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Despite the temporal and spatial complexity of common fluid flows, model dimensionality can often
be greatly reduced while both capturing and illuminating the nonlinear dynamics of the flow. This
work follows the methodology of direct numerical simulation (DNS) followed by proper orthogonal
decomposition (POD) of temporally sampled DNS data to derive temporal and spatial
eigenfunctions. The DNS calculations use Chorin’s projection scheme; two-dimensional validation
and results are presented for driven cavity and square cylinder wake flows. The flow velocity is
expressed as a linear combination of the spatial eigenfunctions with time-dependent coefficients.
Galerkin projection of these modes onto the Navier-Stokes equations obtains a dynamical system
with quadratic nonlinearity and explicit Reynolds number (Re) dependence. Truncation to retain
only the most energetic modes produces a low-dimensional model for the flow at the decomposition
Re. We demonstrate that although these low-dimensional models reproduce the flow dynamics, they
do so with small errors in amplitude and phase, particularly in their long term dynamics. This is a
generic problem with the POD dynamical system procedure and we discuss the schemes that have
so far been proposed to alleviate it. We present a new stabilization algorithm, which we term
intrinsic stabilization, that projects the error onto the POD temporal eigenfunctions, then modifies
the dynamical system coefficients to significantly reduce these errors. It requires no additional
information other than the POD. The premise that this method can correct the amplitude and phase
errors by fine-tuning the dynamical system coefficients is verified. Its effectiveness is demonstrated
with low-dimensional dynamical systems for driven cavity flow in the periodic regime,
quasiperiodic flow at Re=10000, and the wake flow. While derived in a POD context, the algorithm
has broader applicability, as demonstrated with the Lorenz system. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2723149]

I. INTRODUCTION

One route to extracting a higher level of information
from numerical or experimental data is to look for the coher-
ent structures in the flow as identified by the proper orthogo-
nal decomposition (POD). This decomposition represents the
flow field as a linear combination of spatial and temporal
basis functions derived from the statistics of the sampled
flow field (snapshots). Moreover, it orders the modes by their
importance in the flow reconstruction, so that significant data
reduction can be achieved by neglecting the least important
terms with quantifiable negligible loss in the accuracy of the
representation. This process allows one to see the important
structures in the flow.

A further step is needed to gain dynamical information
from the POD. This can be done by first replacing the flow
variables in the Navier-Stokes equations by their POD ex-
pansions, leaving the Reynolds number (Re) as a parameter.
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A Galerkin projection onto the spatial basis functions results
in a set of ordinary differential equations representing a dy-
namical system whose solution at the Reynolds number of
simulation is a model of the dynamics of full DNS simula-
tion. It is practical and convenient to truncate this model to
obtain a low-dimensional system. The degree to which this
system’s dynamics reproduce the original time-dependence
is a measure of the low-dimensional model’s fidelity and
usefulness.

It is of further interest for this model to reproduce the
dynamics of the full system away from the decomposition
Reynolds number, for such a valid model would allow pre-
dictions of flow behavior in regimes where no DNS has been
performed. Thus much more information can be obtained by
doing a parameter continuation based on the Reynolds num-
ber (Re). This is the key to investigating flow transitions
since now they are equivalent to bifurcation phenomena in
the dynamical system. However, one impediment to this goal
is the failure of the dynamical system to exhibit the correct
asymptotic behavior even at the modeled Reynolds number.
Holmes ef al.' note several probable causes for this defi-
ciency:
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¢ loss of the natural energy cascade due to low-dimensional
truncation,

e numerical error in the dynamical system coefficients, par-
ticularly those involving derivatives,

* neglect of boundary or pressure terms in the computation
of the dynamical system coefficients (problem and domain
dependent), and

e an incomplete basis as another consequence of truncation
which implies that only velocity fields close to the spatial
structures of the ensemble average will be reproduced
well.

The impact of the last point on the validity of the dynamical
system has been addressed by Rempfer,2 and others have
sought to augment the POD spatial basis to attain better rep-
resentation, e.g., Bangia et al’ and Jgrgensen et al* In par-
ticular, the unstable steady flow field might not be adequately
represented by the POD spatial basis, hence not a solution of
the derived dynamical system. Noack et al.’ have shown that
the addition of a mean-shift mode is a means of stabilizing
the derived dynamical system and compensating for missing
phase space directions.

In contrast, we present a means to improve the accuracy
and stability of the dynamical system itself without directly
addressing the source of the error. This is possible by recog-
nizing that the POD process can provide a low-dimensional
representation of the flow that is consistent with DNS, and
that it also gives us the correct solution of the derived dy-
namical system for the initial conditions consistent with the
snapshots, the temporal eigenfunctions (unnormalized). This
allows us to adjust the computed coefficients so that time
integration of the dynamical system does reproduce the cor-
rect solution.® We do not claim that this is sufficient for all
purposes; in particular, it is not sufficient for parameter con-
tinuation in Reynolds number in and of itself. However, we
demonstrate here that it is sufficient to capture the correct
asymptotic behavior exhibited by the DNS. This is a neces-
sary first step before gaining validity over a range of Rey-
nolds numbers.

In this work we systematically go through the POD pro-
cedure for some test problems and demonstrate the viability
of this new approach to obtain robust low-dimensional mod-
els at the Reynolds number of decomposition. Moreover, an
example with the Lorenz system shows that this technique
may be extended to a dynamical system obtained by Galer-
kin projection on any set of orthogonal basis functions with
appropriate changes in the implementation.

The broad area of POD research has been active since
Lumley introduced the application of POD to the study of
turbulence in the late 1960s.” Coherent structures have long
been observed in turbulent flow experiments, such as the Von
Karman vortex street behind a circular cylinder where it
originates in the laminar flow regime and persists well into
turbulent regime. Numerous papers attest to the success of
low-dimensional models based on POD for many fluid flow
problems. A comprehensive review of work in this field as
well as a complete explanation of the techniques involved
can be found in Holmes ef al.'

Finding the optimal basis for a linear decomposition of a
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data set is relevant to many fields in mathematics and sci-
ence. The Karhunen-Loéve method was initially proposed
(independently) by Karhunen® in 1946 and Logve’ in 1955.
The method is known by different names depending on the
field of study.10 For example, principal component analysis,
proper orthogonal decomposition, empirical eigenfunction
decomposition, and singular value decomposition are a few
of the alternate names for equivalent procedures. It continues
to be a viable topic for research and application.”’]2 More
recently, control applications have utilized the POD for the
creation of low order models that capture the nonlinear dy-
namics of the flow.">"

The POD has also been used as a nonlinear dynamics
tool applied to nonturbulent flow regimes to extract the spa-
tial and temporal characteristics of the flow. When the POD
is applied to a spatiotemporal data set of an evolving flow, it
simultaneously derives spatial and temporal orthogonal
modes which are coupled. This bi-orthogonality was noted
by Sirovich'"” and highlighted by Aubry,16 and can be math-
ematically defined as the representation of a flow field u(x, )
in terms of basis functions 6,(¢) and ®;(x) such that

u(x.0) = X N6 D(x),

with

and
(6; 9j> = <(I)i’q)j> = 55,"

Typically, the orthogonality of the temporal modes is ignored
since the main objective is the dynamical system based on
the spatial modes. However, this property is used to our ad-
vantage in the present work.

