ 1
2 ,k
−En+1/2

z,i± 1
2 , j− 1

2 ,k
)+∆y(En+1/2

y,i± 1
2 , j,k− 1

2
−En+1/2

y,i± 1
2 , j,k+ 1

2
)}, (51)

∆x∆z
∂
∂t

bn
y,i, j± 1

2 ,k

=−{∆z(En+1/2
z,i− 1

2 , j± 1
2 ,k
−En+1/2

z,i+ 1
2 , j± 1

2 ,k
)+∆x(En+1/2

x,i, j± 1
2 ,k+ 1

2
−En+1/2

x,i, j± 1
2 ,k− 1

2
)}, (52)

∆x∆y
∂
∂t

bn
z,i, j,k± 1

2

=−{∆x(En+1/2
x,i, j− 1

2 ,k± 1
2
−En+1/2

x,i, j+ 1
2 ,k± 1

2
)+∆y(En+1/2

y,i+ 1
2 , j,k± 1

2
−En+1/2

y,i− 1
2 , j,k± 1

2
)}. (53)
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∗
(i, j)

•
Ez,i+1/2, j+1/2

6G∗,n+1/2
i, j+1/2 ◦

6G∗,n+1/2
i+1, j+1/2◦

� −F∗,n+1/2
i+1/2, j◦

� −F∗,n+1/2
i+1/2, j+1◦

Figure 2: A schematic 2D geometry of the staggered mesh in the flux-CT finite volume scheme. In the
staggered mesh, the upwinded numerical fluxesF∗ andG∗ are collocated at the centers of cell interfaces and
the electric fieldsE (only Ez is shown here for 2D) are collocated at the cell corners.

Further, by discretizing the temporal derivative terms and dividing out∆x,∆y and∆z, we obtain a discrete
form of the induction equation on the staggered grid. For instance, in two-dimensions, we get the original
Yee method [36] by applying the forward temporal discretization

bn+1
x,i+1/2, j = bn

x,i+1/2, j −
∆t
∆y

{
En+1/2

z,i+1/2, j+1/2−En+1/2
z,i+1/2, j−1/2

}
, (54)

bn+1
y,i, j+1/2 = bn

y,i, j+1/2−
∆t
∆x

{
−En+1/2

z,i+1/2, j+1/2 +En+1/2
z,i−1/2, j+1/2

}
. (55)

Most CT schemes [2–4,17] essentially make the above discretization. On a staggered grid, the numerical
divergence ofB is defined by

(∇ ·B)n+1
i, j =

bn+1
x,i+1/2, j −bn+1

x,i−1/2, j

∆x
+

bn+1
y,i, j+1/2−bn+1

y,i, j−1/2

∆y
(56)

and it remains zero to machine round-off, provided that(∇ ·B)n
i, j = 0.

3.2 MEC Algorithm using Directional Derivatives in the Electric Field Construction

A new electric field construction scheme is now described that uses first- and second-order directional
derivatives evaluated at cell faces to extrapolate the electric fields to cell corners. The cell-face electric
fields are available from corresponding components of the high-order Godunov fluxes that are solutions to
the Riemann problem. The superscript ”∗” is used, consistent with the previous section.

Using a Taylor series expansion of the cell-corner electric fieldEn+1/2
z,i+1/2, j+1/2 in all directions, we can

13



-
x

�
�>

y6
z

��
���

����
�

�
�

�
�

�




















�
�

�
�

�
�

�
�

�
�

• - bx,i+1/2, j,k

•

6

bz,i, j,k+1/2

•�
��

�
��>

by,i, j+1/2,k





�Ey,i+1/2, j,k−1/2

6
Ez,i+1/2, j+1/2,k

��	
Ey,i+1/2, j,k+1/2

?
Ez,i+1/2, j−1/2,k

-

Ex,i, j−1/2,k−1/2

@
@

@I

Fx,i+1/2, j,k

Figure 3: A 3D control volume on the staggered grid with the cell center at(i, j,k). The magnetic fields
are collocated at the cell face centers and the electric fields at the cell edge centers. The line integral of
the electric fields

R
∂Fn

E ·Tdl in equation (48) along the four edges of the faceFx,i+1/2, j,k gives rise to the
negative of the rate of change of the magnetic field flux inx-direction through the area enclosed by the four
edges (e.g., the area ofFx,i+1/2, j,k).

write 

En+1/2
z,i+1/2, j+1/2 = E∗,n+1/2

z,i+1/2, j +
∆y
2

∂E∗,n+1/2
z,i+1/2, j

∂y + ∆y2

8

∂2E∗,n+1/2
z,i+1/2, j

∂y2 +O(∆y3)

En+1/2
z,i+1/2, j+1/2 = E∗,n+1/2

z,i+1/2, j+1−
∆y
2

∂E∗,n+1/2
z,i+1/2, j+1

∂y + ∆y2

8

∂2E∗,n+1/2
z,i+1/2, j+1

∂y2 +O(∆y3),

En+1/2
z,i+1/2, j+1/2 = E∗,n+1/2

z,i, j+1/2 + ∆x
2

∂E∗,n+1/2
z,i, j+1/2

∂x + ∆x2

8

∂2E∗,n+1/2
z,i, j+1/2

∂x2 +O(∆x3),

En+1/2
z,i+1/2, j+1/2 = E∗,n+1/2

z,i+1, j+1/2−
∆x
2

∂E∗,n+1/2
z,i+1, j+1/2

∂x + ∆x2

8

∂2E∗,n+1/2
z,i+1, j+1/2

∂x2 +O(∆x3).

(57)

The newmodified electric field construction(MEC) algorithm takes an arithmetic average of these four
Taylor expansions, yielding

En+1/2
z,i+1/2, j+1/2

=
1
4

{
E∗,n+1/2

z,i+1/2, j +
∆y
2

(
∂E∗,n+1/2

z,i+1/2, j

/
∂y
)

+
∆y2

8

(
∂2E∗,n+1/2

z,i+1/2, j

/
∂y2
)

+E∗,n+1/2
z,i+1/2, j+1−

∆y
2

(
∂E∗,n+1/2

z,i+1/2, j+1

/
∂y
)

+
∆y2

8

(
∂2E∗,n+1/2

z,i+1/2, j+1

/
∂y2
)

+E∗,n+1/2
z,i, j+1/2 +

∆x
2

(
∂E∗,n+1/2

z,i, j+1/2

/
∂x
)

+
∆x2

8

(
∂2E∗,n+1/2

z,i, j+1/2

/
∂x2
)
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+E∗,n+1/2
z,i+1, j+1/2−

∆x
2

(
∂E∗,n+1/2

z,i+1, j+1/2

/
∂x
)

+
∆x2

8

(
∂2E∗,n+1/2

z,i+1, j+1/2

/
∂x2
)}

. (58)

The inclusion of directional derivative terms at this stage has several important aspects. In the CT-
type of schemes the magnetic fields (surface variables) are evolved by solving the discretized induction
equation (e.g., equations (54) and (55)), whereas other conservative (volumetric) variables such as density,
momentum, and energy are updated by solving the underlying high-order Godunov scheme. These two sets
of variables are updated differently. This does not mean that the surface and volumetric variables form two
decoupled systems; rather, they are strongly coupled via the momentum, energy, and induction equations.
Therefore, to obtain an overall accurate solution for both surface and volumetric variables they must be
evaluated with consistent high-order accuracy. The derivative terms in equation (58) provide the needed
accuracy in comparison to the base construction algorithm (see equation (46)).

The MEC algorithm in (58) is ideally third-order in space for smooth profiles of the electric fields.
Note that the base construction scheme only incorporates the smooth part of the electric fields by taking
simple arithmetic averages. The situation is improved in the MEC algorithm in such a way that the first
derivative terms reflect correct spatial changes from the cell centers to the cell corners. Furthermore, the
second derivative terms add consistent amounts of dissipation to the extrapolated cell-corner electric fields,
avoiding spurious oscillations near discontinuities in solutions.

