Round-Trip Time Inference Via Passive Monitoring

Ryan Lance
Department of Mathematics
University of Maryland
College Park, Maryland

rjl@math.umd.edu

ABSTRACT

The round-trip time and congestion window are the most
important rate-controlling variables in TCP. We present a
novel method for estimating these variables from passive
traffic measurements. The method uses four different tech-
niques to infer the minimum round-trip time based the pac-
ing of a limited number of packets. We then estimate the
sequence of congestion windows and round-trip times for the
whole flow. We validate our algorithms with the ns2 network
simulator.

1. INTRODUCTION

Much of the traffic on the Internet consists of bulk TCP
flows, in which the sender sends a long sequence of data
packets to the receiver. The sender transmits a certain num-
ber of packets (its congestion window) and then waits until it
receives acknowledgments (ACKs) from the receiver before
sending more packets. The time between when the sender
sends a data packet and when it receives the corresponding
ACK is the current round-trip time (RTT) of the flow. The
sender adjusts its window according to the TCP protocol,
increasing it by one roughly every RTT, and dividing it by
two each time a packet is dropped.

While the sender knows its congestion window and RTT, we
are concerned with estimating these quantities from packet
arrival times at a particular monitoring point. Since the
monitor can be anywhere between the sender and receiver,
the time between a data packet and its ACK does not deter-
mine the RTT. We instead infer the RTT from the pacing
of packets. Packets can then be grouped into flights, which
correspond to the congestion window. The main variable we
use to infer the RT'T is the interpacket time, which we define
as the time from the head of one data packet to the head of
the next data packet in a flow. Interpacket times vary by
many orders of magnitude due to the dynamics of TCP and
the asymmetric nature of networks. Therefore, we mainly
work with the logarithm of the interpacket time.

lan Frommer
Applied Mathematics and
Scientific Computation
University of Maryland

orbit@math.umd.edu

There are other approaches to estimating the RTT, the sim-
plest of which is the time from the SYN to the SYN/ACK
during the set-up of a TCP connection. Another simple es-
timate is the time between the first two flights during slow
start [2]. One cannot use these techniques if the bulk TCP
flow is already in progress at the start of the trace. An alter-
nate approach is used by Zhang et al. [7], who assume the
number of packets per flight should follow certain patterns.
They start with a pool of exponentially spaced candidate
RTT wvalues, which they use to partition the packets into
groups. The best candidate RTT is the one that results in a
sequence of groups that best fits congestion window behav-
ior. Jaiswal et al. [1] use a finite state machine that “repli-
cates” the TCP state, which is based on observed ACKs and
depends on TCP flavor.

Our algorithm (the frequency algorithm) requires only one
direction of a flow, assumes very little about the underlying
traffic, and has the flexibility to deal with any flavor of TCP
and time-varying RTTs. The basic idea of our algorithm is
that the self-clocking nature of TCP causes the sequence
of interpacket times to be approximately periodic, with a
period roughly equal to the RTT. We apply our algorithm
to data sets from the Passive Measurement and Analysis
archive at NLANR [5]. These 90 second traces are taken
from OC3, OC12, and OC48 links at gateways between uni-
versity networks and the Abilene Backbone Network. The
monitors passively record all packet headers on a link along
with a timestamp that has microsecond precision. The bulk
TCP flows, on which we focus, have a median of 5000 pack-
ets in the 90 second traces. We also validate our algorithm
with the ns2 network simulator, and find that the RTT and
congestion window estimates have relative errors that are in
the range of 0-5%.

2. FREQUENCY ALGORITHM

The RTT consists of a fixed delay, namely the transmission
time without network congestion, plus a queuing delay, con-
sisting of the time a packet and its ACK spend in queues.
The first step of the frequency algorithm is to approximate
the minimum RTT of a flow, which should roughly approxi-
mate the fixed delay. The four components of the algorithm
are the sliding window estimate, the interpacket time auto-
correlation function, the data-to-ACK-to-data time, and the
Lomb periodogram. Estimates from the four components
are combined in a way that identifies the smallest plausi-
ble RTT. We then approximate the congestion window, by
grouping packets into flights based on the minimum RTT

estimate. The time between flights is an estimate of the
current RTT.