The first paper to apply these tools to flows in complex
geometries was Deane et al."” That paper constructed low-
dimensional models for flow in a periodically grooved chan-
nel and for flow past a circular cylinder. Two-dimensional
simulations yield a steady flow which gives way to a peri-
odic flow at a critical Reynolds number specific to the prob-
lem. Both flows were studied in the periodic regime and both
proved amenable to representation via low-dimensional
models at the Reynolds number simulated although the long-
term dynamics of both systems were found to suffer from
some amplitude errors even though the system remained in a
stable limit cycle. Also, the four-mode dynamical system for
the circular cylinder was unstable, even though four modes
captures over 99% of the energy. A far more difficult prob-
lem also tackled in the Deane ef al. paper, however, was
predicting the flow properties for a range of Reynolds num-
bers from the models. They concluded that low-dimensional
models of bounded flows such as the grooved channel flow
performed better than those of open flows such as the cylin-
der wake in regimes away from the decomposition Reynolds
numbers. The latter was found to be wholly inadequate.

Parameter continuation of these low-dimensional models
remains a challenge. This work addresses one of the major
obstacles to its success, viz. sufficient accuracy in the low-
dimensional model. If the long-term dynamics are not cap-
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tured at the modeled parameter there is little hope of accurate
prediction of flow dynamics at nearby values. Two two-
dimensional test flows are considered in detail: square driven
cavity flow and flow past a square cylinder. The driven cav-
ity flow is a well-studied flow with rich dynamical behavior
and certain features such as its relatively unchanging mean
flow make it an attractive test problem for the POD proce-
dure. The square cylinder wake flow exemplifies bluff body
wake flows with a fixed separation point (for a range of
Reynolds numbers, up to 100, Ref. 18). This in turn implies
little change in the distribution of pressure in that range.19
These factors help to isolate the changes in the wake flow as
the Reynolds number increases.

The recent work by Cazemier et al.”® derived a low-
dimensional model for the two-dimensional driven cavity
flow at Re=22000, where the flow appears to be chaotic.
Their 80-dimensional dynamical system was studied in depth
and a bifurcation diagram was presented. The transitions of
the dynamical system in the Reynolds number range 8000-
12000 were compared with their DNS results. While agree-
ment is good, the bifurcation diagram contains complicated
transitions that were unconfirmed by their DNS results. In
fact, there is little consensus in the literature about the flow
transitions.

The paper is organized as follows: We proceed by de-
scribing our numerical approach which implements the
Chorin projection method”' on a staggered grid in the next
section. A lack of accuracy here can cascade through the
procedures, so comparisons with known results are pre-
sented. The next section applies the POD procedure to obtain
the modes and the subsequent low-order models for the
driven cavity flow and the square cylinder wake flow. Since
the dynamical system must neglect higher order modes, it
typically needs some sort of closure or stabilization method
to accurately evolve the number of steps needed for param-
eter continuation. The central thrust of this work is the intro-
duction of a new stabilization method which we term intrin-
sic stabilization® which exploits the bi-orthogonality of the
POD. We present the approach and demonstrate its useful-
ness in Sec. IV. Section V provides verification of the
premise that the method can correct for significant errors in
the dynamical system coefficients, including phase and am-
plitude. We conclude with a discussion of the import of this
approach on the problem in Sec. VI.

Il. NUMERICAL APPROACH

We solve the 2D incompressible Navier Stokes
equati0n56 via a projection method which obtains a pressure
Poisson equation. The splitting is

* n

- 1
= Atu =—(u”-V)u”+R—eAu”, (1)

—V -u, (2)
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— =V, (3)

where the symbols have their usual meaning. The pressure
field is determined from the Poisson equation (2) with homo-
geneous Neumann boundary conditions.” For a finite differ-
ence solution, this method works best on a staggered grid
where pressure is defined at the grid points, u is offset in y by
Ay/2 and v is offset in x by Ax/2. The spatial discretization
is overall second order, with third order handling of the non-
linear terms for the wake flow. An advantage of this splitting
method is that it does not require external boundary condi-
tions for pressure. This method has its origins in the marker
and cell (MAC) method developed in 1965* which featured
the staggered grid and a Poisson equation for pressure. The
projection method coincides with the MAC method in the
interior of the domain, but differs on the boundary. Many
variants of these methods have been successfully used, e.g.,
Kim and Moin.**

The Poisson equation is solved using the Fourier spectral
method because of its speed and ease of implementation. It is
also ideal for the uniform staggered grid and otherwise
second-order discretization. On a staggered grid with Neu-
mann boundary conditions, the pressure Poisson equation
can be very efficiently solved using the quarter cosine-wave
transform.

Three types of boundary conditions have been imple-
mented for this work:

e Dirichlet boundary conditions are used for prescribed in-
flow conditions and for the wake flow horizontal bound-
aries. For inflow, u values are on the boundary and are set
to the desired value. The u values do not lie on the hori-
zontal boundaries, however, boundary values are set such
that the average across the boundary is the desired value. It
should be noted that it is also common to use free slip
(du/dy=0, v=0) on the horizontal wake boundaries.
Given a sufficiently large computational domain, this is not
to be a significant factor and the Dirichlet formulation is
more compatible for ingest into the POD to ensure that the
boundary terms are incorporated into the mean flow.

* No-slip (# and v vanish at the boundary) is used for wall
boundaries. This is done by setting the normal velocity
component to zero (since these grid points lie on the wall),
and setting the tangential velocity component to minus the
value of that velocity component at the adjacent interior
point (in the normal direction) so that the average value at
the wall is zero.

¢ Outflow (the outflowing mass flux should equal the inflow-
ing mass flux) is needed for channel, wake, and step flows.
The common method of implementing outflow by specify-
ing zero normal gradient in # and v is fine for steady flows,
but was not found to be satisfactory for unsteady wake
flows. The simple device of linearly extrapolating u and v
to the outflow boundary preserves the vortical structure in
the wake flow and does a fine job of conserving mass flux.

The square cylinder wake flow domain is split into rect-
angular regions necessary for the solution of the Poisson
equation for pressure by transform methods with a straight-
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FIG. 1. Cartesian coordinates of the computational domain for the flow past
a square cylinder (not to scale).

forward implementation of the alternating Schwarz method.
This decomposition assures physical boundary conditions on
three of the four sides for each domain. The domain in Fig. 1
was used (Ax:Ay=3L2). Figure 2 illustrates typical flow
fields for periodic wake flow.