To implement the MEC algorithm we discretize the derivative terms. Two different discretization
schemes can be considered – central or upwinded differencing. We choose to use a central scheme for
two reasons. First, the upwinded differencing requires a wider stencil (one more stencil point for each spa-
tial direction) than central differencing. This means that more guard (or ghost) cells need to be used for
an upwinded differencing scheme which is particularly a problem for parallel AMR grid structures where
guard cells are used for boundary conditions and updated via inter-processor communications. Further, in
multi-dimensions extra guard cells either require more storage or more guard cell copy operations. For high
levels of refinement this can be a crucial issue.

Second, an upwinding strategy becomes useful when used to obtain the direction of the propagation
of information in a flow field along the characteristics. The electric fields in ideal MHD,E = −u×B, do
not propagate along the direction parallel to the velocity field, nor to the magnetic field. Gardineret al.
[17] proposed upwinded differencing according to the contact mode at each interface that led to a stable,
non-oscillatory integration algorithm. However, having implemented both alternatives we do not find any
improvement in the solution using upwinding over central differencing. Thus for physical considerations
as well for computational parallel efficiency we choose central differencing for discretizing the derivative
terms in the MEC algorithm .

3.3 Central Differencing

Second-order central differencing is considered for both first and second derivative terms in the MEC

algorithm. Atx interfaces (e.g., ati± 1
2), we can discretize∂E∗,n+1/2

z,i±1/2, j

/
∂y and∂2E∗,n+1/2

z,i±1/2, j

/
∂y2 as

∂E∗,n+1/2
z,i±1/2, j

∂y
=

E∗,n+1/2
z,i±1/2, j+1−E∗,n+1/2

z,i±1/2, j−1

2∆y
, (59)

and
∂2E∗,n+1/2

z,i±1/2, j

∂y2 =
E∗,n+1/2

z,i±1/2, j+1−2E∗,n+1/2
z,i±1/2, j +E∗,n+1/2

z,i±1/2, j−1

∆y2 . (60)

Similarly, discretizations aty interfaces (e.g., atj± 1
2) are

∂E∗,n+1/2
z,i, j±1/2

∂x
=

E∗,n+1/2
z,i+1, j±1/2−E∗,n+1/2

z,i−1, j±1/2

2∆x
, (61)
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and
∂2E∗,n+1/2

z,i, j±1/2

∂x2 =
E∗,n+1/2

z,i+1, j±1/2−2E∗,n+1/2
z,i, j±1/2 +E∗,n+1/2

z,i−1, j±1/2

∆x2 . (62)

These derivatives are used in (58) the subsequent electric fields are applied to the induction equations
(54) and (55) for temporal evolution of the divergence-free magnetic fields. Before proceeding further to
solve the induction equation we will introduce in the next section a new dissipation control (DC) algorithm
that can be derived from a modification of the induction equation.

3.4 Alternative Averaging Schemes

We conclude this section with several remarks. Themodified flux-CT scheme of Balsara [4] evaluates the
electric field directly at the nodes (e.g., cell corners in 2D, and cell edge centers in 3D) on a staggered grid.
That is, in two-dimensions, four Riemann problems are solved to obtain the fluxes at the cell corners and
the resulting four flux components are used to construct the cell-corner electric fields directly. This method
replaces the spatial averaging scheme in equation (46) with the direct construction scheme. To solve four
Riemann problems at these nodal points one first needs to reconstruct four Riemann state variables from the
cell-center values. These solves are computationally expensive.

More recently, Gardineret al. [17] introduced a systematic approach to constructing a two-dimensional
flux-CT algorithm which is consistent with the underlying plane-parallel, grid-aligned integration algo-
rithm. They addressed the potential inconsistency that can arise from the simple spatial arithmetic av-
eraging scheme of equation (46) for the plane-parallel, grid-aligned flows. Such flows are, for instance,
one-dimensional flow problems that are solved on a two-dimensional grid, in which the flow direction is
parallel to one of the coordinate axes. Their approach is to add extra terms in the base electric field con-
struction scheme (e.g., equation (46)) in such a way that the electric fields at the cell corners obey the planar
symmetry of the plane-parallel, grid-aligned flows. While their scheme is consistent with the underlying
flow, it appears to require a greater computational effort than the MEC update scheme does. In their CT al-
gorithm, a two-step procedure is used to update solutions from then-th to(n+1)-th time step. Thus both the
Riemann problem and the electric field construction need to be solved twice each, making their procedure
likely more expensive.

4 Efficient Dissipation Control Algorithm for the Induction Equation

A new dissipation control algorithm (DC) is developed by deriving a set of modified equations for the
induction equation. The main advantage of the DC is that the method handles numerical anti-dissipations
to prevent secular growth in the magnetic field components, especially in the presence of strong gradients
in the magnetic field components. A strategy to control numerical dissipation plays a crucial role in many
computational simulations. Indeed, for many applications, if the solution does not have enough numerical
dissipation implicitly in the algorithm, then the solution becomes unstable unless more dissipation is added
explicitly in the calculation. Numerical dissipation is a direct result of the even-order derivatives that exist
in the modified equation.

4.1 Modified Equation Analysis of the Induction Equations

It has been shown in the previous section that in the MEC algorithm the second-order derivative terms
are added explicitly and introduce the requisite numerical dissipation for the electric fields. It should be
realized however, that this dissipation is unrelated to the dissipation that arises in solving the system of the
discrete induction equations themselves. To obtain that, we examine the modified equations of the induction
equations.
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Consider the induction equations in two-dimensions,

1
∆t

{
bn+1

x,i±1/2, j −bn
x,i±1/2, j

}
=

1
∆y

{
−En+1/2

z,i±1/2, j+1/2 +En+1/2
z,i±1/2, j−1/2

}
, (63)

1
∆t

{
bn+1

y,i, j±1/2−bn
y,i, j±1/2

}
=

1
∆x

{
En+1/2

z,i+1/2, j±1/2−En+1/2
z,i−1/2, j±1/2

}
. (64)

First, in equation (63), we form Taylor series expansions forbn+1
x,i±1/2, j ,E

n+1/2
z,i±1/2, j+1/2, andEn+1/2

z,i±1/2, j−1/2 as
follows

bn+1
x,i±1/2, j = bn

x,i±1/2, j +
∂bn

x,i±1/2, j

∂t
∆t +

∂2bn
x,i±1/2, j

∂t2

∆t2

2
+O(∆t3), (65)

En+1/2
z,i±1/2, j+1/2 = En+1/2

z,i±1/2, j +
∂En+1/2

z,i±1/2, j

∂y
∆y
2

+
∂2En+1/2

z,i±1/2, j

∂y2

∆y2

8
+O(∆y3), (66)

En+1/2
z,i±1/2, j−1/2 = En+1/2

z,i±1/2, j −
∂En+1/2

z,i±1/2, j

∂y
∆y
2

+
∂2En+1/2

z,i±1/2, j

∂y2

∆y2

8
+O(∆y3). (67)

Substituting equations (65) – (67) into (63) gives

1
∆t

[∂bn
x,i±1/2, j

∂t
∆t +

∂2bn
x,i±1/2, j

∂t2

∆t2

2
+O(∆t3)

]
=

1
∆y

[
−

∂En+1/2
z,i±1/2, j

∂y
∆y+O(∆y3)

]
. (68)

Rearranging equation (68), we obtain

∂bn
x,i±1/2, j

∂t
+

∂En+1/2
z,i±1/2, j

∂y
=−

∂2bn
x,i±1/2, j

∂t2

∆t
2

+O(∆t2,∆y2). (69)

This equation (69) is the modified equation of the original induction equation (5) and shows that when
the difference equation (63) is used it constitutes the solution of a modified PDE, namely equation (69).
Comparing with the original PDE of the induction equation (5), equation (69) contains an extra dissipation

term (or numerical diffusivity term)−∂2bn
x,i±1/2, j

/
∂t2 on the right hand side and this extra term effectively

behaves as a source. Since its sign is negative rather than positive, this is an anti-dissipation term and can
destabilize the solution or at least cause a loss of accuracy, due to the accumulation of anti-dissipative local
truncation error, proportional to∆t, over the simulation time. The effect may be more pronounced near
stagnation regions.

