Measurement of anisotropic coefficients of thermal expansion of SAC305 solder using surface strains of single grain with arbitrary orientation

Bulong Wu a, Yu-Hsiang Yang b, Bongtae Han a,*, Joshua Schumacher b

a Mechanical Engineering Department, University of Maryland College Park, MD, 20742, United States
b Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States

A R T I C L E I N F O

Article history:
Received 6 June 2018
Accepted 14 June 2018
Available online 20 June 2018

Keywords:
SAC305
Coefficient of thermal expansion
Grain orientation
Moiré interferometry

A B S T R A C T

The anisotropic coefficient of thermal expansions (CTEs) of SAC305 grain are measured using a full-field in-plane displacement measurement technique. Theoretical relationships among (1) the transversely-isotropic CTEs, (2) the surface strains of a specimen containing a single grain with arbitrary orientation, and (3) the direction of a grain orientation are derived first. Cube shape specimens that contain a single SAC305 grain are fabricated by controlling cooling rates. Thermally-induced displacements fields with a sub-micron resolution are documented on two perpendicular surfaces of the specimen as a function of temperature, and the engineering strains are calculated from the displacement fields. Then, directional CTE values are determined from theoretical relationships. The direction of the c-axis is also obtained during CTE calculations. The validity of the measurement is corroborated by comparing the c-axis direction obtained from the experiment with a grain orientation measured by the electron backscatter diffraction (EBSD) method.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Since Pb was banned for the majority of manufactured electronics, hypoeutectic Pb-free solder, such as Sn3.0Ag0.5Cu (SAC305) and Sn1.0Ag0.5Cu (SAC105) solder alloys, have been widely accepted because they are cost-effective and offer performance like ternary near-eutectic SAC387 solder alloy [1]. The hypoeutectic SAC305 solder alloy contains 96.5% of Sn, and intermetallic compounds (IMCs) of Ag3Sn and Cu6Sn5 disperse around β-Sn grain matrix.

The mechanical behavior of SAC305 is quite different from the traditional eutectic Sn63Pb37 solder. The Sn63Pb37 solder contains soft islands of Pb embedded in Sn matrix [1], and it has been treated as a homogenous material with isotropic properties for stress analyses since its grain size is relatively small [2,3]. However, Sn grains in SAC solders are large, and some solder joints of surface-mount components contain only two or three grains [1,4–10].

Sn crystal has a body-central tetragonal (BCT) structure (Fig. 1) with the lattice constants of \(a = b = 1.833\)c. Anisotropic elastic modulus and the coefficient of thermal expansion (CTE) of Sn unit cell can vary by a factor of 3 and 2, respectively [6,7].

It has been reported that β-Sn has transversely isotropic CTE values [11,12]. The CTE value on the plane perpendicular to the c-axis (Fig. 1) of a Sn grain is isotropic; i.e., the CTE is the same along any direction on the (001) plane (will be referred to as \(a_{\parallel}\)). The CTE value along the c-axis ([001] direction), \(a_{c}\), is different from \(a_{\parallel}\). As a result, SAC305 solder joints are expected to have strong anisotropic thermal expansion responses since they contain a large amount of Sn [6,7,9,10,13]. To the best knowledge of the authors, however, the anisotropic CTE values of SAC305 solder grains have not been measured experimentally.

In this work, the anisotropic CTEs of SAC305 grains are measured uniquely using a full-field in-plane displacement measurement technique called moiré interferometry. Cube shape specimens that contain a single SAC305 grain are fabricated by controlling cooling rates. Thermally-induced displacements fields with a sub-micron resolution are documented on two perpendicular surfaces of the specimen as a function of temperature, and the engineering strains are calculated from the displacement fields. Then, directional CTE values are determined from theoretical relationships among (1) the transversely-isotropic CTEs, (2) the
surface strains of a specimen containing a single grain with arbitrary orientation, and (3) the direction of a grain orientation.

The theoretical relationships are described first before briefly reviewing moiré interferometry. The test results are followed with the detailed description of specimen preparation. The validity of the measurement is corroborated by the grain orientation obtained by the electron backscatter diffraction (EBSD) method.

2. Theoretical relationships

Theoretical relationships are described first. Then, a procedure to determine the directional CTE values and the direction of a grain orientation from the surface strains measured on two perpendicular surfaces is presented.

2.1. Governing relationships

Fig. 2 shows the specimen coordinate (o-xyz) and the coordinate of a grain with arbitrary orientation (o'x'y'z'). The blue and red blocks represent the specimen and the solder grain orientation, respectively.