The 2D square driven cavity flow is an important bench-
marking problem with a simple spatial geometry and easily
implemented boundary conditions: no-slip on the three walls
and a driven top edge at constant unit velocity. A common
feature of nonturbulent two-dimensional driven cavity flow
is a large rotating eddy occupying the central portion of the
cavity. Cascades of counter-rotating eddies occupy the lower
left and right corners. At high Reynolds numbers (=5000), a
top left eddy forms.

Extensive benchmarking results for Re<10000 are
available from Ghia et al.” However, Ghia’s work found a
steady state up to Re=10000. More recent publications (e.g.,
Cazemier™), and our results suggest that the flow in fact
undergoes two bifurcations before Re=10000. For this rea-
son, the benchmarking results presented here are restricted to
steady flow. Grid refinement has been done for key unsteady
driven cavity flows at Reynolds numbers 8500 and 10000 to
validate the later results (Figs. 3 and 4).

Ghia er al.” used a vorticity-stream function formulation
of the Navier-Stokes equations with a multigrid solution
method on a uniform grid of 128 X 128 to resolve this same
flow. Second-order central differencing was used for all
second-order derivatives, and upwinding for the convective
terms. The multigrid technique allows local grid refinement
by defining progressively finer grids in selected regions as

<
(a)

0['0'.

(b)

FIG. 2. (Color online) Partial view of a typical flow field for flow past a
square cylinder at Re=55 (a) and Re=90 (b) showing vorticity; red=—
(clockwise rotation) and blue=+ (counterclockwise).
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FIG. 3. (Color online) Stream function of typical flow field for the driven
cavity flow at Re=8500 (a) and Re=10000 (b); red=— and blue=+. Dots
mark discernible vortices.

needed. A more recent publication by Botella and Peyret26
obtained a highly accurate solution for this flow by a Cheby-
shev collocation method. The velocity is approximated with
a polynomial of at most degree N in both spatial directions,
its values defined on the (N+1) X (N+1) Gauss-Lobatto grid.
The pressure is defined as a polynomial of degree two less,
and is calculated at the (N—1)X (N-1) inner nodes. The
published results used for comparison here are for the high-
est resolution reported at N=160. Special attention was paid
to the lid corner singularities where the velocity is discon-
tinuous. Their boundary condition for the lid, however, was
u=-1, opposite to convention. This necessitates a mirroring
of x coordinates and negating of u values for comparison
with results from lid velocity u= + 1. Figure 5(a) plots the u
velocity component along the vertical center line of the cav-
ity in black. The squares show this information for the loca-
tions in Ghia et al.,25 and the triangles show —u for the lo-
cations in Botella et al.’® Figure 5(b) shows the v velocity
component along the horizontal center line of the cavity in
black. The squares show this information for the locations in
Ghia et al.,25 and the triangles show the same for 1—x, where
x is as published in Botella et al.® Figures 6(a) and 6(b)
display the same information for Re=5000 with dots for
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FIG. 4. (Color online) Vorticity of typical flow field for the driven cavity
flow at Re=8500 (a) and Re=10000 (b); red=— (clockwise rotation) and
blue=+ (counterclockwise).

Ghia et al.”® Finally, Figs. 7(a) and 7(b) display this infor-
mation for Re=7500 with dots for Ghia et al.”’

Numerous other comparisons with published calcula-
tions of L-shaped cavity Oosterlee et al.”’ and backwards-
facing step by Gresho et al.”® have been documented in Ref.
6 and convince us that the code performs adequately on the
problems and parameter ranges of interest.

lll. PROPER ORTHOGONAL DECOMPOSITION

The operational idea behind this method is the fact that a
real symmetric nonsingular matrix C can be diagonalized by
a special orthonormal matrix W such that W/CW =D, where
D is a diagonal matrix. The columns of W are the normal-
ized eigenvectors of C and the diagonal entries of D are the
eigenvalues of C. Moreover, the eigenvectors form an or-
thogonal basis, hence are uncorrelated, thereby maximizing
the information content in each and minimizing redundancy.
The covariance matrix of a data set is the real symmetric
matrix used for the KL procedure.

The application of the method can be considered in two
ways: find the eigenstructure of the spatial covariance matrix
or of the temporal covariance matrix. The eigenvalues are
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FIG. 5. (Color online) Comparison of solutions to the driven cavity flow at
Re=1000: black=256 X256, squares=Ghia et al., triangles=Botella et al.
(a) u along vertical center line [plotted (u,y)]; (b) v along horizontal center
line [plotted (x,v)].

equivalent and there is a simple relationship between the
eigenvectors of both covariance matrices, but the magnitude
of the two problems is not necessarily equivalent. It is usu-
ally more tractable to use the temporal covariance matrix (of
dimension M X M, where M is the number of snapshots) be-
cause it is usually the case that there are many more grid
points than snapshots. The ith eigenvector corresponds to the
coefficients for a linear combination of snapshots to form the
ith principal spatial orthogonal component. If there is redun-
dancy in the data, the number of significant eigenvalues will
be less than M, and only those corresponding eigenvectors
are used, producing less than M principal components. The
use of the temporal covariance matrix is known in the litera-
ture as the “snapshot” method. "

Details of this computation may be found in any number
of references, e.g., Ref. 16 hence are omitted here. To sum-
marize some of the important properties of the POD, given a
data set u(x,7), spatial basis functions B,(x) and correspond-
ing temporal functions b,(z), i=1,N:

e The POD choice b;=6; and B,=®; minimizes the recon-
struction error {[[u(x,?)—=¥ a,()B(x)|]?) for any level of
truncation M < N; more precisely, the error is smaller than
the square root of the (M+1)st eigenvalue,16 where 6,()
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FIG. 6. (Color online) Comparison of solutions to the driven cavity flow at
Re=5000: black=256 X 256, red dots=Ghia et al. (a) u along vertical center
line [plotted (u,y)]; (b) v along horizontal center line [plotted (x,v)].

and ®; are the ith temporal and spatial eigenfunctions,
respectively.

o If C is the covariance matrix derived from U(x,7) with
eigenvalues \;, i=1,N, then Ej”il)\izTrace(C) represents
the average, unsteady energy in the data set and is invari-
ant under the KL decomposition.

e )\; is the relative energy associated with principal compo-
nent i so for a given number of modes, the POD maxi-
mizes the captured energy.

e The transformation is invertible, which means that each
original snapshot can be written as a linear combination of
the POD components.

 In particular, if the solution vectors are divergence-free,
then so are the POD components.

The spatial fields ®; may also be interpreted as a quan-
titative representation of the coherent structures in the flow.
The eigenvalue of each field indicates the importance of that
component to the average unsteady energy of the flow. For
nonturbulent flows, most of the eigenvalues are close to zero,
s0 one can obtain a significantly simpler representation of the
flow, as well as a space/time decoupling.