To yield useful information, the time derivative on the right hand side of the modified equation (69) can
be replaced a by spatial derivative, using theCauchy-Kowalewskiprocedure. Differentiating equation (69)
with respect tot, we can obtain

∂2bn
x,i±1/2, j

∂t2 =−
∂2En+1/2

z,i±1/2, j

∂t∂y
−

∂3bn
x,i±1/2, j

∂t3

∆t
2

+O(∆t2,∆y2). (70)

Substituting (70) from (69) we get

∂bn
x,i±1/2, j

∂t
+

∂En+1/2
z,i±1/2, j

∂y
=

∂2En+1/2
z,i±1/2, j

∂t∂y
∆t
2

+O(∆t2,∆y2). (71)

In general, for linear advection,∂u
∂t + a∂u

∂x = 0, all the time derivatives in a modified equation can be
replaced with the spatial derivatives by repeatedly differentiating the linear modified equation, to obtain
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corresponding spatial derivatives instead. By contrast, the induction equation is nonlinear and the time

derivative in∂2En+1/2
z,i±1/2, j

/
∂t∂y can not be completely replaced by the spatial derivative. To overcome this

difficulty and accomplish an efficient dissipation control algorithm, we retain the time derivative and use
that derivative information.

For completeness we present the modified equation of the induction equation for they component mag-
netic field,

∂bn
y,i, j±1/2

∂t
+

∂
(
−En+1/2

z,i, j±1/2

)
∂x

=
∂2
(
−En+1/2

z,i, j±1/2

)
∂t∂x

∆t
2

+O(∆t2,∆x2). (72)

4.2 Difference Equations for the Dissipation-Control Algorithm

The derivation of the modified equations allow a consistent discretization scheme that uses the dissi-
pation terms in the DC scheme. We choose an explicit forward time centered space (FTCS) discretization

for the terms ∂2

∂t∂yEn+1/2
z,i±1/2, j and ∂2

∂t∂x

(
−En+1/2

z,i, j±1/2

)
in equations (71) and (72). For the rest of the derivative

terms on the left hand side of equations (71) and (72), we retain the original scheme (which in fact is also
FTCS ) as discretized in equations (63) and (64), because the derived modified equations stem from that
discretization.

Equations (71) and (72) are discretized in an FTCS manner below. To control the anti-dissipative effect
of the term ∂2

∂t∂yEn+1/2
z,i±1/2, j in thex component equation (71), a correspondingdissipativecontribution is made

by adding an equivalent term with an opposite sign. In practice,∂2

∂t∂yEn+1/2
z,i±1/2, j

∆t
2 in equation (71) is replaced

with − ∂2

∂t∂yEn+1/2
z,i±1/2, j

∆t
2 . First, we discretize the derivative as follows,

−
∂2En+1/2

z,i±1/2, j

∂t∂y
= − ∂

∂t
1

∆y

{
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

}
= − 1

∆t∆y

{(
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

)
−
(

En−1/2
z,i±1/2, j+1/2−En−1/2

z,i±1/2, j−1/2

)}
. (73)

Note that the cell-corner electric fieldsEn+1/2
z,i±1/2, j±1/2 are available from the MEC scheme (58). Multiplying

by ∆t/2 the above equation (73), according to (71), we get

1
∆t

{
bn+1

x,i±1/2, j −bn
x,i±1/2, j

}
= − 1

∆y

{
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

}
− 1

2∆y

{(
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

)
−
(

En−1/2
z,i±1/2, j+1/2−En−1/2

z,i±1/2, j−1/2

)}
. (74)

Rearranging equation (74), the final form of thex component induction equation for the DC scheme yields

bn+1
x,i±1/2, j = bn

x,i±1/2, j −
∆t
∆y

{
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

}
− ∆t

2∆y

{(
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

)
−
(

En−1/2
z,i±1/2, j+1/2−En−1/2

z,i±1/2, j−1/2

)}
. (75)
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Similarly, they component equation (72), leads to,

bn+1
y,i, j±1/2 = bn

y,i, j±1/2−
∆t
∆x

{
−En+1/2

z,i+1/2, j±1/2 +En+1/2
z,i−1/2, j±1/2

}
− ∆t

2∆x

{(
−En+1/2

z,i+1/2, j±1/2 +En+1/2
z,i−1/2, j±1/2

)
−
(
−En−1/2

z,i+1/2, j±1/2 +En−1/2
z,i−1/2, j±1/2

)}
. (76)

The advantages of using the FTCS method (as opposed to, for instance, using the backward time centered

space or BTCS) for∂2

∂t∂yEn+1/2
z,i±1/2, j and ∂2

∂t∂x

(
−En+1/2

z,i, j±1/2

)
are threefold: First, the choice is consistent with the

discretization originally used for the derivatives in (63) and (64); second, the centered in space discretization
is also consistent with physical considerations, in that the electric field is evaluated via Stokes’ Theorem,
followed by line integrals, resulting in the same formulation as equations (51) and (52); finally, the FTCS

scheme as applied to∂
2

∂t∂yEn+1/2
z,i±1/2, j and ∂2

∂t∂x

(
−En+1/2

z,i, j±1/2

)
requires the smallest possible stencil size in both

space and time. The centered in space discretization only utilizes two cell-corner electric field values that
are always available within each cell. Thus, there is no need to obtain the cell-neighbor information and
the scheme is local. Not only does this effect computational efficiency, but also guarantees preservation of
the divergence-free constraint of the DC scheme. For example, if another spatial discretization requiring a
wider stencil such as an upwinding method were chosen, the spatial discretization would also require each
cell’s neighbor information, which ultimately breaks the symmetry relationship that should be preserved to
maintain the divergence-free constraint. In the next subsection, we show that the DC scheme developed in
equations (75) and (76) indeed satisfies the divergence-free property.

Summarizing, the second-order in time and space dissipation controls for the induction equations are
made available by modified equation analysis. The anti-dissipative relationship has been elucidated, which
has been heretofore neglected in previous MHD schemes. Such anti-dissipation controls recover the proper
dissipation relationship by balancing the anti-dissipation terms with oppositely signed dissipative terms in
the modified induction equation. To incorporate the dissipation, the DC scheme uses FTCS differencing,
which has distinct advantages, to discretize the related temporal and spatial derivatives. The DC scheme,
thus explicitly controls the anti-dissipative phenomena in the evolution of the cell-face magnetic fields.
Lastly, the DC scheme can be incorporated in other CT based schemes without significant overhead. In
Section 5, we show that there are crucial improvements in the magnetic field solutions due to incorporating
the DC scheme.

We can further parameterize the dissipation terms in equations (75) and (76). Choosing a dissipation
parameter, 0≤ ν ≤ 1, the parameterized dissipation relations for the DC scheme become

bn+1
x,i±1/2, j = bn

x,i±1/2, j −
∆t
∆y

{
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

}
−ν

∆t
2∆y

{(
En+1/2

z,i±1/2, j+1/2−En+1/2
z,i±1/2, j−1/2

)
−
(

En−1/2
z,i±1/2, j+1/2−En−1/2

z,i±1/2, j−1/2

)}
, (77)

bn+1
y,i, j±1/2 = bn

y,i, j±1/2−
∆t
∆x

{
−En+1/2

z,i+1/2, j±1/2 +En+1/2
z,i−1/2, j±1/2

}
−ν

∆t
2∆x

{(
−En+1/2

z,i+1/2, j±1/2 +En+1/2
z,i−1/2, j±1/2

)
−
(
−En−1/2

z,i+1/2, j±1/2 +En−1/2
z,i−1/2, j±1/2

)}
. (78)

In this parametrized form it is clear that whenν = 0 the DC scheme results in standard discrete induction
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equations. Unless otherwise stated, we refer to equations (77) and (78) as thethe DC equationsin the rest
of this paper.