To generate the initial estimate of the RTT we use only the
first 256 interpacket times (257 packets), because the Lomb
periodogram is based on the FFT and it is most efficient
on sequences that are powers of two in length. For most
flows, that is, those that do not use window scaling, 257
packets will comprise at least five complete flights, whereas
128 packets only guarantees two complete flights. This is
enough data to obtain a good initial estimate of the RTT,
but not so much that it becomes computationally expensive.

2.1 Sliding Window Upper Bound

The purpose of the sliding window estimate is to obtain an
upper bound on the fixed delay. Let M be the maximum
receive window. We let M = 65535 bytes if ACKs are not
seen by the monitor. Let t; be the timestamp of the ith
data packet, and let b; be the number of data bytes in the
payload of that packet. For each i, let n; be the smallest
integer such that

ibk > M.
k=1

As i increases, packets ¢ to n; form a sliding window of at
least M bytes. Since the sender is required to send no more
than M bytes per RT'T, packets ¢ and n; must necessarily be
in different flights, and hence they are separated by at least
one RTT. Let i* be the largest integer such that n;+ < 257,
and for each ¢ < 3" let

U; =1tn; — ti (1)

be an RTT upper bound estimate.

If the sender is transmitting less than M bytes per RTT,
then w; might grossly overestimate the RTT. On the other
hand, when the congestion window is equal to M, it is pos-
sible for u; to underestimate the RTT. This happens when
packets at the end of one flight have some queuing delay, but
none of the packets in next flight do. Even though under-
estimating the RTT in such a way is unlikely, we intend for
u; to be a strict upper bound on the fixed delay. We would
like to obtain the least upper bound for the RTT from the
values w;. Therefore, instead of taking minu; as the least
upper bound, we use the more conservative estimate of the
fifth percentile of {u;}. Since ¢* will be about 200 in most
cases, choosing the fifth percentile equates to ignoring the
lowest ten values. More formally, let {4;} be the values {u;}
sorted in increasing order. Our estimate of the least upper
bound is defined as

u = ﬁu*/gol . (2)

2.2 Autocorrelation Function

One technique to estimate the period of a nearly periodic
time series is the autocorrelation function. Let z;,5 =1...n
be a normalized time series with mean zero and standard
deviation one. The unbiased autocorrelation function is de-
fined as

n—=k
1
Ak) = — > @i 3)
j=1

for lags k =0...n — 1. If a time series has an approximate
period of T', then one would expect A(k) to have its largest
local maximum for k >0 at k=T

We expect the interpacket times to be approximately peri-
odic because of the self-clocking nature of TCP. Unfortu-
nately, the interpacket times are unevenly spaced in time.
One could ignore this fact and treat the them as if they were
an evenly spaced time series. However, the sequence of in-
terpacket times will be misaligned if the flow is in the linear
increase phase of congestion avoidance or a drop occurs.

We handle these issues by linearly interpolating the loga-
rithm of the interpacket times on an evenly spaced grid of
times. We choose the step size of the grid, s, to be 1 ms. This
is a trade-off between accuracy and computational workload.
If we made the step size smaller, then we would more closely
approximate interpacket times less than 1 ms, but the grid
would be larger and computing A(k) would take longer. Fig-
ure 1 shows a sample sequence of interpacket times, their
linear interpolation, and A(k) for the interpolated sequence.

% 10008 linear interpolation
£ . .

S 100}] interpacket times
g ’ i ¥ + +

= .

S

S

i) ’

£ 01

Time (seconds)

(a)

Correlation

0 50 100 150
Time (ms)

(b)

Figure 1: (a) The first 256 interpacket times of an
FTP flow. The smaller dots are the linearly interpo-
lated values on a grid with step size 1 ms. (b) The
autocorrelation function of the interpolated data.
Based on this plot one can estimate the RTT to be
about 32 ms.