From the POD, we have the representation of the solu-
tion to the Navier-Stokes equation as

Phys. Fluids 19, 054106 (2007)
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FIG. 7. (Color online) Comparison of solutions to the driven cavity flow at
Re=7500: black=256 X 256, blue=512 X 512 grid, red dots=Ghia er al. (a)
u along vertical center line [plotted (u,y)]; (b) v along horizontal center line
[plotted (x,v)].

M
u(t,x) = u,, + >, a;(P,(x), (4)

i=1

where u,, is the mean flow field and M is the number of
significant “eigenfunctions” a; (strictly speaking, a; is not a
temporal eigenfunction since in this representation, it is not
normalized) and ®,.

Replacing u in the Navier-Stokes equations and per-
forming a Galerkin projection onto the orthonormal spatial
basis functions @, yields

M
d
f == (P, (u,,- V)u,,) - ka,E a(®;-V)u,
i=1

M

- ‘Dk’z a;(u,, - V)®;

i=1
M M

- "Dk,E 2 aiaj(q)i : V)(I)j — (@, Vp)

i=1 j=1
1 M
+ ‘Dk, _V2<um + E ai‘l)i)
Re i=1

The pressure term can be integrated by parts to yield
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FIG. 8. (Color online) Mode 1, a,(t) and unstabilized ODE solution. Figures
8—11 refer to the low-dimensional model for driven cavity flow at Re
=8500. Red dots: exact from POD; black: evolved.

—(®,Vp)=—(V-D,p) - J Dp.
r

The spatial basis functions ®; are divergence-free, so the
first term vanishes. The @, vanish on the cavity boundaries
since the flow there is constant, hence equal to the mean
flow. Thus, the boundary integration term is zero as well. For
the flow past the square cylinder, the @, are likewise zero on
all except the outflow boundary. At outflow, however, there
is some question about the contribution from this term. In the
past, the pressure has been treated as zero (e.g., Refs. 17 and
29) so again there is no contribution from the boundary term.
However, this assumption demands an infinitely long do-
main, which is not attainable. Several authors have included
contributions from this term for channel flow (Galleti et
al.*®) and shear flow (Noack et al.’!), although Noack et al.
have found this term to be negligible for large wake
domains.’' However depending on the problem, domain, and
truncation level, neglect of this term could add to the uncer-
tainty in the ability of the computed dynamical system to
faithfully represent the actual flow dynamics. The intrinsic
stabilization algorithm can correct for this potential error
source as well, by modifying (“correcting”) the linear term,
in situations where the pressure term is adequately expressed
by a linear model, e.g., channel flow. ™

Using the orthonormality of the ®, the dynamical sys-
tem becomes (cf. Refs. 17 and 20)

N
da
d_tk =— (D, (u, Vu,) - > (@, (®;- V)u,,)a;
i=1
N

- E <(I)k7 (um : V)(I)i>ai

i=1
N N !
- 2 2 (P, (®;- V)®paa; + a(d)k,vzum

i=1 j=1
| N

+ _E <(DksV2(I)i>ai (5)
Rei

N N N
=Ap+ 2 Buai+ 2 2 Ciijaia;, (6)
i=1 i=1 j=1

where
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FIG. 9. (Color online) Asymptotic behavior of mode 1, a,(r) and unstabi-
lized ODE solution. See Fig. 8 for details.

1
A== (P, (u,, - V)u,) + —(®, V?u,,),
Re

Bki =- <(I)k7 ((I)l : V)um> - <(I)k’ (um : V)q)z>

1
—(®,, VD)),
+Re< k L>

Ckij =— (D, (D; - V)‘bj)-

From a practical consideration, it is beneficial to use integra-
tion by parts to reduce the terms involving second order
derivatives to functions of first order derivatives because it is
necessary to compute first order derivatives for all other
terms. Since the spatial eigenfunctions are zero on the
boundary, the boundary terms vanish:

1
Ak == <(I)k’ (um ) V)um> - <V(Dk,vum>,
Re

Bki == <(I)k’((l)i : V)um> - <(I)k7 (um ' V)q)z>

1
- —(V®,, VD)),
(VLT
Ckij: - <(I)k’(q)i : V)(I)j>-

Long-term dynamics

The actual computation of these coefficients entails nu-
merically computing first order derivatives of the mean flow
field and the eigenfunctions, and many inner products. This
is far from a perfect process: “There may be a significant
margin of error in the coefficients, especially those involving
derivatives.”' The aforementioned pressure term may also
contribute to error in the coefficients as well as the inaccu-
racies mentioned earlier as a consequence of truncation.

0.003
0.002
0.001
20 40 6

~0.001 80 100 {120 {40

-0.002
-0.003

FIG. 10. (Color online) Mode 1, a,(7) and intrinsically stabilized ODE so-
lution. See Fig. 8 for details.
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FIG. 11. (Color online) Asymptotic behavior of mode 1, @,(¢) and intrinsi-
cally stabilized ODE solution. See Fig. 8 for details.

00

These errors are a significant problem, because the long term
stability of the system of Egs. (6) is at stake. We need the
asymptotic behavior of these equations to accurately reflect
the DNS solution, or it will be useless in a parameter con-
tinuation scenario.

Various methods have been proposed for closure or sta-
bilization of the dynamical system under the assumption that
the main problem lies with the truncation of the system. One
method of stabilizing the dynamical system is nonlinear
Galerkin projection32 which was introduced specifically to
address the problem of long-term integration of evolution
differential equations. Given a truncated dynamical system
of order M, this method seeks to incorporate the effect of the
neglected higher modes on the premise that they are in fact
important for asymptotic behavior. An example of this
method was presented in Bangia et al’ They treat the first M
modes as master modes which govern the dynamics of the
flow, and the higher modes as slave modes. The equations for
the slave modes are not differential equations, but algebraic
equations dependent on the master modes. However, this
method proves inadequate for some reduced flow systems.33

The Heisenberg model augments each ordinary differen-
tial equation (ODE) in Eq. (6) with a linear term ua; where
m is a free parameter that is not determined a priori, but is
tuned for stabilizing the integration. The idea behind this
method is compensation for the loss of dissipation incurred
by neglecting the higher order modes.**

Another strategy for dealing with nonchaotic flows is to
include transient behavior to get statistical variance about the
attractor (e.g., Refs. 17 and 35). However, while this may
stabilize the scheme, the limit cycle amplitude obtained may
be different from that obtained from the full simulation,
which was the case in Ref. 17.

Cazemier™ also proposed a dissipative closure model
which would (possibly) add a linear damping term to the
dynamical system. The coefficient of the new term is deter-
mined from the requirement that the energy of the new dy-
namical system be conserved. Using the notation of Eq. (6),
the new term is D, and EfilEjA;ll—Ck,-j(ak(tm)a,»(tm)aj(tm)>N
—(By+Di)N\;=0 where \; is the kth eigenvalue from the

TABLE 1. Constant coefficient, k=1, ...,4.

Phys. Fluids 19, 054106 (2007)

25% 10 20 40 60 80 100 120 140
-25x%

-5x107°
—-75x%x107®
-0.00001
~0.0000125
~0.000015
~0.0000175

FIG. 12. Error, €(t), for mode 1 of the driven cavity flow at Re=8500.