4.3 Initial Condition of the DC Equations

Since the DC equations make use of the electric fields from the previous time step, the electric fields
needs to be initialized before the first update. This is contrast to the base CT scheme where initialization
is not needed. A simple choice for an initial condition of the electric fields can be obtained by using the
relationshipE =−u×B directly. After initializing the cell-centered velocity and magnetic fields, we obtain

u0
i+1/2, j+1/2 =

1
4

(
u0

i, j +u0
i+1, j +u0

i, j+1 +u0
i+1, j+1

)
, (79)

v0
i+1/2, j+1/2 =

1
4

(
v0

i, j +v0
i+1, j +v0

i, j+1 +v0
i+1, j+1

)
, (80)

B0
x,i+1/2, j+1/2 =

1
2

(
b0

x,i+1/2, j +b0
x,i+1/2, j+1

)
, (81)

B0
y,i+1/2, j+1/2 =

1
2

(
b0

y,i, j+1/2 +b0
y,i+1, j+1/2

)
. (82)

Then the cell-corner electric fields are initialized∗ as

E0
z,i+1/2, j+1/2 = v0

i+1/2, j+1/2B0
x,i+1/2, j+1/2−u0

i+1/2, j+1/2B0
y,i+1/2, j+1/2. (83)

A choice for a non-zero value ofν is made in Section 5 in our test suite simultations.

4.4 Demonstration of the Divergence-Free Property of FTCS for DC

In this section, a demonstration of the divergence-free property for the DC equations is presented. We
assume that(∇ ·B)n

(i, j) = 0 initially at time stepn. Then

(∇ ·B)n+1
i, j =

bn+1
x,i+1/2, j −bn+1

x,i−1/2, j

∆x
+

bn+1
y,i, j+1/2−bn+1

y,i, j−1/2

∆y

=
1

∆x

{
bn

x,i+1/2, j −
∆t
∆y

(En+1/2
z,i+1/2, j+1/2−En+1/2

z,i+1/2, j−1/2)

−ν
∆t

2∆y

[
En+1/2

z,i+1/2, j+1/2−En+1/2
z,i+1/2, j−1/2−En−1/2

z,i+1/2, j+1/2 +En−1/2
z,i+1/2, j−1/2

]
−bn

x,i−1/2, j +
∆t
∆y

(En+1/2
z,i−1/2, j+1/2−En+1/2

z,i−1/2, j−1/2)

+ν
∆t

2∆y

[
En+1/2

z,i−1/2, j+1/2−En+1/2
z,i−1/2, j−1/2−En−1/2

z,i−1/2, j+1/2 +En−1/2
z,i−1/2, j−1/2

]}
+

1
∆y

{
bn

y,i, j+1/2−
∆t
∆x

(−En+1/2
z,i+1/2, j+1/2 +En+1/2

z,i−1/2, j+1/2)

+ν
∆t

2∆x

[
−En+1/2

z,i+1/2, j+1/2 +En+1/2
z,i−1/2, j+1/2 +En−1/2

z,i+1/2, j+1/2−En−1/2
z,i−1/2, j+1/2

]
−bn

y,i, j−1/2 +
∆t
∆x

(−En+1/2
z,i+1/2, j−1/2 +En+1/2

z,i−1/2, j−1/2)

−ν
∆t

2∆x

[
−En+1/2

z,i+1/2, j−1/2 +En+1/2
z,i−1/2, j−1/2 +En−1/2

z,i+1/2, j−1/2−En−1/2
z,i−1/2, j−1/2

]}
∗In a departure from our previous notation, we letE0

z,i+1/2, j+1/2 ≡ E−1/2
z,i+1/2, j+1/2 in (77) and (78) forn = 0.
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=
bn

x,i+1/2, j −bn
x,i−1/2, j

∆x
+

bn
y,i, j+1/2−bn

y,i, j−1/2

∆y

+
∆t

∆x∆y

{
−En+1/2

z,i+1/2, j+1/2 +En+1/2
z,i+1/2, j−1/2 +En+1/2

z,i−1/2, j+1/2−En+1/2
z,i−1/2, j−1/2

+En+1/2
z,i+1/2, j+1/2−En+1/2

z,i−1/2, j+1/2−En+1/2
z,i+1/2, j−1/2 +En+1/2

z,i−1/2, j−1/2

}
+ν

∆t
2∆x∆y

{
−En+1/2

z,i+1/2, j+1/2 +En+1/2
z,i+1/2, j−1/2 +En+1/2

z,i−1/2, j+1/2−En+1/2
z,i−1/2, j−1/2

+En−1/2
z,i+1/2, j+1/2−En−1/2

z,i+1/2, j−1/2−En−1/2
z,i−1/2, j+1/2 +En−1/2

z,i−1/2, j−1/2

+En+1/2
z,i+1/2, j+1/2−En+1/2

z,i−1/2, j+1/2−En+1/2
z,i+1/2, j−1/2 +En+1/2

z,i−1/2, j−1/2

−En−1/2
z,i+1/2, j+1/2 +En−1/2

z,i−1/2, j+1/2 +En−1/2
z,i+1/2, j−1/2−En−1/2

z,i−1/2, j−1/2

}
= (∇ ·B)n

i, j

= 0.

Note that the symmetry relationship gives a perfect cancellation of the electric fields which leads to the
divergence-free property in the discrete form. As noted earlier the DC scheme’s divergence-free property is
preserved locally, so that the constraint is straightforwardly maintained on AMR block structures.

4.5 Reconstruction of Cell-Centered Fields

By solving the DC equations, the dissipation controlled, divergence-free cell-face magnetic fields are
made available. To update other volumetric variables in the CT-type of Godunov based MHD solver, we
reconstruct the cell-centered magnetic fields as follows. In the base CT scheme of Balsara and Spicer [2],
and other CT schemes, the volume-averaged magnetic field components at cell centers are obtained by
taking the arithmetic average of the cell-face, divergence-free magnetic fields as

Bn
x,i, j =

1
2

(
bn

x,i−1/2, j +bn
x,i+1/2, j

)
, (84)

Bn
y,i, j =

1
2

(
bn

y,i, j−1/2 +bn
y,i, j+1/2

)
. (85)

In this reconstruction step, the divergence-free constraint for the cell-centered fields is no longer pre-
served. Therefore, although the divergenceless evolution of the face centered fields are ensured after each
DC step, numerical monopoles are still introduced in the cell-centered fields. To overcome this, Balsara
[3,4] has proposed a reconstruction algorithm that ensures the divergence-free property for the cell-centered
magnetic fields which uses

Bn
x,i, j =

1
2

(
bn

x,i−1/2, j +bn
x,i+1/2, j

)
−axx

∆x2

6
, (86)

Bn
y,i, j =

1
2

(
bn

y,i, j−1/2 +bn
y,i, j+1/2

)
−cyy

∆y2

6
, (87)

where the nonzero coefficientsaxx andcyy are described therein. Although the approach has advantage in
guaranteeing the divergence-free constraint for the cell-centered fields, it is clear from (86) and (87) that
the base reconstruction scheme in (84) and (85) are sufficient for a second-order scheme†. Thus our USM-
MEC-DC scheme uses (84) and (85) by default.

