1) In class it was stated that the spectral density for black-body radiation was given by Planck’s formula: \(\rho(\nu, T) = \left(\frac{8\pi}{c^3} \right) \frac{\nu^2}{e^{\frac{h\nu}{kT}} - 1} \).

a) We argued in class that for low frequencies \((\frac{h\nu}{kT} \ll 1)\) this should reduce to the classical statistical mechanical result of Rayleigh and Jeans----

\[\rho_{R-J}(\nu, T) = \frac{8\pi \nu^2}{c^3}. \]

Show that it does.

b) Prior to the years immediately preceding the discovery of the Planck formula data for black-body radiation was restricted to relatively high frequencies \((\frac{h\nu}{kT} \gg 1)\) and was found to empirically be fit by Wien’s law \(\rho(\nu, T) = a\nu^3 e^{\frac{h\nu}{kT}} \), where \(a \) and \(b \) are parameters. Starting with the Planck law, find the parameters \(a \) and \(b \) in terms of fundamental constants.

2) Using the conservation of energy and momentum and assuming a two-body collision between a photon and an electron initially at rest derive the Compton formula:

\[\lambda_s - \lambda_i = \frac{h}{mc} \left(1 - \cos(\theta) \right) \]

where the subscripts \(i \) and \(s \) indicate the wavelength of the incident and scattered radiation respectively. (Hint: You may want to use relativity to first solve the problem in the center of mass frame and then boost).