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Functional areas of mammalian cerebral cortex seem positioned to
minimize costs of their interconnections, down to a best-in-a-
billion optimality level. The optimization problem here, originating
in microcircuit design, is: Given connections among components,
what is the physical placement of the components on a surface that
minimizes total length of connections? Because of unfeasibility of
measuring long-range ‘‘wire length’’ in the cortex, a simpler
adjacency cost was validated. To deal with incomplete information
on brain networks, a size law was developed that predicts opti-
mization patterns in subnetworks. Macaque and cat cortex rank
better in this connection optimization than the wiring of compa-
rably structured computer chips, but somewhat worse than the
macroeconomic commodity-flow network among U.S. states. How-
ever, cortex wiring conforms to the size law better than the
macroeconomic patterns, which may indicate cortex optimizing
mechanisms involve more global processes.

S imple ‘‘save wire’’ generative principles from combinatorial
network optimization theory predict layout of sensory areas

of macaque and cat cerebral cortex. The areas appear to be
positioned on the cortex to minimize interconnecting wiring, in
some cases to current limits of detectability. This picture of
large-scale component placement optimization in the cortex
resembles earlier findings for ganglion layout in the nervous
system of Caenorhabditis elegans (1, 2) and for optimization of
neuron arbors (3, 4), but to orders of magnitude finer optimality
(5, 6). Computer searches of all of the tens of millions of
alternative possible roundworm ganglion placements indicated
that the actual layout of the nematode requires the least total
wire length for the nervous system’s 1,000 connections. On the
model of these worm ganglion searches, we have worked out
methods for optimality searches of layouts of cerebral cortex
areas. To avoid difficulties of wire length measurement, a more
manageable adjacency cost was calibrated as a surrogate. To
detect optimization of subnetworks when the complete network
is inaccessible and to distinguish local from larger-scale optimi-
zation mechanisms, a size law was articulated (ref. 7 and
www.cs.umd.edu�Library�TRs).

We present evidence that the cortex areas appear optimally
placed, down to the limits of present computing resources. If
these types of results are confirmed, they constitute a predictive
success story of recent quantitative neuroanatomy. This is a
much finer degree of neuro-optimality than previously reported
(e.g., refs. 3, 5, and 6). We have also analyzed nonneural
networks (a benchmark computer microchip and macroeco-
nomic patterns among U.S. states) as a calibration of these
methods. Some chip layouts minimize connection costs better
than chance, but worse than the cortex layouts. The economic
network performs even better than the cortex, but apparently
only via simple local processes.

Component placement optimization (also characterized as a
quadratic assignment problem) has been a research focus in
computer science for design of large-scale integrated circuits (8,
9). Briefly defined, the problem is: Given connections among a
set of components, find the spatial layout of the components that
minimizes total connection costs. This task, like many other
network optimization problems (e.g., traveling salesman), is
nondeterministic polynomial (NP)-time hard. The formal con-
cept of NP-hardness, and the related concept of NP-

completeness, need not be defined here (10–12); they have long
been conjectured to be linked with a problem being intrinsically
computationally intractable, i.e., not generally solvable without
exhaustive search of all possible solution-candidates.

Of course, a cerebral cortex is vastly more complex than the
300-neuron C. elegans nervous system; it is also molded by
experience much more extensively. And, even when connections
are reported between two cortex areas, connection lengths and
densities are usually not available. In addition, the 2D cortical
sheet is intricately folded, so that measuring distance between
two areas becomes a 3D problem. Observing the actual course
of an axon bundle in the white matter is yet another layer of
difficulty. Finally, widespread axonal bifurcation of corticocor-
tical connections in cat and monkey visual systems has been
reported, with estimates of branching ranging �30% for some
populations of projecting neurons (13). Such a bifurcation can
save �10% of the corresponding length of two separate con-
nections (4, 14). However, cerebral connection compendia only
describe links between pairs of areas (15, 16); they therefore
cannot systematically represent these branchings, and so remain
inaccurate as a basis for computing wire costs. Is optimization
still discernable through so many barriers?