†In fact, it has been reported in [22] that there is no noticeable difference between the results of using the base
scheme (84) and (85) and the newer (86) and (87).
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Summarizing the advantages of using the MEC-DC approach, we note: First, the method provides
discrete divergence-free fields in real space up to machine round-off error over the entire computational
domain; second, because the divergence-free constraint is met in real space, the resultant magnetic fields are
physically meaningful in a continuous sense over the domain. This is in contrast to the vector divergence-
cleaning method, in which the divergence-free property of the fields can be viewed only at discrete points in
Fourier space; third, the local property of the divergence-free fields enables minimal inter-communication on
parallel machines, and thus an extension to block-refined parallel AMR is straightforward; fourth, issues of
solving an elliptic Poisson equation, and associated possible aliasing issues if FFTs are used for the purpose,
are eliminated; lastly, a new way to control anti-dissipation, which can potentially be used in other schemes
when solving the induction equation, has been explored. By including corresponding dissipation terms,
unphysical growth of the magnetic fields is obviated in an efficient manner. The importance of keeping
the dissipation control terms is shown to be crucial in some MHD simulations in the test suite described in
Section 5.

5 Numerical Results

Validation studies of the USM-MEC-DC scheme have been made with a suite of MHD test problems.
A series of numerical studies show that the scheme is second-order accurate, and maintains the solenoidal
constraint of magnetic fields up to machine round-off error. The CFL number of 0.5 is used in all simulations
except that a lower value 0.3 is found to lead to stability in the cloud-shock interaction problem for capturing
the strong interaction. In all of the multidimensional problems presented using the new scheme, both MEC
and DC have been used, and the multidimensional characteristic method in the data reconstruction-evolution
step utilized. Their roles are pointed out and found to be of importance.

5.1 Field Loop Problem

The first test is the field loop problem [17] which is a severe test case in multidimensional MHD. This
test problem considers two different initial conditions of a weakly polarized magnetic field loop: the loop is
either advected with the flow or held stationary. The first case of this test problem, with advection, is more
stringent than the second case with just diffusion, since it is more difficult to preserve the circular shape of
the advecting field loop as it traverses the computational domain during the simulation. In the second case,
that of the diffusion test, the only dynamics present is numerical diffusion and determines how diffusivity
of the scheme. In both cases, an insufficient amount of numerical dissipation can distort the circular shape
of the field loop.

We follow the parameters of Gardiner & Stone [17,33]. The computational domain is[−1,1]×[−0.5,0.5],
with a mesh 256×148, and doubly-periodic boundary conditions. The density and pressure are set to unity
everywhere andγ = 5/3. The velocity fields are defined as,

U = u0(cosθ,sinθ,0) (88)

with the advection angleθ, given byθ = tan−1(0.5)≈ 26.57◦. The choices for the initial velocity were set
asu0 =

√
5 for the advection test andu0 = 0 for the diffusion test. The size of domain and other parameters

were chosen such that, for the advection case, the weakly magnetized field loop makes one complete cycle
by t = 1. To initialize∇ ·B = 0 numerically, the components of the magnetic field values are obtained by
taking the numerical curl of thez-component of the magnetic vector potentialAz

∂Az

∂x
=−By,

∂Az

∂y
= Bx, (89)
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where

Az =
{

A0(R− r) if r ≤ R,
0 otherwise

. (90)

By using this initialization process, divergence-free magnetic fields are constructed with a maximum
value of∇ ·B on the order of 10−16 at the chosen resolution. The parameters in (90) areA0 = 10−3,R= 0.3
with a field loop radiusR. This initial condition results in a very high beta plasmaβ = 2p/B2 = 2×106

for the inner region of the field loop. Inside the loop the magnetic field strength is very weak and the flow
dynamics is dominated by the gas pressure.

The first test of the advection case is integrated to a final timet = 2. The advection test is found to truly
require the full multidimensional MHD approach, i.e., the inclusion of the multidimensional terms (23) and
(24) as described in Section 2. Since the field loop is advected at an oblique angle to thex-axis of the
computational domain, the values of∂Bx/∂x and∂By/∂y are non-zero in general, and these terms together
with the multidimensional termsABx,ABy are included.

The flow advects the field loop with the given advection angle to the grid. During the advection a good
numerical scheme should maintain the circular symmetry of the loop at all time. A lack of proper numerical
dissipation results in spurious oscillations at the loop, breaking the circular symmetry. Shown in Figure 4
are the initial conditions of the current density, the magnetic field lines (20 contour lines ofAz are shown),
and the magnetic pressure. The DC scheme (77) and (78) with a default value ofν = 0.5 was used.

(a) Current density att = 0 (b) Magnetic field lines att = 0

(c) Magnetic pressure att = 0

Figure 4: The initial conditions of the field loop advection problem with 256×148 resolution.
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From the results in Figure 5, the USM-MEC-DC scheme maintains the circular shape of the loop ex-
tremely well to the final time step. The first plot is of the current densityj which, being the curl of the field
components, is very sensitive to oscillations in these components. The USM-MEC-DC scheme successfully
retains the initial circular symmetry and does not develop severe oscillations. In the second plot (b) 20
field lines are still evident in the final solution, maintaining the original circular symmetry. There is only
slight dissipation apparent at the very center, leading to the disappearance of the smallest circular field line
contour. The final magnetic pressureBp = (B2

x + B2
y)/2, shown in (c), compares well with the results of

Gardineret al. [17]. The results obtained here lead us to conclude that the anti-dissipation control of the DC
scheme plays an essential role in achieving the appropriate amount of numerical dissipation of the magnetic
field components.

(a) Current density att = 2 (b) Magnetic field lines att = 2

(c) Magnetic pressure att = 2

Figure 5: The field loop advection problem at timet = 2. The valueν = 0.5 is used.

To amplify on the role of the DC treatment, the results obtained without turning on the DC switch
(ν = 0) is presented in Figure 6. In plot (b) the magnetic pressure already suffers from strong oscillations
over the entire loop even at a relatively earlier time,t = 0.2. Note also that the magnitude of the magnetic
pressure is increased by an order of magnitude as a consequence of the absence of anti-dissipation control
in the scheme. The final solution in (c) is quite disastrous, leaving no trace of the initial circular shape. The
magnitude reaches up to 0.12 which is an order of 107 larger than the initial value (See the initial magnitude
in (c) in Figure 4.)

We also examine the effect of the value ofν in the DC scheme, and consider the same advection problem
using the maximum value ofν = 1. This larger value clearly gives more dissipation that prevents further
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(a) Magnetic pressure att = 0.2 with DC (b) Magnetic pressure att = 0.2 without DC

(c) Magnetic pressure att = 2 without DC

Figure 6: Effect of the DC terms on the field loop advection test.
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growth of the magnetic field components. However, since the DC scheme employs the electric field valueEz

from the previous time step, the dynamics of the magnetic field is coupled with the behavior of the previous
time step solution. This phenomenon is seen in Figure 7(a) in that the original circular shape has evolved
to an oval shape, elongated in the direction of the advection. From these tests it is appears that a moderate
value such asν = 0.5 is a good default choice, but a more formal analysis may be justified.

In Figure 7(b), the upwinded differencing algorithm for the MEC scheme is used. As was asserted in
Section 3, the effect of upwinding the electric field does not appear to improve any qualitative behavior of
the solution.

(a) Magnetic field lines att = 2 with ν = 1

(b) Magnetic pressure att = 2 using the upwinding
scheme in MEC

Figure 7: A parameter test forν is shown in (a). The larger valueν = 1 tends to disrupt the circular shape
of the magnetic field lines at timet = 2. In (b), another test using the upwinding scheme in the MEC is also
illustrated.

The diffusion test is now considered, where the magnetic field loop remains stationary in the domain.
The only dynamics of the simulation is numerical dissipation and it diffuses the profile of the loop. In
Figure 8 we observe that the USM-MEC-DC scheme maintains the circular symmetry of the flow variables
by balancing terms to produce minimum possible dissipation. The small dimple in the magnetic pressure
reflects the small amount of diffusion in the scheme. Indeed, the final solution in the diffusion test are almost
equivalent to the initial solution, demonstrating that the USM-MEC-DC scheme works remarkably well in
controlling the anti-dissipation related phenomena.