POD and the triple product is a temporal average. However,
this factor does not always behave in the desired manner, so
its inclusion is on an ad hoc basis.

A recently introduced stabilization scheme by Sirisup et
al.* is based on the spectral vanishing viscosity (SVV) idea
of Tadmor.*® This approach adds a small amount of dissipa-
tion, decreasing with mode number, to high-frequency com-
ponents of the POD. SVV is implemented by a convolution
viscosity kernel parameterized by a viscosity amplitude e
=a/N, where N is the truncation level of the POD-based
dynamical system, and a cut-off mode M <N which deter-
mines the modes for added viscosity. The free parameters
need to be determined for the specific flow problem at hand.
Results are given for the periodic flow past a 2D circular
cylinder in Ref. 33. However, as the authors state: “correct-
ing the long-term behavior of the POD model does not imply
that the model can correctly capture the correct bifurcation
dynamics of the flow,” as they demonstrate at Re=500.

The irony lies in the fact that we a priori know the
solution to the system of differential equations [Eq. (6)] from
the POD procedure: the temporal functions a;(z) [Eq. (4)].
For instance, the driven cavity flow at Re=8500 was uni-
formly sampled after all transients had ceased, and the POD
temporal eigenfunctions are periodic as expected. Therefore,
it seems reasonable to assume that the failure of the dynami-
cal system to reproduce the temporal eigenfunctions may be
attributed to the possible error sources listed in the Introduc-
tion. Thus we propose to use the known solution of Eq. (6) to
adjust the coefficients so that the dynamical system can
evolve the correct solution at the Reynolds number of simu-
lation. This is explored in the next section.

IV. THE INTRINSIC STABILIZATION SCHEME

We introduce the new approach as intrinsic stabilization
to emphasize that the information required for its implemen-
tation is known a priori through the POD. The key concept is
the calculation of the local error incurred by use of the POD
based dynamical system compared to the temporal eigen-
functions, hereafter referred to as the “true solution” of the
dynamical system. Since the true solution is only known at
the snapshot times, the dynamical system is reinitialized at

(Ap) 1.86476 X 1073
(Ap+ ) 5.80122X 1076

9.05858 X 107
-5.32830% 1077

1.08822 X 1073
1.49441 % 107°

7.87272X 1076
5.63856 %1077
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TABLE II. Linear coefficient, j=1,...,4.

Phys. Fluids 19, 054106 (2007)

(By)) -1.66790 X 1073 -1.31134Xx 107! -1.11737 X 1072 ~7.52489 X 1073
(B);j+By) 6.00125 % 107 -1.30911 % 107! -1.15277 % 107 -7.86728 X 1073
(By)) 1.20817 % 107! -1.65227 x 1073 -1.13540x 1072 175379 X 1072
(Byj+ ) 1.20744 X 107! 1.67868 X 107 -1.13201 X 1072 1.82748 X 1072
(B3)) 4.47706 X 107 1.17824x 107 -3.08128 X 1072 2.74560 % 107!
(B3;+Bs)) -3.50752x 107 -1.95026 x 107 -3.00244 X 107 2.74147x 107
(By) —6.58169 X 107 —2.60856 X 107 -2.50137 x 10" —2.99096 X 1072
(By;+By)) —1.40871x 107# 1.92486 X 107 —2.49200 < 107! —2.96537x 1072
each snapshot time to the true solution, and time-stepped to b(z,.,) = a(t,) + hF(a(t,)).

the next snapshot time. The local error is the difference be-
tween the true solution and the time-stepped solution.

Let b(z) be the computed solution, a(z) be the true solu-
tion, and €() be the local error function. The kth component
of a(z), (1), is the kth temporal mode, and similarly b;(z)
and €(¢) refer to the kth temporal mode. M is the truncation
level; M<N, where N is the total number of snapshots.
While the true solution a(r) theoretically satisfies our exact
dynamical system, in fact we only know it as a discrete func-
tion at the snapshot times, t=t¢,, n=1,...,N, where t,,,=t,
+h. It will also be useful to refer to the functions at each
mode as a vector in time, e.g., a, is the vector whose nth
component is a(z,),

da
P G(a(1)),
db
P F(b(1)),

where G is the unknown exact dynamical system, and F is
the POD based dynamical system. From the previous sec-
tion,

db M M
o A E Bubi(t) + 2 2 Cubi(0b,(0).
i=1 j=1

Using a Taylor series to get a linear approximation to a(z,, ),

alt) ~atm+ h2| = a()+hG(()).

dt |,
n

Initializing the dynamical system at t=t, to a(¢,) and time-
stepping by forward Euler,

NN

—0.025 80f 100 §20 140

-0.05
-0.075 4

FIG. 13. (Color online) Mode 1, a,(7) and unstabilized ODE solution. Fig-
ures 13—-16 refer to the low-dimensional model for flow past a square cyl-
inder at Re=55. Red dots: exact from POD; black: evolved.

Then the local error at r=t,, is
E(tn+1) = a(tn+1) - b(tn+1) = hG(a(tn)) - hF(a(tn))

Using the snapshot time scale, =1, but if a different
time scale is used, €(¢) must be scaled by /4 so that €(z,,,)
= G(a(tn))_F(a(tn))-

This information can be used to improve b’s estimate
of a:

b(tn+1) = a(tn) + hF(a(tn)) + 6(tn+1)
~a(t,) + h(F(a(z,) + (G(a(r,)) - F(a(1,)))))
= a(tn+l) .

Incorporating this information into the dynamical sys-
tem,

o F(b(2)) + €(2).
The evolution of this intrinsically stabilized dynamical sys-
tem results in a far better approximation to the true solution
a. While the formulation of the method is motivated by the
use of forward Euler time-stepping, in practice it has been
necessary to use a fourth order Runge-Kutta time-stepping of
b for the calculation of the local error, €. It is also feasible to
time-step from a(z,) to b(z,,;) on a finer time scale, but in
our experience this does not improve the accuracy of the
stabilized dynamical system. This is partly due to the fine
sampling frequency (50 snapshots/period) used to ensure ad-
equate bandwidth. To test this, the POD to dynamical system
process was performed on the periodic flow past the square
cylinder at Re=55 with 10 snapshots/period and with 5
snapshots/period. In both cases, one Runge-Kutta step
proved inadequate, but two steps were sufficient. The sam-

0. 075

o ilH\HLHHHH\,V,HIHHH,L!HMHl
‘“‘HH HIHHM HHH' il iadoo

—0.075 E

FIG. 14. (Color online) Asymptotic behavior of mode 1, a,(r) and unstabi-
lized ODE solution. See Fig. 13 for details.
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FIG. 15. (Color online) Mode 1, a,(¢) and intrinsically stabilized ODE so-
lution. See Fig. 13 for details.

pling frequency is mandated by the temporal frequencies in
the data. The Nyquist criteria, sampling frequency must be at
least twice the data frequency, is a minimum criterion since
we are not dealing with band-limited data, and must be cal-
culated to accommodate the harmonics present in a nonlinear
periodic flow. For the periodic flows considered here, the
first pair of temporal modes corresponds to the base fre-
quency, and modes n and n+1 correspond to the n—1st/2
harmonic. Thus, a sampling frequency of n points/period is
compatible with at best an n mode dynamical system, and
only then if the data are sufficiently band-limited at the high-
est mode so that aliasing does not interfere. For instance, the
unstabilized dynamical system for the square cylinder at
Re=55 sampled at 10 snapshots/period does a reasonable job
of evolving the temporal eigenfunctions for an eight-mode
system, but modes 9 and 10 are totally in error. Stabilization
cannot change this; the information content is simply not
there.