Adjacency Rule Costing
The adjacency rule is: If two components a and b are connected,
then a and b are adjacent. Two components are adjacent if
immediately contiguous topologically (as are, e.g., the United
States and Canada). The rule is a candidate for a network
wire-minimizing heuristic (17); in fact, it is also extensively
confirmed for macaque and cat visual cortex areas, rat olfactory
areas, and C. elegans ganglia (1, 2, 18, 19). Conformance of a
cortex layout to such a ‘‘myopic’’ adjacency rule is much more
feasible to compute than its total wire length cost: Just compare
interconnections and contiguities of the layout’s areas and score
how many rule-violations occur. [For example, in Table 1, the
seventh row VOT is {0, 2, 0, 2, 0, 1, 0}; it adds 2 to the total cost
of the actual layout, because two areas are connected (i.e., value
�0) but not adjacent (i.e., not bold).]

How useful would such adjacency costing be? The basic point
remains, that component placement optimization is a computa-
tionally intractable, NP-hard problem; hence, a quick and dirty
heuristic like the adjacency rule cannot provide a general
solution to such a problem. [In fact, as noted elsewhere (18, 20),
most of the worm’s interganglionic connections are not to
adjacent ganglia, but rather to more remote loci. Similarly for the
majority of connections in macaque and in cat cortex. See Table
2, which is published as supporting information on the PNAS
web site.]

So a first question would be, how closely correlated here in fact
are layout wire costs and adjacency performance? As explained,
we cannot expect to have accurate wire length data for cerebral
cortex. However, another strategy is to use our earlier C. elegans
databases as a test bed for such queries; a positive picture for the
worm would motivate exploring a similar working hypothesis for

Abbreviation: NP, nondeterministic polynomial.
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the cortex. In fact, the nematode layouts that perform best for
the above simple adjacency rule also perform very well in terms
of wire cost. This type of comparison can be generalized: Fig. 1
is a dispersion diagram for 100,000 randomly sampled worm
ganglion layouts (see Fig. 7, which is published as supporting
information on the PNAS web site). The amorphous cloud of
points indicates that, generally, adjacency rule conformance is

not an efficient means to good wire cost. However, the narrow
trail of points at the far lower left of Fig. 1 suggests a special case:
extremely good, near-optimal adjacency rule performance does
correlate well with very good wire cost (see also Fig. 6).

It should be noted that Fig. 1 shows that merely connecting
components to their neighbors will not optimize wire cost; only
a layout that is optimized in turn for adjacency rule conformance
will do that. Hence, a regress: optimal wire cost can be approx-
imated via optimal adjacency rule conformance, but now the
wire cost minimization problem has been replaced by another
combinatorial optimization problem of the same NP level of
computational complexity (21). [The 2D adjacency-rule place-
ment problem is NP-complete. It can be efficiently reduced to
Hamiltonian Path (see ref. 10, problem GT39) (T. Schaefer,
personal communication).] [In turn, adjacency optimization
itself can be achieved via an evolutionary process such as a
genetic algorithm, e.g., we have so implemented our GenAlg
(22).] That the worm’s connection matrix should be just such that
the best adjacency rule layouts match the very cheapest wire cost
ones, although the set of all others does not, may be an instance
of the type of connection matrix fine-tuning we reported (22) for
a force-directed placement algorithm, i.e., that the worm’s set of
connections appears to be just such that it has relatively few local
minima traps.

Size Law
So, the first provisional conclusion is that very good adjacency
performance is indeed worth examining as a feasible, surrogate
index of connection-optimization for layout of cortical areas.

Table 1. Combined connection and adjacency matrix for macaque visual cortex

V1 V2 V3 VP V3a V4 DP VOT V4t MT MSTd MSTI FST PITd PITv CITd CITv

V2 2
V3 2 2
VP 0 2 1
V3a 2 2 2 2
V4 2 2 2 2 2
DP 0 0 0 0 2 2
VOT 0 2 0 2 0 1 0
V4t 1 1 2 0 0 2 0 0
MT 2 2 2 2 2 2 0 0 2
MSTd 0 2 2 2 2 0 2 0 1 2
MSTI 0 2 0 0 2 0 1 0 1 2 0
FST 0 1 2 1 2 2 1 0 2 2 2 2
PITd 0 0 0 0 0 2 0 1 0 0 1 0 1
PITv 0 0 0 0 0 2 0 1 0 0 1 0 1 0
CITd 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
CITv 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 0