In the grain coordinate, the c-axis is aligned with the z' axis, and the a-axis and b-axis are aligned with the x', y' axis, respectively. The specimen coordinate can be transformed into the solder grain coordinate through three sequential steps of coordinate rotation, schematically illustrated in Fig. 3: step 1: the xyz coordinate rotates around the z-axis by angle A1, and transforms into the x1,y1,z1 coordinate; step 2: the x1,y1,z1 coordinate rotates around the x1-axis by angle A2, and transforms into the x2,y2,z2 coordinate; and step 3: the x2,y2,z2 coordinate rotates around the z2-axis by angle A3, and transforms into the grain coordinate, the x'y'z' coordinate, where A1, A2 and A3 are Euler angles. The transformation matrix can be determined as:

\[
\begin{align*}
R_{A1} &= \begin{bmatrix}
\cos A_1 & \sin A_1 & 0 \\
-\sin A_1 & \cos A_1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \\
R_{A2} &= \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos A_2 & \sin A_2 \\
0 & -\sin A_2 & \cos A_2
\end{bmatrix}, \\
R_{A3} &= \begin{bmatrix}
\cos A_3 & \sin A_3 & 0 \\
-\sin A_3 & \cos A_3 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\end{align*}
\]

The thermal strain tensor at the grain coordinate can be expressed as:

\[
\varepsilon' = \begin{bmatrix}
\epsilon_{xx}' & \epsilon_{xy}' & \epsilon_{xz}' \\
\epsilon_{yx}' & \epsilon_{yy}' & \epsilon_{yz}' \\
\epsilon_{zx}' & \epsilon_{zy}' & \epsilon_{zz}'
\end{bmatrix} = \begin{bmatrix}
\alpha_c \cdot \Delta T & 0 & 0 \\
0 & \alpha_a \cdot \Delta T & 0 \\
0 & 0 & \alpha_c \cdot \Delta T
\end{bmatrix}
\]

(2)

where \(\Delta T\) is the temperature change; \(\alpha_c\) and \(\alpha_a\) are the CTE values along the c-axis and a-axis, respectively.

The strain tensor at the specimen coordinate can be determined by:

\[
\varepsilon = \begin{bmatrix}
\epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\
\epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\
\epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz}
\end{bmatrix} = \tilde{T}^T \varepsilon' \tilde{T}
\]

(3)

where

\[
\tilde{T} = R_{A3} R_{A2} R_{A1}
\]

(1)
2.2. Determination of anisotropic CTE values from surface strains

From Eqs. (1)–(3), the engineering strains of specimen surfaces can be expressed in terms of ε_{xx}, ε_{zx}. A_1 and A_2 as:

\[
\begin{align*}
\varepsilon_x &= \varepsilon_{xx} = \cos^2 A_2 \cdot \sin^2 A_1 + \cos^2 A_1 \cdot \sin^2 A_2 \varepsilon_{zx} \\
\varepsilon_y &= \varepsilon_{yy} = \cos^2 A_2 \cdot \cos^2 A_1 + \sin^2 A_1 \cdot \sin^2 A_2 \varepsilon_{zx} \\
\varepsilon_z &= \varepsilon_{zz} = \sin^2 A_2 \cdot \varepsilon_{xx} + \cos^2 A_2 \varepsilon_{zx} \\
\gamma_{xy} &= 2 \varepsilon_{xy} = 2 \sin^2 A_2 \cdot \sin A_1 \cdot A_2 \varepsilon_{x'y'} (\varepsilon_{xx} - \varepsilon_{zx}) \\
\gamma_{xz} &= 2 \varepsilon_{xz} = 2 \sin^2 A_2 \cdot \cos A_1 \cdot \sin A_1 \varepsilon_{x'y'} (\varepsilon_{xx} - \varepsilon_{zx}) \\
\gamma_{yz} &= 2 \varepsilon_{yz} = 2 \sin^2 A_2 \cdot \cos A_1 \cdot \cos A_1 \varepsilon_{x'y'} (\varepsilon_{xx} - \varepsilon_{zx})
\end{align*}
\]

(4)

The principal strains and the principal angle of the minimum principal strain on the xy plane can be expressed as:

\[
\varepsilon_{p1}^{xy} = \frac{\varepsilon_x + \varepsilon_y}{2} + \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}
\]

(5)

\[
\varepsilon_{p2}^{xy} = \frac{\varepsilon_x + \varepsilon_y}{2} - \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}
\]

(6)

\[
\beta_{p2}^{xy} = \begin{cases}
\frac{1}{2} \tan^{-1} \left(\frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}\right) & \text{if } \varepsilon_x \leq \varepsilon_y \\
\frac{1}{2} \tan^{-1} \left(\frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}\right) + \frac{\pi}{2} & \text{if } \varepsilon_x > \varepsilon_y
\end{cases}
\]

where ε_{p1}^{xy} and ε_{p2}^{xy} are the maximum and minimum principal strains.