The grid size for the autocorrelation function influences how
it is computed. Depending on the RTT and congestion win-
dow, 257 packets generally require between 0.1 and 4 seconds

to transmit. Therefore, the grid size, g = |(t2s57 — t1)/s],
can be up to 4000 points. This raises the question of what
the best method is to compute the autocorrelation func-
tion. Let {d;}7_, be the normalized time series of linearly
interpolated interpacket times. The Wiener-Khinchin theo-
rem states that, for a continuous time function, the Fourier
transform of the autocorrelation function equals the power
spectrum. Thus, we can approximate A(k) by

A=F(IFG)P) (@)

where F is the FFT operator and |F(8)|? is the power spec-
trum. Computing A(k) via the definition in Equation 3
requires O(g2) operations, but using Equation 4 reduces the
complexity to O(glog, g). However, we do not need to com-
pute A(k) for all k. Since we have already computed u, the
upper bound for the RTT, we only need to calculate A(k)
up to k = [u/s]|. Now using the definition will only require
O(gu/s) operations. Suppose that we use both methods to
compute the autocorrelation function for a flow with a 40
ms RTT and receive window equal to 12 packets. Using the
definition takes about 34000 operations, while Equation 4
requires about 40000 operations. For each flow, one can de-
termine whether it is more efficient to use the definition or
Equation 4.

We approximate the RTT by ¢ = k*s, where k* is the lag
at which A(k) attains its greatest local maximum on the in-
terval (0, [u/s]). However, A(k) can fail to have its greatest
local maximum at the value that corresponds to the true
RTT. This can happen in two basic ways. First, A(k) could
be greater at the value that corresponds to twice the RT'T;
we can encounter this if u greatly overestimates the RTT.
Secondly, there can be a spurious local maximum close to
k = 0, which corresponds to a fairly large interpacket time
that is repeated at even intervals.

By filtering A(k) we have a better chance of finding the
correct local maximum. To correct for ¢ being too small, we
use a simple low-pass filter by applying to A(k) a moving
average of the last [values. To correct for ¢ being too
large, we multiply A(k) by a linear envelope that equals 1 at
k=0, and o at k = [u/s]. After originally calculating the
unbiased autocorrelation function, multiplying by a linear
envelope reintroduces bias, but is does so on the time scale
of the RTT rather than the time scale of the grid. In practice
we use two filtered versions of A(k), one with 8 = 4 and
a = 3/4, another with 8 = 8 and a = 1/2, along with the
unfiltered A(k). From the three versions of A(k), we obtain
three estimates of the RTT, ¢;, j = 1,2,3. If A(k) has no
local maximum on the interval (0, [u/s]), then ¢; = 0.

2.3 Data-to-ACK-to-Data

The sliding window algorithm produces an upper bound,
u, on the fixed delay. To obtain a lower bound, we find the
time between data packets that occupy the same relative po-
sitions in two successive flights of packets. Since this method
requires ACKs, it will not work if the monitor does not see
ACKs for a particular flow. Also, this method is intended
for flows in which the sender is closer to monitor than the
receiver. If this assumption does not hold, and the sender
is on the remote side of the monitor, then this method may
result in an estimate that is spuriously low. Since we intend

for this method to produce a lower bound, these spuriously
low values are not a fatal flaw.

We now describe the data-to-ACK-to-data method. Sup-
pose we have a flow that meets the requirements laid out
above, and suppose the data packets have timestamps ¢;
and sequence numbers s; and the ACKs have timestamps ¢§
and acknowledgment numbers a;. For data packet ¢ find the
corresponding ACK, that is, the first ACK such that t7 > t;
and a; > s;. Call the index of this ACK j'. Now find the
first data packet that ACK j’ liberates, that is, the data
packet with index m; such that t,,, > t?/ and S;m; > aj. As
in the sliding window algorithm, let * be the largest integer
such that m;+ < 257. Our estimate of the RTT lower bound
is defined as

0 = min(tm, — t;). (5)
Figure 2 illustrates this method with two examples, one

where the sender is closer the monitor, and another where
the receiver is closer to the monitor.