For implementation and use for determining asymptotic
behavior, it is necessary for the local error function to be
characterized functionally in terms of the temporal eigen-
functions a,(z). Since these functions form an orthogonal ba-
sis and assuming the computed solutions b,(r) are not grossly
in error, it makes sense to project the local error € onto this
basis. The mean of each mode b,(¢) is not necessarily zero
(as it should be), so this produces a constant term in the
correction. In practice, € needs a few time steps to settle, so
the correction factors are based on data from the second pe-
riod (or, in the case of quasiperiodic data, mark “periods” by
peaks in autocorrelation),

0.1
0.05 |
0

-0.05

-01¢E

1000 2000 3000 4000 5000 6000
(@)

0.1
0.05

0
-0.05

-01 ¢t

1000 2000 3000 4000 5000 6000
(b)

Phys. Fluids 19, 054106 (2007)

FIG. 16. (Color online) Asymptotic behavior of mode 1, a,(7) and intrinsi-
cally stabilized ODE solution. See Fig. 13 for details.

(2, «)

ogy=————"",

N
(€ — .2
Bri=
(a;,a;)

M
€~ oy + 2 Bra;
i=1

The advantage of this formulation is its ease of incorporation
into the dynamical system, and the resultant form is consis-
tent with the viewpoint of correcting the original computed
dynamical system coefficients A, and By;:

d
ak ~ (Ag+ o) + 2 (Byi + Br)a(1)

M M

+2 > Cyijait)a(t).

i=1 j=1

It should be noted that the above algorithm involves di-
vision by (a;,a;), which is essentially the square of the mag-
nitude of the ith temporal eigenfunction, which in turn is
proportional to the ith eigenvalue. The ith eigenvalue is rep-
resentative of the unsteady kinetic energy is mode i, and this
algorithm will fail if one attempts to extract modes past a
reasonable energy cutoff. However, this may be considered
as a sanity check on the number of modes used since one
cannot expect information content for modes with essentially
ZEero energy.

0.02

0.01

-0.01

-0.02

1000 2000 3000 4000 5000 6000

0.02

0.01

0
-0.01

-0.02

1000 2000 3000 4000 5000 6000
(d)

FIG. 17. (Color online) Time history of envelopes of temporal modes for a four-mode intrinsically stabilized dynamical system of flow past a square cylinder
at Re=90 for 1000 shedding cycles. One shedding cycle is 6.6. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.
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FIG. 18. Square root of eigenvalues, POD at Re=55.

The periodic flow of the driven cavity at Re=8500 illus-
trates the deficiency of the evolution of the unstabilized dy-
namical system when compared with the true temporal
eigenfunctions. For this flow, virtually half of the unsteady
kinetic energy is accounted for in each of the first two
modes. Figure 8 shows the short term evolution of the first
mode, and Fig. 9 illustrates its asymptotic behavior. Even the
short term tracking is poor in this case. Figure 10 shows the
effect of intrinsic stabilization for the driven cavity flow at
Re=8500, and Fig. 11 illustrates its asymptotic behavior. As
an example to show the magnitude of the error, Fig. 12 plots
the computed error for mode 1. Tables I and II show the
original and corrected dynamical system coefficients for this
four-mode system. The quadratic coefficients are not
changed by this algorithm. Comparison of computed versus
stabilized coefficients for the four-mode dynamical system
from the driven cavity flow at Re=8500.

Similarly, the first two modes for the flow past the square
cylinder roughly split 95% of the kinetic energy. The short
term tracking for mode 1 is quite good without any special
treatment, as shown in Fig. 13, but again the asymptotic
behavior (Fig. 14) could sabotage a parameter continuation
effort. Intrinsic stabilization corrects this, as illustrated in
Figs. 15 and 16. Moreover, the correct limit cycle behavior is
obtained by this method

Sirisup et al.” pomt out that a dynamical system may
appear to be accurate for a certain number of shedding
cycles, and then diverge. For flow past a circular cylinder at
Re=100, a six-mode model with no stabilization exhibits
divergence after 40 shedding cycles and a 10-mode model
diverges after 500 shedding cycles. Another way of visualiz-
ing the asymptotic behavior is by plotting the maxima and
minima per period for each mode versus time, thus defining
the envelope of the mode. Figure 17 shows the envelopes for
the four-mode intrinsically stabilized model for flow past a

0.08
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0.06
0.05
0.04
0.03
0.02
0.01

5 10 15 20 25 30 35 40

FIG. 19. Zoom of square root of eigenvalues, POD at Re=55.
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FIG. 20. (Color online) Intrinsically stabilized square cylinder wake flow,
Re=55, mode 19. Red=exact from POD, black=evolved from stabilized
dynamical system.

square cylinder at Re=90 for 1000 shedding cycles, showing
that divergence is not a problem using this stabilization
method, even for the extremely low-dimensional system of
four modes which captures only 98.75% of the energy.

Are more modes better? Figures 18 and 19 show the
sharp drop off of the square root of the eigenvalues (propor-
tional to the magnitude of the corresponding temporal eigen-
function). There is a breakdown in the expected pairing of
eigenvalues after the 20th eigenvalue. Even though the POD
adequately resolves up to the 24th harmonic at 50 points/
period, there is little information content beyond the 20th
mode. The intrinsic stabilization method applied to a 20-
mode dynamical system can stabilize the system and recover
the correct temporal eigenfunctions. Figures 20 and 21 show
recovery of the highest significant modes. The connecting
plot lines are to aid interpretation, but the plot symbols show
the actual data points.

Figures 22 and 23 demonstrate the correct capture of the
limit cycle for the square cylinder wake flow at Re=90 by
plotting the phase portraits for modes 1 versus 2 and modes
3 versus 4 for 1000 cycles of the evolved dynamical system.
For comparison, the true limit cycles are plotted from the
POD temporal eigenfunctions.