The last case in the field loop advection problem considers another diffusion case which examines in-
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(a) Current density att = 2 (b) Magnetic field lines att = 2

(c) Magnetic pressure att = 2

Figure 8: The first field loop diffusion problem on a 256×148 resolution. The solutions at timet = 2 are
presented.

plane dynamics in two-dimensions. For two-dimensional MHD flows, it is important to maintain the relevant
in-plane flow properties. To see this, we consider a variant of the previous diffusion problem, where the
velocity fields are set as,

U = (0,0,1). (91)

With this value, we follow how the in-plane dynamics is influenced by∇ ·B. It has been already seen in
the previous diffusion test that the in-plane diffusion of the magnetic field is essentially negligible. Hence,
on each subsequent time step the∇ ·B error should be unchanged between time steps. This of course will
proceed until a growth inBz becomes sufficiently large to influence the in-plane dynamics. To see this, we
examine theBz component of the induction equation,

∂Bz

∂t
+Bz

∂u
∂x
−Bx

∂w
∂x

−w
∂Bx

∂x
+u

∂Bz

∂x
+Bz

∂v
∂y
−By

∂w
∂y

−w
∂By

∂y
+v

∂Bz

∂y
= 0. (92)

The fourth and eighth terms in the above equation (92) are the multidimensional terms that were taken
care of in the data reconstruction-evolution step. The terms have been treated in an unsplit fashion using
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the multidimensional characteristic method without applying any limiting (See equation (28)). The sum
of these two terms isw∇ ·B = w(∆Bx,i/∆x+ ∆By, j/∆y), and hence if there is any secular growth in the
∇ ·B = (∆Bx,i/∆x+∆By, j/∆y) error, it will change the in-plane geometry due to an unphysical growth ofBz

with a rate proportional tow∇ ·B∆t. For dimensionally split MHD schemes, this kind of unphysical growth
is hard to avoid, since the terms∆Bx,i/∆x and∆By, j/∆y are not updated simultaneously.

Figure 9 shows two results obtained in the USM-MEC-DC scheme at the final time stept = 2. The first
plot (a) is the numerical values of∇ ·B and the second plot (b) is thez component of the magnetic fields.
Equally spaced 30 contour lines were plotted in both cases, and the results appear as very small amplitude
noise, with values of the divergence of the magnetic fields andBz in the range∼ 10−15. These results show
that the USM-MEC-DC scheme does indeed correctly maintain the in-plane geometry without causing an
unphysical growth of the transverse field.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

(a) ∇ ·B

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−15

(b) Bz

Figure 9: The second diffusion problem of the field loop att = 2. The numerical values of the divergence
of the magnetic fields and thez component field are shown.

5.2 Circularly Polarized Alfv én Wave

The next test is the circularly polarized Alfvén wave and its propagation [17, 35]. The Alfvén wave
propagates at an oblique angle to thex-axis of the computational domain. This test problem is very useful
as a diagnostic of the solution’s accuracy because the smooth initial conditions are nonlinear solutions to the
problem. It is also of particular relevance to astrophysical phenomena because, for instance, the propagation
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of Alfv én waves in the solar wind is thought to be a possible source for the heating of the solar corona.
Hence their accurate modeling is crucial. Further, departures from pure Alfvénic modes are a measure of
the interaction of these waves with the solar wind [18,32].

The initial conditions we use are the same as the equivalent test problems described in [17]. A compu-
tational domain with a doubly periodic box[0,1/cosθ]× [0,1/sinθ] is determined according to the propa-
gation angleθ, and the value we adopt isθ = tan−1(2)≈ 63.44◦. In this configuration, flux terms involving
∂Bx/∂x and∂By/∂y are non-zero throughout the domain and their contribution to the solution, especially the
magnetic fields, are essential in this problem. For the convergence study we simulated both standing and
traveling Alfvén waves.

The grid resolutions used for this problem are 2N×N with N = 4,8,16,32,64. At timet = 0, the density
ρ = 1 and the gas pressurep= 0.1 uniformly on the domain withγ = 5/3. The propagation of the circularly
polarized Alfv́en wave can be described in a rotated coordinate system using the transformation matrixT

 ξ
η
ζ

=

T︷ ︸︸ ︷ cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 x
y
z

 , (93)

and the analytic representation of the magnetic fields are given as

B =
(
Bξ,Bη,Bζ

)
= (1,0.1sin2πξ,0.1cos2πξ). (94)

Similarly the velocity fields are

U =
(
Uξ,Uη,Uζ

)
=
{

(0,0.1sin2πξ,0.1cos2πξ) traveling wave,
(1,0.1sin2πξ,0.1cos2πξ) standing wave.

(95)

In both the standing and traveling cases the Alfvén wave is propagating in theξ direction. As suggested
in [17] we take numerical curls of thez-component of the magnetic vector potentialAz to assign in-plane
magnetic fields,Bξ,Bη rather than just applyingT−1 in (93) to get analytical values ofBx,By. For instance,
the solenoidal constraint of magnetic fields leads to,

B = ∇×A. (96)

In component form for 2D,
∂Az

∂ξ
=−Bη, ,

∂Az

∂η
= Bξ. (97)

From this we integrateBξ,−Bη with respect toη,ξ, respectively and sum them to getAz. We then proceed
to take numerical derivatives (e.g. central differencing) ofAz with respect tox,y to getBx,By, respectively.
The resulting fields are numerically divergence-free in-plane magnetic fields.

Note that in the standing wave case, the propagating Alfvén wave speed,vA = |Bξ|/
√ρ, and the fluid

velocity Uξ are unity, and the wave moves with the flow, effectively remaining still in the computational
frame.

Figure 10 shows a logarithmic scale of the numerical errors obtained with different grid resolutions. For
each case the L1 error of the quantitiesqk is calculated with respect to the initial condition

δqk =
1

2N2 ∑
i

∑
j

|qn
k,i, j −q0

k,i, j | (98)
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by taking a sum over all cell-centered values. The errors are summed over eachk-th primitive variable
Uη,Uξ,Bη andBξ and we compute the L1 error

||δq||=

√
4

∑
k=1

(δqk)2. (99)

Both the standing and traveling wave cases are evolved tot = 5 to obtain the final time step solutions.
As shown in the figure the resulting convergence rates||δq|| of the USM scheme are faster than second-
order accuracyN−2. It is also evident that the use of the DC algorithm withν = 0.5 yields lower errors,
especially in the standing wave case, where the problem is more stringent due to the larger flow velocities.
This is because, as noted in [17], exact cancellations are required between the terms in the flux, for example,
involving the large valueu(∂By/∂y) and∂(vBx)/∂y−By(∂u/∂y) for the time evolution ofBx in the induction
equations. The situation is more benign in the traveling wave case because the flow velocities are much
smaller. In both flows the USM scheme is seen to produce solutions that converge faster than second-order
accuracy.
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Figure 10: The circularly polarized Alfv́en wave convergence rate for both the standing (labeled as SW) and
traveling (labeled as TW) wave problems.

5.3 Orszag-Tang Problem

The third test problem is the Orszag-Tang MHD vortex problem [26]. This test problem is widely used
in the literature and serves as a good validation test for two-dimensional MHD where nonlinear steepening
builds strong discontinuities from smooth initial conditions. The computational domain is[0,1]× [0,1], with
a resolution ofN×N. The initial condition is given by sinusoidal waves,

U = u0(−sinπy,sin2πx,0), (100)
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B = B0(−sinπy,sin4πx,0). (101)

whereB0 is chosen so that the ratio of the gas pressure to the rms magnetic pressure is equal to 2γ, with
γ = 5/3. The initial density, the speed of sound andu0 are set to unity, and therefore both the initial pressure
andB0 are set to 1/γ. Periodic boundary conditions are used for both boundaries. The final solutions are
obtained at timet = 0.5.

The density contour plot on a 400×400 grid size at the final timet = 0.5 is shown in Figure 11. Equally
spaced 30 contour lines are shown. The plot shows that the initially smooth flow has developed complicated
structure involving numerous discontinuities.