Similarly, the principal strains and principal angle on the adjacent yz plane (perpendicular to the xy plane) can be expressed as:

\[
\varepsilon_{p1}^{yz} = \frac{\varepsilon_y + \varepsilon_z}{2} + \sqrt{\left(\frac{\varepsilon_y - \varepsilon_z}{2}\right)^2 + \left(\frac{\gamma_{yz}}{2}\right)^2}
\]

(8)

\[
\varepsilon_{p2}^{yz} = \frac{\varepsilon_y + \varepsilon_z}{2} - \sqrt{\left(\frac{\varepsilon_y - \varepsilon_z}{2}\right)^2 + \left(\frac{\gamma_{yz}}{2}\right)^2}
\]

(9)

\[
\beta_{p2}^{yz} = \begin{cases}
\frac{1}{2} \tan^{-1} \left(\frac{\gamma_{yz}}{\varepsilon_y - \varepsilon_z}\right), & \text{if } \varepsilon_y \leq \varepsilon_z \\
\frac{1}{2} \tan^{-1} \left(\frac{\gamma_{yz}}{\varepsilon_y - \varepsilon_z}\right) + \frac{\pi}{2}, & \text{if } \varepsilon_y > \varepsilon_z
\end{cases}
\]

(10)

where ε_{p1}^{yz} and ε_{p2}^{yz} are the maximum and minimum principal strains on the yz plane, respectively, and β_{p2}^{yz} is the principal angle of ε_{p2}^{yz} measured from the positive y axis. Substituting Eq. (4) into (5) and (6) yields:

\[
\varepsilon_{p1}^{y}_x = \cos^2 A_2 \cdot \varepsilon_{xx} + \sin^2 A_2 \cdot \varepsilon_{xy} = \left(\cos^2 A_2 \cdot \alpha_a + \sin^2 A_2 \cdot \alpha_c\right) \varepsilon_{xx} \\
\varepsilon_{p2}^{y}_x = \varepsilon_{xx} = \alpha_a \cdot \Delta T
\]

(7)

\[
\beta_{p2}^{y}_x = A_1
\]

It is important to note that the magnitude of the minimum principal strain remains constant regardless of the plane, because the CTE on the $x'y'$ plane is isotropic. More details about the constant minimum principal strain on surfaces will be discussed later.

From Eqs. (7) and (10), α_a and α_c can be expressed as:

\[
\alpha_a = \frac{\varepsilon_{p2}^{xy}}{\Delta T} \\
\alpha_c = \frac{\varepsilon_{p2}^{xz}}{\Delta T} = \cot^2 A_2 \cdot \alpha_a
\]

(11)

where $A_2 = \tan^{-1} \left(\frac{\tan \beta_{p2}^{xy}}{\cos \beta_{p2}^{xy}}\right)$.

Similar derivations can be made using ε_{p1}^{yz} and ε_{p2}^{yz}.

\[
\alpha_a = \frac{\varepsilon_{p2}^{yz}}{\Delta T} - \sin^2 A_2 \cdot \sin^2 A_1 \cdot \alpha_a = \frac{\varepsilon_{p2}^{yz} - \sin^2 A_2 \cdot \sin^2 \beta_{p2}^{xz} \cdot \alpha_a}{\cos^2 A_2 + \sin^2 A_2 \cos^2 \beta_{p2}^{xz}}
\]

(12)

\[
\alpha_c = \frac{\varepsilon_{p2}^{yz}}{\Delta T} - \cos^2 A_2 \cdot \sin^2 A_1 \cdot \alpha_c = \frac{\varepsilon_{p2}^{yz} - \sin^2 A_2 \cdot \sin^2 \beta_{p2}^{yz} \cdot \alpha_c}{\cos^2 A_2 + \sin^2 A_2 \cos^2 \beta_{p2}^{yz}}
\]
The CTE values can be determined by either (11) or (12) if the engineering strains on two perpendicular surfaces are available. It is worth noting that the value of α_a can be calculated using the strains of a single surface.