Figures 24-27 show a more dramatic example of the
success of this procedure for the driven cavity flow for short
term tracking at Re=10000 where the flow is quasiperiodic.
The modes are plotted over nominally two full cycles, the
time period covered by the snapshots ingested by the POD. A
cycle is approximately 7=31.2. The 16-mode low-
dimensional model for this flow illustrates the ability of the
intrinsic stabilization method to recover modes containing
very little energy; mode 16 in Fig. 27 accounts for only
0.04% of the energy. The need for the stabilization procedure
to compensate for divergence from zero mean is evident in
mode 16. Another strong advantage of intrinsic stabilization
over the SVV method is the fact that all modes of the model
are recovered quite well. With the SVV method, after the
cutoff mode inaccuracies are introduced which worsen with

ﬁﬁfﬁ ‘Eﬁ%ﬁﬁﬁ%ﬁﬁﬁ%ﬁﬁﬁ%ﬁ

W f%t
o AR EH E ru"tr
FIG. 21. (Color online) Intrinsically stabilized square cylinder wake flow,

Re=55, mode 20. Red: exact from POD; black: evolved from stabilized
dynamical system.
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FIG. 22. (Color online) Phase portrait of modes 1 and 2. Four-mode intrin-
sically stabilized dynamical system of flow past a square cylinder at Re
=90 for 1000 shedding cycles in black; red dots mark one cycle of corre-
sponding temporal modes from POD.

increasing modes although the amplitude of even those
mo%es is bounded, an improvement over no stabilization at
all.”

The long term tracking issue raised for the four-mode
model for the square cylinder is addressed for the quasiperi-
odic flow of the driven cavity in Figs. 28—31 which show the
envelopes for the 16-mode intrinsically stabilized model for
1000 shedding cycles for modes 1, 4, 8, and 16, for brevity.
We see again that divergence is not a problem using this
stabilization method, even for the extremely low-energy
higher modes.

While Sirisup et al.* find that correcting the long-term
behavior of the POD model does not necessarily mean that
the model can produce the correct bifurcation dynamics of
the flow, this has not been our experience using the intrinsic
stabilization method.

There is the caveat that while the qualitative bifurcation
scenario is correct, the precise points of bifurcation and flow
specifics at Reynolds numbers away from the decomposition
Re will not be faithfully reproduced without accounting for
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-0.01

-0.015

-0.015 0 0.015

FIG. 23. (Color online) Phase portrait of modes 3 and 4. See Fig. 22 for
details.
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FIG. 24. (Color online) Mode 1 of 16-mode model for driven cavity flow at
Re=10000. Red dashed: exact from POD; black: evolved. (a) “Raw” coef-
ficients; (b) intrinsically stabilized.

the changes that occur in the dynamical system coefficients
themselves as the Reynolds number increases, an issue ad-
dressed elsewhere.’

Parameter continuation using AUTO (Ref. 37) of the in-
trinsically stabilized dynamical system derived from the
POD of the driven cavity flow at Re=8500 captures the Hopf
bifurcation at Re=8446 which is consistent with the DNS.
AUTO is able to follow the stable branch of periodic solutions
from that bifurcation point. Similarly, continuation of the sta-
bilized dynamical system from the POD of the square cylin-
der wake flow at Re=55 locates the Hopf bifurcation at Re
=46 and tracks a stable periodic branch from that point, also
consistent with the DNS.
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FIG. 25. (Color online) Mode 4 of 16-mode model for driven cavity flow at
Re=10000. Red dashed: exact from POD; black: evolved. (a) “Raw” coef-
ficients; (b) intrinsically stabilized.
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FIG. 26. (Color online) Mode 8 of 16-mode model for driven cavity flow at
Re=10000. Red dashed: exact from POD; black: evolved. (a) “Raw” coef-
ficients; (b) intrinsically stabilized.

Figure 32 illustrates parameter continuation results using
AUTO (Ref. 37) for the intrinsically stabilized 16-mode dy-
namical system derived from the POD at Re=10000 for the
driven cavity flow. The DNS shows quasiperiodic flow at
that Reynolds number, and parameter continuation correctly
captures first a Hopf bifurcation, then a toric bifurcation
from the stable periodic branch. As noted, the specific Rey-
nolds number of the Hopf bifurcation is off, but the qualita-
tive bifurcation sequence agrees with the DNS. In particular,
the dynamics near Re=10000 are in excellent agreement
with the DNS, which finds periodic flow at Re=9900.
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FIG. 27. (Color online) Mode 16 of 16-mode model for driven cavity flow
at Re=10000. Red dashed: exact from POD; black: evolved. (a) “Raw”
coefficients; (b) intrinsically stabilized.
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FIG. 28. (Color online) Envelope of first temporal mode for a 16-mode
intrinsically stabilized dynamical system of the quasiperiodic driven cavity
flow at Re=10000 for 1000 cycles. One cycle =31.2.

V. TEST CASES

In the previous section the intrinsic stabilization algo-
rithm has been shown to correct for errors in the dynamical
system coefficients. Examples have been shown that recover
a dynamical system that correctly evolves the POD temporal
functions. In the test cases considered here errors are intro-
duced in the dynamical system coefficients that affect phase,
period, and amplitude and the method is found to correct for
these. Starting with the four-mode intrinsically stabilized dy-
namical system for the driven cavity flow at Re=8500, we
perturb all of the intrinsically stabilized coefficients in three
ways: add a random error to all coefficients, multiply all
coefficients by a constant to shift the period, and finally di-
vide the linear coefficients and multiply the quadratic coef-
ficients by a constant to alter the amplitude. The evolution of
the perturbed dynamical system for a 5% random error and
1% perturbation in period and amplitude is shown at the left
in Figs. 33-36, along with the unperturbed evolution. Apply-
ing the intrinsic stabilization algorithm to the perturbed dy-
namical system yields the corrected system shown at the
right in Figs. 33-36. The only caveat is good a priori knowl-
edge of the true “period” (used loosely for quasiperiodic or
chaotic systems, in which case substitute a statistically mean-
ingful sampling interval), but this can be known from the
DNS data before even calculating the POD, and certainly
needs to be determined prior to computing the POD for ad-
equate snapshot retrieval.