(a) Density contour plot att = 0.5

Figure 11: The density contour plot of the Orszag-Tang problem att = 0.5 on a high resolution 400×400.

Figure 12 shows two different results of∇ ·B of numerical divergences calculated from (a) the USM-
MEC-DC scheme and (b) the eight wave scheme (using the FLASH code’s implementation, [16]). Clearly,
very small errors in the numerical values of∇ ·B are seen in (a), whereas the non-zero quantities are dom-
inant in the eight wave calculation in (b). The numerical values of∇ ·B from the eight wave calculation
are shown to be quite finite (of order∼ 0.1), ranging from negative to positive. The USM-MHD scheme,
however, maintains∇ ·B = 0 to about 10−12 over the simulation time. We can see in (b) that the non-zero
values of∇ ·B and the discontinuities of the solution are co-locatated implying that non-zero divergence
accumulates at discontinuities.

5.4 Rotor Problem

The computational domain is a unit square[0,1]× [0,1] with non-reflecting boundary conditions on all
four sides. The initial conditions are given by

ρ(x,y,0) =

{10 for r ≤ r0

1+9 f (r) for r0 < r < r1

1 for r ≥ r1

(102)

31



(a) ∇ ·B of USM-MEC-DC scheme.

−0.1 −0.05 0 0.05 0.1 0.15

(b) ∇ ·B of eight wave scheme.

Figure 12: The divergence-free properties obtained from the (a) USM-MEC-DC scheme and (b) eight wave
scheme.
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u(x,y,0) =

− f (r)u0(y−0.5)/r0 for r ≤ r0

− f (r)u0(y−0.5)/r for r0 < r < r1

0 for r ≥ r1

(103)

v(x,y,0) =

 f (r)u0(x−0.5)/r0 for r ≤ r0

f (r)u0(x−0.5)/r for r0 < r < r1

0 for r ≥ r1

(104)

p(x,y,0) = 1 (105)

Bx(x,y,0) =
5√
4π

(106)

By(x,y,0) = 0, (107)

wherer0 = 0.1, r1 = 0.115, r =
√

(x−0.5)2 +(y−0.5)2,w = Bz = 0 and a taper functionf (r) = (r1−
r)/(r − r0). The valueγ = 1.4 is used. The initial set-up is therefore occupied by a dense rotating disk at
the center of the domain, surrounded by ambient gas at rest with uniform density and pressure. The rapidly
spinning rotor is not in an equilibrium state due to centrifugal forces. As the rotor spins with the given
rotating velocity, the initially uniform magnetic field inx-direction winds up the rotor. The magnetic field
wraps around the rotor, and subsequently launches torsional Alfvén waves into the ambient gas. The angular
momentum of the rotor is diminished at later times. The circular rotor is progressively compressed into an
oval shape by the build-up of the magnetic pressure around the rotor.

Shown in Figure 13 are the contour plots of (a) the density, (b) the gas pressure, (c) the Mach number
and (d) the magnetic pressure at the final timet = 0.15 on a grid resolution 400× 400. For all cases
(a)-(d), 30 equally spaced contour lines are plotted. By this final time, we can see in (d) that the Alfvén
waves have almost reached the boundary. One of the important features of this rotor test problem is the
maintenance of smooth contour profiles in the central part of the Mach number profile[35]. A scheme that
produces undershoots in pressure and correspondingly the sound speed, will result in spurious peaks in the
Mach number field, especially in the central region. A distortion of the oval contour lines is a signature
of a relatively poor performance of a scheme. The USM-MEC-DC scheme shows excellent behavior as
illustrated in (c) where such distortions are absent and the rotor possesses smooth contours.

For a comparison at the lower resolution used in Tóth [35], the Mach number on a 100×100 resolution
is computed and shown in Figure 14. In Figure 20 of [35], seven different Mach number plots were obtained
from seven different MHD schemes at the same resolution of (100× 100) and compared. Those results
can be compared with plot (b) of Figure 14 showing results of the present scheme. The results of the USM-
MEC-DC scheme appear to be among best of the results presented in [35], indicating that the present scheme
is more accurate and reliable than many of the other conventional MHD schemes.

In the work of Londrillo & Del Zanna [24], a similar rotor problem was presented with minor changes
in the flow parameters. While their results appear convincing, the divergence of the magnetic fields as
shown reaches values up to the order of 10−4 on their 240×240 resolution calculation. The USM-MEC-DC
scheme, however, keeps this value to the order of 10−12 (even with a lower resolution of size 200×200).

5.5 Cloud & Shock Interaction

The next test problem considers the interaction of a high density cloud with a strong shock wave. This
problem, also known as the Dai & Woodward’s cloud-shock problem [12], has been studied in several papers
[23,35] to test the robustness of MHD schemes. The challenge for this problem is to demonstrate supersonic
flow in the pre-shock and the post-shock regions, as well as the correct physics near the sharp boundary of
the cloud.

The same initial condition is adopted as presented in [35]. The flow is solved on the computational
domain of size[0,1]× [0,1] on a uniformN×N grid. The simulation is carried out to the final timet = 0.06
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(a) Density att = 0.15 (b) Gas pressure att = 0.15

(c) Mach number att = 0.15 (d) Magnetic pressure att = 0.15

Figure 13: The rotor problem on a resolution of 400×400. Thirty equally spaced contour lines are plotted.
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(b) A close up view at the center

Figure 14: The Mach number for the rotor problem on a resolution of 100× 100. Thirty equally spaced
contour lines are plotted. In (b) the circular shapes of the contour lines are well captured even with this low
resolution.
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with N = 400. The initial discontinuity involves the left and right states along a linex = 0.6 parallel to the
y axis, with

(ρ,u,v,w,Bx,By,Bz, p) =


(3.86859,0,0,0,0,2.1826182,−2.1826182,167.345)

if x≤ 0.6,
(1,−11.2536,0,0,0,0.56418958,0.56418958,1)

if x > 0.6.

(108)

The high density cloud is located on the right side of the domain, for which its circular shape is defined
by (x−0.8)2 +(y−0.5)2 = 0.152. Uniform densityρ = 10 and the pressurep = 1 are fixed in the inner
region, andγ = 5/3. The velocity and the magnetic fields are the same as the surrounding right state plasma
values. Supersonic inflow boundary conditions are imposed along the right-most boundary atx = 1 and
outflow boundary conditions are used for all other boundaries.

As shown in the density plots in Figure 15, the temporal evolution involves the disruption of the high
density cloud by the shock initially located atx = 0.6. The light areas indicate the strongly shocked regions
and compare well with the results in [23, 35]. It was found by Tóth that a simple dimensionally split MHD
algorithm can easily fail due to unphysical states (e.g., negative pressure or density) produced during the
strong interaction of the shock with the cloud even when the rather diffusive MINMOD limiter was used. In
the USM-MEC-DC scheme, the final time step is reached successfully without such problems.

5.6 MHD Blast Wave

The last test case presented is the MHD spherical blast wave problem of Zacharyet al. [37]. This
problem leads to the formation and propagation of strong MHD discontinuities, relevant to astrophysical
phenomena where the magnetic field energy has strong dynamical effects. With a numerical scheme that
fails to preserve the divergence-free constraint, unphysical states can be obtained involving negative gas
pressure because the background magnetic pressure increases the strength of magnetic monopoles.

This problem was computed in two different flow regimes by taking intermediate and strong magnetic
field strengths. The computational domain is a square[−0.5,0.5]× [−0.5,0.5] with a grid of resolution
200×200. The explosion is driven by an over-pressurized circular region at the center of the domain with
a radiusr = 0.1. The initial density is unity everywhere. The pressure of the ambient gas is 0.1, while the
pressure of the inner region is 1000. Two different regimes of a uniform magnetic field in thex-direction
are studied, withBx = 50/

√
4π and 100/

√
4π. These intial conditions result in very low-β ambient plasma

states,β = 1×10−3 and 2.513×10−4 respectively. Through these low-β ambient states, the explosion emits
almost spherical fast magneto-sonic shocks that propagate with the fastest wave speed. The flow hasγ = 1.4.