3. CTE measurements

A full-field optical technique called moiré interferometry is used to measure the surface strains. The method is described briefly first and results obtained from two specimens are presented.

3.1. Experimental method: moiré interferometry

Moiré interferometry is a full-field optical technique to measure in-plane deformations with high sensitivity, high signal-to-noise ratio, and excellent clarity. The outputs are the contour maps of in-plane displacements.

In this method, a cross-line high frequency diffraction grating, f_S, of 1200 lines per mm is replicated on a specimen surface, and it deforms together with the underlying specimen. As illustrated in Fig. 4a, a virtual reference grating, f, is formed by two coherent beams of light. The deformed specimen grating and the uniform reference grating interact to produce moiré patterns of in-plane displacements. It has been used widely for electronic packaging design and reliability assessment [14–28]. A detailed description of moiré interferometry can be found in Ref. [14].

The resultant fringe patterns represent contours of two in-plane x and y displacements, u_x and u_y, which are related to the fringe orders by [14]:

$$u_x(x, y) = \frac{1}{f} N_x(x, y), \quad u_y(x, y) = \frac{1}{f} N_y(x, y)$$

(13)

where N is the fringe order and f is the frequency of the virtual reference grating. In routine practice, a virtual reference grating with a frequency of 2400 lines/mm is used, which provides a contour interval of 417 nm per fringe order. The engineering in-plane strains can be determined from the displacements by:

$$\varepsilon_x(x, y) = \frac{\partial u_x}{\partial x} = \frac{1}{f} \frac{\partial N_x}{\partial x}$$

(14)

$$\varepsilon_y(x, y) = \frac{\partial u_y}{\partial y} = \frac{1}{f} \frac{\partial N_y}{\partial y}$$

(15)

$$\gamma_{xy}(x, y) = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} = \frac{1}{f} \left(\frac{\partial N_x}{\partial y} + \frac{\partial N_y}{\partial x} \right)$$

(16)

In this work, an advanced moiré interferometry system was used to document the required deformation fields. The system is illustrated schematically in Fig. 4b [28]. It consists of (1) a portable engineering moiré interferometer (PEMI) that provides two sets of virtual reference gratings, (2) a conduction chamber built on a high performance thermo-electric cooler that provides accurate temperature control, and (3) a high-resolution digital camera with a microscope objective lens. The thermal conduction chamber is mounted on an x-y-z translation stage, which allows positioning as well as focusing the specimen. More details of the system can be found in Ref. [28].

3.2. Specimen preparation: specimen with a single grain

An aluminum mold with cube shape holes was used to control the shape of solder specimen ($\approx 1 \text{ mm} \times 1 \text{ mm} \times 1 \text{ mm}$). A detailed procedure to fabricate the solder specimens is shown schematically in Fig. 5. The mold was first mounted on an aluminum substrate. They were placed on a plate heater, which was heated to 240 °C. When the mold temperature reached the steady state (about 235 °C), SAC305 solder wire was manually fed into the holes in the mold. After placing a thin hot aluminum plate on the top of the
mold, the whole assembly was removed from the heater and was cooled by natural convection. When temperature decreased to around 190 °C, the solder was completely solidified, and the assembly was moved to a metal heat sink for faster cooling. There was virtually no wetting between SAC305 solder and the aluminum mold, and thus the solder specimens were readily removed from the mold.

Several SAC305 solder grains can be produced during the solidification process. The cooling rate during the solidification process is known to be one of the most critical parameters that influence grain growth [29]. By controlling the substrate thickness and ambient conditions during the cooling process, different cooling rates were achieved.

All specimens were ground and polished after separation from the mold. The number of grains on specimen surfaces was examined using a polarizing microscope. The results of specimens fabricated at different cooling rates are shown in Fig. 6: (a) 25 °C/sec by water cooling; (b) 3.5 °C/sec by natural convection; (c) 0.8 °C/sec by natural convection cooling but with a thicker Al substrate; (d) 0.1 °C/min by a combination of conduction cooling and forced convection cooling with proportional-integral-derivative (PID) control. As expected, several grains were observed on surfaces when a cooling rate was highest (case a) while many interlaced grain structures were observed when the extremely slow cooling rate was used (case d).

The solder specimens with a single grain were obtained with a cooling rate of approximately 0.8 °C/sec. The temperature profile of the mold used in this study is shown in Fig. 7. The polarizing microscope images obtained from all 6 surfaces of a single-grain specimen are shown in Fig. 8. The results confirm that the specimen contain a single grain.