. . . . ;
L o ack o
- E:
3 + data . E
E T i]
> ¢+
Z | PR |
s , # o
g i A= : ! o B
o o o f
) i B
0N b B 1
B
++ o o
-I ¢+ . E . .
0.4 0.41 0.42 0.43

Time (seconds)

E L . o 4
o
S
S |]
2
X |)]
2| .
T | f |
NS ¥
n ii
i]
1568 15.7 15.72 15.74 15.76 15.78

Time (seconds)
(b)

Figure 2: Sequence number plots for two flows from
the same trace, note that the vertical axis is not
labeled since the actual value of the sequence num-
bers does not matter. In (a) the monitor is closer
to the sender, in (b) it is closer to the receiver. By
following each pair of arrows in (a) we find a valid
RTT estimate. In (b) the first pair of arrows gives
a good estimate, but the result of the second pair is
too small.

2.4 Lomb Periodogram

The Lomb periodogram [6] is a method for the spectral anal-
ysis of unevenly spaced data, such as interpacket times. We
could instead use the power spectrum on linearly interpo-
lated data, but the Lomb periodogram is more naturally
suited to analyze data with highly irregular sampling. If
there are long stretches without data, as there would be af-
ter a timeout or when a sender has no data to transmit, then
the power spectrum can exhibit erroneously large power at
low frequencies. Katabi et al. [3] noted that bottleneck links
impose structure on the interpacket time distribution. The
accuracy of the Lomb periodogram might be reduced by this
structure, but it is still better than the power spectrum, as
is shown in Figure 3.

— Spectrum
—=e— Lomb

0 20 40 60 80
Frequency

Figure 3: The Lomb periodogram and power spec-
trum have the same fundamental frequency of about
16, corresponding to a RTT of 65 ms. The peri-
odogram picks up harmonics, but the power spec-
trum leaks power to lower frequencies and decays
rapidly. This can cause the fundamental frequency
to be distorted or obscured in flows with RTT
greater than 100 ms. This comparison is based the
flow in Figure 2(b).

Suppose we have data z; measured at times t;, i = 1...n,
and suppose the data have mean ¥ and standard deviation
oz. The Lomb periodogram is a measure of spectral power
at at angular frequency w = 27 f defined by

1 [(X, (i —7)cosw(t; — 7))

= 202 > cos?w(ty —T)

(X, (@i — &) sinw(t; — 7))°
> sin?w(t; — 1)

Here 7 makes L(w) invariant under any shift of the measure-

ment times, which is a key property L(w) shares with the

Fourier transform. The value of 7 depends on w as follows:
>, sin 2wt;

tan(2wT) = 72 cos 2ol (7)

L(w)
(6)

+

For each fixed w, Equation 6 is equivalent to solving the
least squares problem where the data are fit to the model

y(t) = acos(wt) + bsin(wt),

and letting L(w) = a® + b?. This makes clear the difference
between this method and the power spectrum on interpo-

lated data. The FFT weights each time interval equally,
but L(w) weights each data point equally. The algorithm to
compute the Lomb periodogram makes indirect use of the
FFT and requires O(nlogn) operations.

Let w* be the angular frequency that maximizes L(w) on a
suitable grid over the interval Q, where Q = [27/u, 27/¢] if
both v and ¢ are greater than 5 ms, and u > ¢, otherwise
Q = [27/1.0,27/0.005]. See [6] for information on how to
compute the grid. We then define an estimate of the RTT
by

2

w*’

2.5 RTT Lower Bound

We have defined a set of six RTT estimates, u, q1, g2, g3, ¢
and 6; call this set S. We now combine the unreliable es-
timates in S into one reliable RTT estimate, 7. We say
informally that two estimates agree if they are within 10%
of each other. The meaning of agree is formalized by defin-
ing a relation 22, such that a 2 b if 0.9 < a/b < 1.1 or
0.9 < b/a < 1.1 or |a—b| <3 ms. The basic idea is to find
the smallest value in S that agrees with at least one other
estimate.