PO 2 1 1 1 1 0 2 0 1 1 2 2 0 0 0 0 0
PIP 2 1 2 2 0 2 2 0 0 2 0 0 0 0 0 0 0
LIP 0 0 2 1 1 2 2 0 0 2 2 1 2 0 1 0 0
7a 0 0 0 0 0 0 2 0 0 0 2 0 1 0 0 0 0
STPp 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 1 1
STPa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AITd 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2
AITv 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2 1 2
TF 0 0 2 2 0 2 0 0 0 0 1 0 2 0 1 0 1
TH 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 1

The series of 17 core visual areas shown in Fig. 3 are listed (V1–CITv), in the order in which they are successively added to the analysis. They are followed by
the set of 10 edge areas for the total core (PO–TH). Connections of an area to itself are excluded. 0 indicates no known connection between the area of that
row and of that column; 1 indicates connection in one direction between the two areas; 2 indicates two-way connection. Bold cell values designate topological
contiguity of the two areas on the cortex sheet, as in Fig. 3 (ref. 25, www.psychology.ncl.ac.uk�jack�gyri.html, and ref. 26). Adjacencies are from Felleman and
Van Essen (15). Adjacencies do not include diagonals, where only corners of two areas are contiguous (e.g., V3a and LIP in Fig. 3); similarly for all analyses below.
Because of incomplete information, the macaque visual cortex edgering has a gap at PS, 29, and 30.

Fig. 1. Adjacency rule conformance, vs. total wire cost, of 100,000 C. elegans
ganglion layouts randomly sampled from the set of all 11! possible layouts (2).
Correlation between adjacency rule performance and wire cost is not strong
(r2 � 0.051); in general, the adjacency rule is not an effective means to good
wire cost. However, the small set of layouts best fitting the adjacency rule (the
points at the far left) behave markedly differently: they correspond closely to
the best wire cost layouts. The larger point at the far left represents the actual,
minimum wire cost layout. Thus, good adjacency rule scores seem worth
exploring as a surrogate for layout wire cost (see Fig. 7).
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Another difficulty is that cortical connection and adjacency
information is not complete: For macaque (15) and cat (16), the
anatomy is satisfactory for the visual areas, usable also for
auditory and somatosensory areas, but only partial for frontal-
limbic areas. Therefore, any near-term optimization analysis of
the cortex will not include the entire system, but only large
subsets. On the working hypothesis that the total system was
perfectly optimized, what level of optimization would be ex-
pected for such a subset? To begin with, the following size law
can be conjectured:

If a set of connected components is optimally placed, then, the
smaller a subset of the total layout, the less optimal it will tend
to be.

The idea of a proof begins with the familiar observation, that
global optimality need not yield local subsystem optimality; local
means-ends sacrifices are often required for the best overall
solution. Furthermore, as an isolated subset of the total opti-
mized system gets smaller, its own constraints (e.g., local-global
tradeoffs) will be likely to depart more and more from those of
the total layout, and so the subset by itself is less likely to be as
well optimized. However, not all types of optimized networks
obey such a size law: For instance, a uniform fabric mesh with
just a regular, repeating pattern of connections between adjacent
nodes, such as among wire intersections in chain-link fencing,
will show perfect adjacency-rule optimization for all sizes of
subsets (see Fig. 2).

Typical connection costs to be minimized are total wire length,
or violations of an adjacency rule. For an n-component layout,
there are n! possible layouts. Optimality of a given layout can be
expressed in terms of the percentile rank of its cost relative to all
other alternative layouts, i.e., the proportion of all layouts that
have a lower cost.

How do neural systems behave? The size law can first be
evaluated for the 11-component worm ganglion system, with
total layout wire length as the cost measure. A nested chain of
ganglion subsets was generated, each composed of contiguous
elements, proceeding from head to tail, from 4 to the full 11
components. The cost of each subset of the actual layout was
compared with all possible alternative layouts of that subset of
components. (Components external, but immediately contigu-
ous, to a subset are included in the analysis as fixed ‘‘edge’’
constraints.) For the smallest set, 8.33% of all layouts are better
than the actual layout; this performance monotonically im-
proves, up to the full 11-component set, for which (as reported
in refs. 2 and 23) no layout is better than the actual one. In
addition, when optimality (proportion of layouts better than
actual) is plotted logarithmically against subset size, the descend-
ing curve closely approximates a straight line (r2 � 0.99, P �

0.001), suggesting the growth function is in fact a simple expo-
nential one.