![Moiré fringe patterns obtained from two surfaces of Specimen 1, where the contour interval is 417 nm/fringe: (a) on the xy plane; (b) on the yz plane.](image_url)

![Polarizing microscope images of SAC305 solder specimens fabricated at different cooling rates: (a) 25 °C/sec, (b) 3.5 °C/sec, (c) 0.8 °C/sec and (d) 0.1 °C/min.](image_url)

![Polarizing microscope images obtained from all 6 surfaces of a single-grain specimen.](image_url)
3.3. Displacement fields and CTE values

A total of four moiré experiments were conducted (two surfaces of each specimen). The in-plane displacement fields \((u_x, u_y)\) on the \(xy\) plane and \(u_y, u_z\) on the \(yz\) plane) were documented at \(-40\), \(20\), \(80\), and \(140\) °C. The fringe patterns of Specimens 1 and 2, representing the displacement fields, are shown in Fig. 9 and Fig. 10, respectively. In each figure, the displacements of the \(xy\) plane are shown in (a), and the displacements of the \(yz\) plane in (b).

The moiré interferometer was tuned to produce null fields (i.e., fields devoid of fringes) at \(-40\) °C; the optical configuration was adjusted until the frequency of the virtual reference gratings were exactly twice as high as that of the specimen gratings at \(-40\) °C.

The engineering normal and shear strains \((\varepsilon_n, \varepsilon_s, \gamma_n, \gamma_s)\) were calculated from the fringe patterns using Eqs. (14)–(16). The results are summarized in Table 1 and Table 2 for Specimens 1 and 2, respectively. Two Euler angles \((\alpha_1, \alpha_2)\) were calculated from the engineering strains using Eqs. (7) and (10). The values are shown in Table 3. The averaged values (Specimen 1: \(A_1 = 132.2°\) and \(A_2 = -88.4°\); Specimen 2: \(A_1 = 122.8°\) and \(A_2 = 87.3°\)) were used to conduct the subsequent CTE calculations.

The CTE values \((\alpha_n, \alpha_s)\) over each temperature range were calculated using Eqs. (11) and (12). The results are summarized in Table 4 and Table 5. It is important to recall that the values of \(\alpha_n\) value from all four surfaces are less than 1 ppm/°C, which establishes the accuracy of the measurements.

The averaged CTE values of two specimens are plotted as a function of temperature in Fig. 11. As expected, the CTE value along the \(c\)-axis ([001] direction) is much larger than the value along the \(a\)-axis ([100] direction). There is clearly linear dependency of the CTE values on the temperature. The temperature dependent CTE values over a temperature range of \(-40\) °C to \(140\) °C can be expressed as:

\[
\begin{array}{cccccc}
\text{Temperature range (°C)} & \text{Mean temperature (°C)} & \text{Euler angle (degree)} \\
\text{Specimen 1} & \text{Specimen 2} & A_1 & A_2 & A_1 & A_2 \\
\hline
-40 to 20 & -10 & 132.9 & -88.6 & 122.2 & 86.8 \\
20 to 80 & 50 & 132.4 & -88.4 & 122.5 & 88.1 \\
80 to 140 & 110 & 131.2 & -88.3 & 123.9 & 87.1 \\
\hline
\text{Average} & & 132.2 & -88.4 & 122.8 & 87.3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Temperature range (°C)} & \text{Mean temperature (°C)} & \varepsilon_n \left(\times 10^{-3}\right) & \varepsilon_s \left(\times 10^{-3}\right) & \gamma_{xy} \left(\times 10^{-3}\right) \\
\text{Surface 1} & & & & & \\
\hline
-40 to 20 & -10 & 1.55 & 1.48 & 0.96 \\
20 to 80 & 50 & 1.63 & 1.54 & 0.99 \\
80 to 140 & 110 & 1.73 & 1.60 & 1.04 \\
\hline
\text{Surface 2} & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Temperature range (°C)} & \text{Mean temperature (°C)} & \varepsilon_n \left(\times 10^{-3}\right) & \varepsilon_s \left(\times 10^{-3}\right) & \gamma_{xy} \left(\times 10^{-3}\right) \\
\text{Surface 1} & & & & & \\
\hline
-40 to 20 & -10 & 1.66 & 1.26 & 0.83 \\
20 to 80 & 50 & 1.73 & 1.33 & 0.86 \\
80 to 140 & 110 & 1.83 & 1.47 & 0.88 \\
\hline
\text{Surface 2} & & & & & \\
\end{array}
\]
\[\begin{align*}
\alpha_a (\text{ppm/}^\circ\text{C}) &= 17.28 + 0.016T (^\circ\text{C}) \\
\alpha_c (\text{ppm/}^\circ\text{C}) &= 33.18 + 0.029T (^\circ\text{C})
\end{align*} \]
(17)