0 =

(8)

We set 5 ms as the minimum feasible RTT; any estimate less
than this value is discounted. Let S’ = {s € S|s > bms}.
As an intermediate step toward defining 7, we define r’ as:

P =min{se€ S |FHteS, t=s} 9)

If none of the elements of S agree, then r’ will be undefined.
In such a case let 7' = £ if the sender is on the local side of
the monitor, otherwise let v’ = u. Finally, we define 7, the
estimated lower bound of the RTT, as

7 = 0.95r". (10)

We multiply by 0.95, since r’ can potentially equal u, which
is an upper bound for the fixed delay, or g1, g2, g3, or 6, which
are estimates rather than bounds.

It is possible for the RTT to be well above the fixed delay
for the entirety of the first 257 packets. The initial estimate
of 7 will no longer be valid if the congestion later subsides.
It is simple to continue evaluation of v and ¢ as new packets
arrive. It is also possible to update the autocorrelation func-
tion and the Lomb periodogram if one uses their definitions
instead of FFT-based approximations.

2.6 Congestion Window Estimation

The basic idea of the congestion window (CW) estimation
scheme is as follows: given a past history of CW estimates
w1 ... wk—1 and the first packet in the kth flight, start with
wi = 0 and increment wy by the number of data bytes
in each packet that arrives until one minimum RTT has
elapsed, or until wy, is greater than wi_1. We assume CW
is initially equal to the receive window and let wg = M be
a placeholder that allows us to compare w; to wo. This as-
sumption is necessary since most flows are already in progress
at the start of the trace, and thus, we normally do not see
the slow start phase.

Two timers are needed for this algorithm; one limits the
time between packets in the same flight, the other is the

expected time between flights. The first timer, c;, is set
at 0.757. When two packets are separated by more than
c1, we assume that a new window has begun. Let b be
the median number of data bytes per packet, and let p =
100(1 — b/M). If the sender is transmitting M bytes per
RTT, then we expect flow to have M/Z_y packets per RTT.
When the bandwidth delay product is much greater than M,
we expect M /b — 1 small interpacket times followed by one
large interpacket time. Thus, we define the second timer,
c2, as the pth percentile of the interpacket times. We use c2
to infer when congestion present.

As before, t; is the timestamp, s; is the sequence number,
and b; is the number data bytes of the ith packet. Define
the 7th interpacket time as §; = t; — t;—1. Suppose we have
counted wy bytes so far in the current flight. Suppose that
i is the index of the first packet in current window, and
current packet has index j > i. We increment the flight
size, wr — wi + bj, if condition 1 is satisfied, and either
condition 2 or 3 is met:

1. Receive Window: wy +b; < M and §; < c1
2. Congestion Avoidance: wy < Wg—_1 +b

3. Slow Start: wi < 2wir_1 < M and §; < c2

If condition 1 is false, or conditions 2 and 3 both fail, then
packet j is deemed to part of the next flight, and we set
wi+1 = bj. Note that condition 3 uses d; not §;. The in-
equality §; < c2 means that flights k and k — 1 were closer
than expected, which is a sign of congestion. Condition 3
includes §; < c2 to ensure it is only satisfied when there is an
indication of congestion. The inequality d; < c¢1 in condition
1 allows the kth flight to terminate when ¢; < ¢; + 7, that is,
before one minimum RTT has elapsed. This inequality pre-
vents wy from increasing unduly, since without it condition
3 will often be satisfied outside of slow start. It also allows
for realignment of flights to more natural boundaries, but
can lead to spuriously small CW or RTT values that can be
filtered out in post-processing.

3. VALIDATION

We validate the RTT and congestion window estimation al-
gorithms via simulation using the ns2 network simulator [4].
Although our simulation is highly simplified, it reflects key
features of the university networks from which the trace data
originated. We use two network configurations; in configu-
ration S the monitor is positioned closer to the senders, in
configuration R it is closer to the receivers. Figure 4 shows
the network diagram of configuration S; configuration R is
similar, except the positions of the senders and receivers are
reversed, as are the cross traffic sources and sinks.