Mammalian cortex optimization is of at least as much interest
as worm ganglion optimization. Yet, as explained, connection
length data are not in general available, and even in the best cases
(macaque and cat), adequate information on connections and
adjacencies exists mainly for sensory areas. In addition, there is
the double-bind that, according to the size law, component sets
that are large enough to be well optimized will tend to be too
large for feasible search of all layouts. We first evaluated the size
law for 17 contiguous core visual areas of macaque cortex (see
Fig. 3), with conformance to the adjacency rule as optimality
measure. For the macaque visual cortex areas, we constructed a
matrix of ipsilateral intracortical connections and a topological
database of adjacencies among the areas (15, 25). Areas outside
of the core set, but along the immediate periphery of the group,
were treated again as fixed edge components (see Table 1). A
nested series of compact subsets was generated, each composed
of contiguous elements. Although actual cortical areas form a
jigsaw puzzle of widely differing sizes and shapes, they are
approximated here as uniformly interchangeable: For example,
when V1 and V2 are swapped, V1 adjacencies are assigned to V2,
and vice versa, whereas V1 and V2 each retain their original
connections. (Thus, as also to a lesser extent for the worm
ganglion problem, actual cortical layouts are in fact even being
tested against some topologically impossible alternative layouts.)

Fig. 4A shows that the size law seems to apply well to the actual
cortex layout and does not hold for a corresponding scrambled
calibration set. The logarithmic scale of the y axis should be
noted: the size law curve fits a straight line well (r2 � 0.91, P �
0.001), suggesting, as for the much more complete worm ganglia
subset series, a simple exponential growth function. It should be
emphasized that the ‘‘total set’’ here consists of only 17 com-
ponents of the entire �73 area macaque cortical system and does
not include extracortical efferent and afferent connections. The

Fig. 2. Global vs. local optimization. A simple illustration shows that con-
nection-minimization of a total system does not entail connection-
minimization of its subsets. The total system here consists of a 1D array of
movable components, 1–3, with fixed edge-terminal (vertical bar) at left. All
connections are of equal cost per unit length (horizontal only). Besides inter-
nal connection 2–3, 1 and 2 go to the left edge. (A) A globally optimal layout
(cost: 4). However, if the system-subset is restricted only to components 2 and
3 with their outgoing connection to the left edge, then the 2 and 3 layout is
(locally) suboptimal (cost: 3) compared with a layout with positions of 1, 2, and
3 swapped (cost: 2), as in B. In contrast, the complete layout (B) is locally
optimal for subsystem 2 and 3, but at the expense of a higher cost for the total
layout (cost: 5).

Fig. 3. Parcellation of macaque cerebral cortex. Connection-cost optimiza-
tion analysis of layout of 17 core areas of the visual cortex (white), along with
10 immediately contiguous ‘‘edge’’ areas (dark gray). Placement of the inter-
connected functional areas is evaluated for how well total interconnection
costs are minimized. A total of 120 connections are reported among the core
areas and with the edge areas. Core and edge areas are listed in Table 1.
Rostral is to right. Figure is after Felleman and Van Essen (figure 2 in ref. 15 and
figure 6 in ref. 24); areas MIP and MDP have been included in PO.
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size law provides an account of how such an incomplete system
would attain only an optimality ranking in the top 10�7 of all
possible layouts, even if the complete system were in fact
perfectly optimal.

We similarly analyzed placement optimization for all 15
contiguous visual areas of cat cortex (along with a fixed edge
zone of immediately surrounding areas) (Fig. 9, which is pub-
lished as supporting information on the PNAS web site). From
published anatomy (ref. 16, Fig. 1 with corrections, and ref. 27),
we constructed a matrix of cat ipsilateral intracortical connec-
tions and a topological database of adjacencies among the
Brodmann areas. (Area SVA is included in 17, ALG in 19; DP
in EPp and AI, V in VP and AII, SSF in EPp; some boundary
indeterminacies remain unresolved; see Table 3, which is pub-
lished as supporting information on the PNAS web site.) The
results (Figs. 4B and 10) confirm the picture for macaque visual
cortex: again, there is a significant size law effect, with smaller
subsets of the actual layout ranking only in the midrange among
all possible layouts, but larger subsets performing progressively
better in their relative ranking for adjacency rule optimality.
Optimality improves exponentially with subset size.