4. Discussion: grain orientation

Determination of the grain orientation is critical to accurate calculation of the CTE values. As illustrated in Fig. 12, lines OE and OF define the angles of the minimum principal strains, \(\theta_{P1}^{xy} \) and \(\theta_{P2}^{yz} \), respectively. The vectors representing the lines can be expressed as:

\[\begin{align*}
\overrightarrow{OE} &= [\cos \theta_{P1}^{xy}, \sin \theta_{P1}^{xy}, 0] \\
\overrightarrow{OF} &= [0, \cos \theta_{P2}^{yz}, \sin \theta_{P2}^{yz}]
\end{align*} \]
(18)

Substituting Eqs. (7) and (10) into (18) yields:

\[\begin{align*}
\overrightarrow{OE} &= [\cos A_1, \sin A_1, 0] \\
\overrightarrow{OF} &= [0, \cos A_2, \sin A_2 \cos A_1]
\end{align*} \]
(19)
Then, the unit vector \(\mathbf{n}_1 \) perpendicular to the plane defined by \(\mathbf{OE} \) and \(\mathbf{OF} \) can be expressed as:

\[
\mathbf{n}_1 = \frac{\mathbf{OE} \times \mathbf{OF}}{\mathbf{OE} \cdot \mathbf{OF}} = \begin{bmatrix} \sin A_1 \sin A_2, -\cos A_1 \sin A_2, \cos A_2 \end{bmatrix}
\]

(20)

The above unit vector, \(\mathbf{n}_1 \), in the specimen coordinate (o-xyz), can be expressed in the grain coordinate (o-x'y'z') using the coordinate transformation as:

\[
\mathbf{n}_1 = T \begin{bmatrix} \sin A_1 \sin A_2, -\cos A_1 \sin A_2, \cos A_2 \end{bmatrix}^T = [0, 0, 1] = \mathbf{n}_z
\]

(21)

The above result indicates that \(\mathbf{n}_1 \) and \(\mathbf{n}_z \) are the same vector confirming that the plane defined by \(\mathbf{OE} \) and \(\mathbf{OF} \) coincides with the x'y' plane in the grain coordinate.

This was further confirmed by a supplementary experiment using electron backscatter diffraction (EBSD) technique. The technique has been used widely to characterize the microstructural crystallography of any crystalline or polycrystalline materials [30].

Fig. 13. Schematic of EBSD measurement system.

Fig. 14. EBSD captured on Surface 1 of Specimen 1: (a) original, and (b) indexed.

Fig. 15. EBSD result on Surface 1 of Specimen 1: (a) EBSD layered image, and (b) grain orientation.
Specimen 1 was placed in the SEM chamber, and an EBSD measurement was made on Surface 1. The incident electron beam interacted with the surface of the specimen and formed a characteristic pattern known as Kikuchi bands on the phosphor screen of the EBSD detector, as shown in Fig. 13. The electron backscatter pattern (EBSP) (Fig. 14a) was captured by a CCD and saved in a computer, which performed a Hough transform and comparison to the crystallographic data (Fig. 14b) to confirm the material phase and orientation.

The result is shown in Fig. 15. Fig. 15 (a) shows an EBSP layered image, where the uniform color indicates that the specimen contains only one grain. Based on the Euler angles obtained from the EBSD measurement, the direction vector of the specimen coordinate (Fig. 9) was determined. It is $[-0.738, -0.675, 0.032]$, which is very close to the values calculated from the moiré results using Eq. (20) $[-0.727, -0.685, 0.038]$

5. Conclusion

The anisotropic CTE values of SAC305 solder were measured. Theoretical relationships among (1) the transversely-isotropic CTEs, (2) the surface strains of a specimen containing a single grain with arbitrary orientation, and (3) the grain orientation were derived first. Two cube shape specimens that contained a single grain of SAC305 were fabricated by controlling cooling rates. The surface strains were calculated on two perpendicular surfaces of each specimen as a function of temperature from displacement fields obtained by moiré interferometry. Two directional CTE values were determined from the strains by the theoretical relationships. The c-axis direction determined from the test was compared with the grain orientation obtained by the electron backscatter diffraction (EBSD) method. The comparison corroborated the validity of the CTE measurements.

References