Another interesting question is how well would the al-
gorithm work on a data set with a broader frequency spec-
trum. In lieu of a POD based dynamical system, we consider
the Lorenz system [Eqgs. (7)—(9)] which has its origins in a
severely truncated model of Rayleigh-Bénard convection,*®

Lo s )
0 ox + oy,

dy
—=—-Xxz+rx-y, 8
i XZ+rx—y (8)
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FIG. 29. (Color online) Envelope of fourth temporal mode. See Fig. 28 for
details.
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FIG. 30. (Color online) Envelope of temporal mode 8. See Fig. 28 for
details.

dz

— =xy-—bz. 9

Pk )
For this demonstration, r=23, o=13, and bzg— 1. Since this
dynamical system does not arise from a POD, we do not a
priori have a true solution. In this case, our strategy is:

 evolve a true solution for 500 time steps starting from x0,
v0, z0;

e perturb the dynamical system coefficients o by +3 and b
by -1.5;

e evolve the perturbed solution starting from x0, y0, z0,
tracking the error in x, y, and z at each step and then
reinitializing to the true solution at that time step;

* use a linear regression to get the best fit for the error func-
tions in x, y, and z (since we do not have orthogonality in
this non-POD based example);

e the error functions in x, y, and z are now modeled as a
constant (error mean) plus a linear combination of x, y, and
z so correct the perturbed dynamical system;

e evolve the amended dynamical system and compare with
the unperturbed solution; and

e do a long term (10000 steps) evolution of the corrected
(perturbed then restabilized) system to see if long term
agreement is achieved and compare it with the unperturbed
solution.

x0, y0, and z0 are determined after spinning up the sys-
tem for 1000 iterations from (0,1,0) to get on the attractor.
Figures 37-39 contrast the unperturbed and perturbed solu-
tions for short (500 steps) and long (10000 steps) term be-
havior. Figure 40 shows the x—z phase portrait for the un-
perturbed and perturbed solutions for short and long term
behavior. Figures 41-43 compare the unperturbed and cor-
rected solutions for short (500 steps) and long (10000 steps)
term behavior. Figure 44 shows the x—z phase portrait for the
unperturbed and corrected solutions for short and long term
behavior. Although not as accurate as a linear regression with
a constant term, it is simpler to report the results when the
error is simply modeled as a linear combination of x, y, and
z. In this case, the error functions are represented by

0.0004
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-0.0002
-0.0004
-0.0006

5000 10000 15000 20000 25000 30000

FIG. 31. (Color online) Envelope of temporal mode 16. See Fig. 28 for
details.
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FIG. 32. L? norm of each mode of the parameter continuation Re of the

intrinsically stabilized 16-mode dynamical system derived from the POD of
the driven cavity flow at Re=10000 compared with DNS results.

€,=2.75470x — 2.77181y + 0.000332349z,
€,=0.247664x - 0.0974575y - 0.00201328z,

€, =0.00654934x — 0.00153694y — 1.49961z,

effectively restoring the original ¢ and b when added to the
perturbed version of Egs. (7)—(9):

%=— (0+3)x+(0+3)y+ €,
= —(0+3-2.75470)x + (0 + 3= 2.77181)y
+0.000332349,
dy
A A

=—xz+ (r+.247664)x — (1.0974575)y
—0.00201328z,

dz
Z:xy—(b— 1.5)z+ €

=xy + 0.00654934x — 0.00153694y
—(b-1.5+1.49961)z.

For a chaotic system, one cannot expect pointwise fidel-
ity from the corrected system since the correction is linear
and based on short term dynamics. However, we see in Fig.
44 that the corrected system apparently captures the correct
attractor, even starting from a radically perturbed system and
using relatively short term statistics. This example also gives
us confidence that the method of intrinsic stabilization will
work well with extended POD bases or alternative basis
functions. The caveat in this example is that the sampling of
the true solution must be fine enough to capture the dominant
frequencies. In this example, the time step is 0.01. Basing the
correction on subsampling of the true solution becomes less
and less successful, until the correction fails at a subsam-
pling of every 20 points. It should be noted that this example
induces a linear error. Given that the correction is linear, this
is the only type of error one could expect to correct. How-
ever, this is a consequence of the formulation of the error as
a linear fit to x, y, and z. One can imagine a nonlinear error
model which could address nonlinear errors.
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FIG. 33. (Color online) Mode 1 of four-mode model for driven cavity flow
at Re=8500. Red dashed: exact from POD; black: evolved. (a) Perturbed
coefficients; (b) intrinsically stabilized.

VI. CONCLUSION

We have described a stabilization scheme which is self-
consistent in that it utilizes information already contained in
the POD modes to arrive at low-dimensional models that
more accurately describe the long-term dynamics of the full
system. We have demonstrated that this accuracy is unprec-
edented, in that no other method proposed in the literature
reproduces the accuracy of the higher-order modes with such
fidelity. The method is straightforward to apply and is both
conceptually as well as computationally simple.

The utility of such a stabilization, we have argued, is in
our goal of using these low-dimensional models not only at

0.003
0.002
0.001

] \
\
) '
i \
] '
L

ao 1,00@ 491

/\ /
2\7 60 vo 12W

FIG. 34. (Color online) Mode 2 of four-mode model for driven cavity flow
at Re=8500. Red dashed: exact from POD; black: evolved. (a) Perturbed
coefficients; (b) intrinsically stabilized.
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FIG. 35. (Color online) Mode 3 of four-mode model for driven cavity flow
at Re=8500. Red dashed: exact from POD; black: evolved. (a) Perturbed
coefficients; (b) intrinsically stabilized.

the decomposition values Re but also away from this value.
We will describe these results more completely elsewhere,
but here we point out three salient features:

A robust, accurate and stable (in the sense of long-term
dynamics) low-dimensional system influences the bifurca-
tion structure of the system at Re away from the decom-
position value. Nonstabilized low-dimensional systems can
exhibit short time dynamics, while almost-faithfully repro-
ducing a few cycles, can nevertheless asymptotically either
diverge or evolve to a limit cycle, and thus the bifurcation
diagram they represent is erroneous. The initial Hopf-point
may be moved and subsequent bifurcations delayed or oth-
erwise affected. It is incumbent on the modeler to obtain as
accurate a model as possible.

0.0003
0.0002
0.0001

oo /\/\ M
-

FIG. 36. (Color online) Mode 4 of four-mode model for driven cavity flow
at Re=8500. Red dashed: exact from POD; black: evolved. (a) Perturbed
coefficients; (b) intrinsically stabilized.
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FIG. 37. (Color online) Evolution of x from Lorenz equations. Original, red
dashed; perturbed, solid black. (a) Short term (500 steps), x. (b) Long term

( ) FIG. 39. (Color online) Evolution of z from Lorenz equations. Original, red
10000 steps), x.

dashed; perturbed, solid black. (a) Short term (500 steps), z. (b) Long term
(10000 steps), z.
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FIG. 41. (Color online) Evolution of x from Lorenz equations. Original, red
dashed; corrected, solid black. (a) Short term (500 steps), x. (b) Long term

(10000 steps), x.

 Stabilization schemes that incorporate ad hoc assumptions
introduce additional physics that are simply not present in
either the data or the procedure. While they may be
justifiable due to knowledge the modeler has from
fluid physics, it is inconsistent with the NS—POD
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FIG. 42. (Color online) Evolution of y from Lorenz equations. Original, red
dashed; corrected, solid black. (a) Short term (500 steps), y. (b) Long term

(10000 steps), y.
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FIG. 43. (Color online) Evolution of z from Lorenz equations. Original, red
dashed; corrected, solid black. (a) Short term (500 steps), z. (b) Long term
(10000 steps), z.
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FIG. 44. (Color online) x-z phase portrait from Lorenz equations. Original,
red dashed; corrected, solid black. (a) Short term (500 steps), x vs z. (b)
Long term (10000 steps), x vs z.
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