Naturally, these two visual cortex series raise the question of
how much finer optimality even larger subsets of the actual
layout attain, for instance, as observed via simple random
samples of the extremely large total sets of all alternative possible
layouts (28, 29). For cat sensory cortex (visual, auditory, and
somatosensory), anatomical data for 39 contiguous Brodmann
areas was adequate for such an analysis. When the subset was
extended from the above 15 visual areas to 20 areas, a sample of
a billion of all possible 1018 layouts showed a rise of actual layout
rank from 10�5 into the top 10�8 of all layouts. (That is, only
three layouts of a billion sampled were better than the actual
layout.) For a 25-area subset, a billion-layout random sample
yielded no placements cheaper than the actual one, suggesting
the actual layout’s ranking may be too high to be detectable at
this sample size. Similarly no layouts cheaper than the actual one
were found for 30 areas, and also up to 39. Although this is, of
course, the most striking finding reported here, it should be
interpreted with some care; to begin with, larger sample sizes are
warranted. For the 39-area cat cortex layout, we performed three
separate random samplings, each of 100 billion layouts from the
1046 alternative possible layouts: we found no layouts with better

adjacency-rule optimization than the actual one. However, with
only 39 of the total 57 areas included in this analysis, the size law
would suggest the 39 areas need not be perfectly optimally laid
out, even if the total 57-component system was. (In addition, of
course, the neuroanatomical database inevitably still includes
errors.) We therefore constructed a simple genetic algorithm,
along the lines of one we had developed for the worm ganglion
placement problem (22); it quickly finds layouts of the 39 areas
cheaper than the actual one.

Metamodule Grouping
Of course, exhaustive search of all 57! alternative layouts of the
57 Brodmann areas of cat cortex (� 4 � 1076 layouts) would be
cosmically unfeasible (2, 23). Another sampling strategy is
instead to unite and conquer: Cluster the Brodmann areas of the
actual layout into groups of topologically contiguous compo-
nents, then search the smaller set of alternative placements of
these locked-down ‘‘metamodules’’ (see Table 4, which is pub-
lished as supporting information on the PNAS web site). This
strategy is based on a metamodule conjecture:

If a set of connected components is optimally placed, then a
set of metamodules, each consisting of a subset of those com-
ponents in the same positions, is also optimally placed.

Figs. 4C and 11 show size law optimization performance of a
series of nested layouts of 14 metamodules composed of 40 cat
cortical areas. Each metamodule was grouped from adjacent
Brodmann areas, all of the same modality (visual, auditory, then
somatosensory); metamodules were assembled to have approx-
imately equal numbers of areas, to be of approximately equal
area, and to be as compact as possible. The main observation is
that the full 14-metamodule layout now approaches the top
ten-millionth level of optimization, comparable to that found for
the worm ganglion system. The size law curve again fits a straight
line well (r2 � 0.97, P � 0.001). The consistency of the entire size
law trend here constitutes further convergent support for the
basic cortical optimality conclusion.

Nonneural Networks
As a further calibration of the methods here, we analyzed
connection optimization of two types of nonneural systems: a
computer microchip and macroeconomic commodity-f low net-
works. The chip was AMI49, the largest of the set of MCNC