The intermediate magnetic field strength case withBx = 50/
√

4π is illustrated in Figure 16. We see
an anisotropic explosion behavior because of the existence of the non-zero magnetic field strength inx-
direction. With this value of theBx field, the shock waves still somewhat preserve the spherically symmetric
shapes, although the development of the elongated wave structures in the direction parallel to theBx field
are evident.

For a stronger magnetic field strengthBx = 100/
√

4π, shown in Figure 17, the explosion now becomes
highly anisotropic. In Figure 17(b), the displacement of gas in the transversaly-direction is increasingly
inhibited and hydrodynamical shocks propagate in both positive and negativex-directions parallel toBx. It
is also evident in (d) that several weak magneto-sonic waves are radiated transverse tox-direction. This
process continues until total pressure equilibrium is reached in the central region.

Balsara [4] found that the strong wave propagation oblique to the mesh can cause unphysical negativity
in the pressure. Such effects are manifested as distortions of contours especially near the outer bound-
ary, where a large and unphysical drop in pressure takes place immediately ahead of the shock. No such
excrescence is evident in our calculation.
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(a) Density att = 0.0 (b) Density att = 0.02

(c) Density att = 0.04 (d) Density att = 0.06

Figure 15: The MHD interaction between the high density cloud and shock structures resolved on 400×400
grid. All plots show in a same color scheme ranging between 0.6599 (dark) and 70.7662 (bright).
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(a) Density att = 0.01 (b) Gas pressure att = 0.01

(c) Total velocity|U | at t = 0.01 (d) Magnetic pressure att = 0.01

Figure 16: Results from the blast problem withBx = 50/
√

4π.
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(a) Density att = 0.01 (b) Gas pressure att = 0.01

(c) Total velocity|U | at t = 0.01 (d) Magnetic pressure att = 0.01

Figure 17: Results from the blast problem withBx = 100/
√

4π.
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We further consider the possibility of an unphysical drop in pressure by looking at this field on a loga-
rithmic scale. It is asserted in [4] the scheme presented there (a modified flux-CT scheme with slope limiters,
denoted as the fast TVD limiter and a multidimensional limiter) performs well for this stringent blast prob-
lem, and indeed it is stable and able to capture the main features of the flow. However, as published in
Figures 6(b,f) of [4], drops in the pressure can be observed particularly in regions where the direction of the
strong wave propagation is oblique to the mesh. In their 6(b), with the fast TVD slope limiter employed,
distorted profiles at the outer boundary in these regions are evident, while in their 6(f) these effects are seen
to be mitigated but not eliminated with the use of the multidimensional slope limiter. In contrast, as shown
in Figure 18, the USM-MEC-DC scheme displays sharper profiles in these regions at the outer boundary.
The modified flux-CT scheme in [4] appears more diffusive than the present scheme and exhibits a narrower
bandwidth in they direction at the center of the inner blast wave structure. It also appears that the overall
wave structures are predicted in more detail with the USM-MEC-DC scheme, while regions appear feature-
less with the modified flux-CT scheme with slope limiters scheme of [4], although this could be a plotting
artifact of the latter figures. The dissipation control from the DC scheme also produces sharper features in
the pre-shock regions in both the negative and positivex-axis directions, while the figures in Figures 6(b,f)
of [4] display more diffuse features.

Figure 18: Shown is log10 p at t = 0.01 for the blast problem withBx = 100/
√

4π for the USM-MEC-DC
scheme.

The test case shows that the USM-MEC-DC scheme does not suffer from observable unphysical effects
in strongly shocked cases and continues to maintain sharp features. The results are found compare quite
favorably in comparison with other MHD schemes which can generate the strong distortions of the outer
contours (See [22]). For instance, Figure 17 of [22]) shows the contour plot of the density using the eight
wave scheme, where numerous unphysical peaks and distortions are evident in the contours. In contrast,
smooth contours mark the density field in the USM-MEC-DC calculation shown in Figure 17(a).

Several other CT-type schemes were tested in [22], including the modified flux-CT of [4] and upwinding-
CT (UTC) schemes. The study points out that the negativity of the pressure variable could easily be in-
troduced, especially in low-β simulations like the blast wave problem, and found it useful to turn on an
energy-fix switch in order to overcome the issue. The situation was found to be more severe in the UTC-
based schemes in that some specific parameters were needed in many cases for successful completion of the
calculation.

While ameliorating the pressure negativity issue, there still exist other distortions of the fields using
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these schemes as indicated in Figure 19 of [22]). It can also be seen in plots of their so-labeled BS2 and BS3
that, as mentioned earlier, there appears to be no qualitative difference between the results when adopting
the comparatively newer reconstruction scheme of [4], equations (86) and (87).

6 Conclusion

The USM-MEC-DC scheme has been introduced, developed and studied in this paper. The method
uses characteristic analysis to account for the contribution of both normal and transversal MHD fluxes. A
modified electric field construction (MEC) scheme and a new, very efficient, dissipation control algorithm
(DC) has been presented. The results of several test problems presented give considerable confidence in the
scheme for use as a robust and reliable second-order MHD algorithm.

The second-order accurate, multidimensional, unsplit high-order Godunov MHD algorithm has been
successfully developed on a staggered grid, with the capability of maintaining divergence-free magnetic
fields numerically. The method preserves the constraint numerically extremely well without evidence of
numerical instability or accumulation of unphysical errors. As validation, the suite of test problems pre-
sented in this study include several stringent setups that stress various features of MHD algorithms. They
consist of the evolution of a very weak magnetic field loop, a convergence study of circularly polarized
Alfv én waves, the widely used benchmark Orszag-Tang vortex problem, the spinning rotor problem, mag-
netic cloud-shock interaction, and the MHD blast wave problem. The scheme has been thoroughly tested
and has been shown to perform very well, providing confidence in correctly simulating a wide range of
MHD physical phenomena.

The scheme handles multidimensional MHD terms consistently using the characteristic method. Such
multidimensional treatment has been ignored in many of the operator splitting based MHD schemes. The
approach involves physical considerations that multidimensional MHD schemes should manifest. In partic-
ular, such multidimensional considerations eliminate unphysical secular growth that would cause deviations
from the in-plane dynamical evolution. To ascertain this, a two-dimensional MHD problem of field loop
diffusion was computed. Spurious numerical errors proportional to∇ ·B would affect the growth ofBz, and
ultimately alter the in-plane dynamics of the problem. These were found to be absent. The presented data
reconstruction-evolution method resolves the issue by using the multidimensional characteristic method in
a straightforward way.

A new procedure has been developed to construct the electric field in the MEC scheme, which appears
to significantly improve the accuracy of similar schemes (e.g., the flux-CT scheme of Reference [2]). The
MEC scheme takes a more directional consideration of the high-order Godunov fluxes obtained from the
duality relationship in the flux-CT scheme.

Remarkably good results are found with the introduction and development of the DC scheme for the
induction equation, in that a significant improvement in the solution of magnetic fields is found, which is
particularly observable in the field loop tests. We find that for our scheme, without utilizing the DC scheme
for the simulation, the circular symmetry of the field loop is destroyed. A balancing of the numerical
dissipation in MHD schemes is found to be important not only for the accuracy of solutions, but even
for stability. The DC scheme provides insight into suppressing undesirable anti-dissipative effects that
potentially exist in the solving the induction equation.

This paper has detailed the core algorithmic features of the USM-MEC-DC scheme, laying down the
important multidimensional aspects, and subjecting it to a series of tests. In subsequent publications we will
present extensions of this scheme that support parallel adaptive mesh refinement (early parallel results were
reported in [21]) and implementation in fully three dimensions.

The scheme has been implemented and is currently available in the University of Chicago ASC FLASH
Center’s FLASH 3 release [16].
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