Fig. 4. Size law for cortex areas. In each case, a series of nested compact subsets of the set of cortical areas was generated, each consisting of from four to the
full set of areas. Each subset of the actual layout was compared with all possible alternative layouts of that subset for optimality; optimality-measure is
conformance of the system to the adjacency rule (2). Sixteen- and 17-element sets were each compared only with random samples of 109 alternative layouts.
(A) The system of components is 17 contiguous macaque visual cortex areas as in Fig. 3, with connections and adjacencies as in Table 1, and order of successive
elements added as in Table 1. (B) Similar analysis for 15 cat visual cortex areas. (C) Fourteen cat cortex metamodules composed from 40 Brodmann areas of visual,
auditory, and somatosensory regions (see Figs. 8, 10, and 11, which are published as supporting information on the PNAS web site). In each case, the actual layout
curve (diamonds) shows that smaller subsets rank approximately in the middle of their group of alternative layouts. But, as subset size increases, optimality-
ranking of the actual layout consistently improves (with one or two exceptions in each series, P � 0.02). E.g., for macaque, fewer than one in a million of all
alternative layouts conform to the adjacency rule better than the actual layout of the complete macaque set. For comparison, each scrambled layout curve (circles)
shows the corresponding analysis for layouts of the areas with their adjacencies randomly shuffled; no size law trend toward improving optimality is now evident.
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microcircuit benchmarks,§ which contains 49 blocks or modules,
comparable to the number of functional areas in one cortex
hemisphere. We studied three AMI49 layouts of fully automatic
design, with costs to be minimized: (i) a function of layout area
and maximum path delay (30); (ii) a ‘‘blended’’ function of area
and total wire length (31); and (iii) total wire length¶ (see Fig.
5 and Fig. 12, which is published as supporting information on
the PNAS web site). In each case, the central 15 blocks of the
chip, along with the surrounding edge-zone of immediately
contiguous blocks, was analyzed (see Table 5, which is published
as supporting information on the PNAS web site). Again,
placement of the interconnected areas was evaluated for how
well total interconnection costs (adjacency rule violations) are
minimized, with the actual layout compared with alternative
possible layouts. The size law curve for the minimum wire length
layout (iii) showed the same pattern as for the cortex networks,
although somewhat weaker; the full 15-component subset attains
an optimality rank of 10�3 (see Fig. 6 and Fig. 13, which is
published as supporting information on the PNAS web site).
Neither of the other AMI49 layouts showed a size law pattern,
nor did either attain significant optimality. (In comparisons with
the cortex, it should be recalled that, unlike for chips, informa-
tion on cortex wiring is still not complete.) So, for these
calibration networks, adjacency rule conformance seems capa-
ble of distinguishing a target of wire length minimization from
some other related cost measures. And again, as for the scram-
bled layouts earlier, adjacency costing does not seem to inflate
optimality rankings (see also Figs. 1 and 2).

The macroeconomic system studied was U.S. states (see Fig.
14, which is published as supporting information on the PNAS
web site). The ‘‘connection’’ cost to be minimized was combined
‘‘export � import’’ commodity flow (in American dollars)
between nonadjacent units. (Because nearly all cells in the
matrices have non-0 values, economic transactions above a
threshold were analyzed, with cutoff set here to yield approxi-
mately the same connectivity density as for macaque and cat
cortex above; see Table 2.) Optimality measure was conform-

ance of the system to the simple ‘‘all or nothing’’ adjacency rule,
with each layout scored in terms of its number of violations of
the rule. For U.S. interstate commodity flow, a core of 15 central
contiguous states, along with a surrounding edge-zone of im-
mediately contiguous states, was analyzed (32) (see Table 6,
which is published as supporting information on the PNAS web
site). We similarly analyzed as pilot data European international
commodity flow among eight countries (33). The total U.S.
system attains perfect connection-optimization. The smaller
European nation set shows a similar pattern. (See Fig. 15, which
is published as supporting information on the PNAS web site.)
As calibration, a scrambled layout of the U.S. system shows no
optimization. This powerful performance of the optimization
model (rather than a mere satisficing model) may appear to
vindicate the wisdom of the hive, the ‘‘invisible hand’’ of
laissez-faire economics. Indeed, very fine component placement
optimization may thereby seem a rather pervasive phenomenon.
However, each macroeconomic series completely departs from
the size law pattern; in particular, smaller subsets already attain
perfect optimality, with no alternative layouts better than the
actual one. So, optimality does not necessarily entail conform-
ance to the size law. This breakdown suggests the macroeco-
nomic networks are optimized only via local processes, unlike the
cortex (and some chip) networks. In contrast, conformance of
the cortex systems to the size law suggests they are instead
‘‘high-tradeoff’’ networks requiring long-range micro�macro
exchanges of local optimality for global optimality.

Conclusion
For each cortical network above, the population distribution of
costs of alternative possible layouts conforms well to a normal
distribution. For each neural system, when connections to�from
surrounding edges are excluded from the analysis, optimality of
the actual layout decreases. Conversely, when weighting infor-
mation on connection strength is included in the adjacency-rule
costing, actual layout optimality improves over simple all-or-
nothing costing. Similarly for r2 fit to the size law. On an
assumption that the more realistic the modeling, the more

§International Workshop on Layout Synthesis, May, 1992, Research Triangle Park, NC.

¶Lin, J.-M. & Chang, Y.-W., Proceedings of the ACM/IEEE Design Automation Conference,
June 18–22, 2001, Las Vegas, NV.

Fig. 5. Integrated circuit network for calibration of optimality analysis:
AMI49 microchip, the largest of the MCNC set of benchmark circuits, with 49
modules,§ Lin and Chang layout. Cost to be minimized is total wire length.¶

The central 15 blocks (white), along with the surrounding edge-zone of
immediately contiguous blocks (dark gray), were analyzed. Again, placement
of the interconnected areas is evaluated for how well total interconnection
costs, adjacency rule violations, are minimized (see Figs. 12 and 13 and
Table 5).

Fig. 6. Size law for three layouts of the AMI49 chip. In each case, the system
of components is 15 contiguous central blocks, as in Fig. 5 (connections and
adjacencies for Lin and Chang are as in Table 5). Optimality measure is
conformance of the system to the adjacency rule, with a layout scored in terms
of its number of all-or-nothing violations. A series of nested compact subsets
of the set of blocks was generated, each consisting of from 5 to the full 15
areas. Each subset of the actual layout was compared with all possible alter-
native layouts of that subset for adjacency-rule optimality (14- and 15-element
sets were each compared only with random samples of 109 alternative lay-
outs). The curve for the Lin and Chang¶ layout (C) shows a similar but weaker
size law trend as the cortex networks earlier; the full 15-component subset
only attains an optimality rank of 1.5 � 10�3. Both the Esbensen and Kuh (30)
layout (A) and the Hong et al. (31) layout (B) show no size law pattern.
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optimal a network should appear, these trends further confirm
the optimality assessment.

The convergent set of ‘‘best of all possible brains’’ results
reported here (see Table 7, which is published as supporting
information on the PNAS web site) raises the issue: are complete
mammal cortex layouts in fact optimal, as the total C. elegans
ganglion layout appears to be? As for minimum-volume neuron
arbors (4), optimal cortex may be just an initial plan that can be
modified and elaborated. Natural next questions arise about
optimization mechanisms, for instance, direction of causation–
from connections to positioning, or vice versa, or both. Although
the point should be interpreted with some care, each of the
cortex systems analyzed here shows better goodness of fit to an
‘‘if connected, then adjacent’’ hypothesis than to the converse
hypothesis. [The test consists of comparing, for each actual
layout (see Table 2), its number of counterexamples to ‘‘if
connected, then adjacent’’ with the number of counterexamples
to the converse hypothesis; the comparison includes a correction
for unequal populations of connections and adjacencies. The
scrambled calibration layouts show no bias in either direction.]
It is also worth noting that, for the C. elegans optimization
problem, we have demonstrated simple mechanisms that pro-
ceed solely from connections to adjacencies, namely, a genetic
algorithm, and also a force-directed placement algorithm (22). A

similar genetic algorithm was described above for cat sensory
cortex.

This discussion has focused on neuroanatomy, upon minimi-
zation of biological connection-structures. However, the above
macroeconomic analyses really concerned abstract, functional
‘‘connections,’’ i.e., commercial transactions. We thereby pro-
ceed from anatomy to physiology broadly conceived. The adja-
cency rule then generalizes, If components are connected in the
wider sense of causal interrelation, then they are topologically
adjacent. (No action at a distance.) For instance, the large-scale
optimization landscapes of cortex and genome may be worth
comparing: the structure of the genome would be analyzed
similarly as above. Two genes might count as connected if they
are coactivated, (approximately) contemporaneously expressed.
Contiguity would be interpreted as proximity of position in the
3D genome structure. In fact, a first step toward such an
approach may be a recent study of clustering of highly expressed
genes in chromosomal domains (34).
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