We studied four bulk FTP flows between sender-receiver
pairs (1,12), (2,14), (3,16), and (4,18). We refer to these
as flows 1, 2, 3 and 4, respectively. The receive window is
22 packets for flows 1 and 2, and 44 packets for flows 3 and
4. All transfers were 90 seconds long, so that the amount
of traffic generated would be similar to that of real flows.
Cross traffic is also generated with the intent of being real-
istic. All TCP flows use TCP Reno and delayed ACKs. All
routers use RED with a maximum queue of 45 packets, in
the simulations no queue ever reached 40 packets.

Cross Traffic Sources Receivers and Sink

5
® ® 320
. 350
Senders |B -
o, |8 q WP
< ., il © @»}
. =
®©0.2X 155, 2 1077®

O———@©
=7/ Monitored Link \ gy
®300, AD
v 4 9% 00—
@ N

Figure 4: This network diagram illustrates configu-
ration S. The pair of numbers on each link are the
link capacity in Mbps, and the one way delay in mil-
liseconds. For example the fixed delay for sender-
receiver pair (1,12) is 166 ms.

For each configuration, we perform two simulations with dif-
ferent cross traffic properties. In simulation 1 cross traffic
does not travel across the monitored link. For example, in
configuration S simulation 1 (S1) cross traffic flows between
source host 7 and sink hosts 13, 15, 17, and 19. In simulation
2 cross traffic travels on both the bottleneck links and mon-
itored link, so that drops occur both before and after the
monitoring point. Table 1 summarizes the flow orientation
for each simulation.

R1 R2 S1 S2
Senders | 12-18 | 12-18 1-4 1-4
Receivers 1-4 1-4 12-18 | 12-18

Source(s) | 13-19 | 13-19 7 0
Sink(s) 7 0 13-19 | 13-19

Table 1: Each column summarizes the flows orien-
tation for the simulation at the top of the column.
For example, in simulation R2 flow 3 has host 16 as
sender and host 3 as receiver. Note that the host
numbering remains fixed in Figure 4, but the role of
each host can be either sender or receiver.

The cross traffic is a mix of TCP and constant bit rate UDP
flows, as well as exponential on-off (EOO) flows. An EOO
flow is a constant bit rate flow that sends bursts of traf-
fic where the burst duration is an exponentially distributed
random variable with mean Aox, and the idle time between
bursts is exponentially distributed with mean Aoer. In all
simulations we let Aox = Aorr = 0.5 seconds. We use si-
multaneous low bandwidth EOO flows to generate random
oscillations in the cross traffic. All packets are 1500 bytes,
except for the UDP packets, which are 640 bytes. We chose
640 bytes, since that is a common packet size for Real Time
Streaming Protocol. The amount of cross traffic is similar
in all four simulations, the only difference is position of the
source and destination hosts, as detailed in Table 1. We
summarize the cross traffic characteristics in Table 2.

13 15 17 19
UDP | 01 (1)]| 025 (1) 20 (1) |50 (1)
EOO | 005 (6) | 0.125 (8) | 1.0 (12) | 25 (16)
TCP | 22 (3)] 22 (4 |44 (6) | 44 (8)

Table 2: The numbers at the top of each column
denote the cross traffic source (configuration R), or
sink (configuration S). Numbers in parentheses are
the number of concurrent flows of that type. Dec-
imal numbers in the UDP and EOO rows are the
constant rates (in Mbps) for the flow(s). In the TCP
row, 22 and 44 denote the size of the receive window.

We test the RTT and congestion window algorithms on the
four main flows. We expect the algorithms to perform better
on simulations using configuration S, since the perspective
of the monitor is closer to that of the sender. The simulator
records the true value of the congestion window, RTT, and
the timestamps of data packets and ACKs when they leave
or enter link 5 — 6 at host 5.

The first test is to validate the method of estimating the
RTT lower bound. We break each flow into segments of 257
packets and compute 7 for each segment. The algorithm is
successful for a given segment if the estimate is less than the
minimum true RTT, but within 15% of that value. Figure 5
shows the estimate and the minimum true round-trip times
for one flow. Here the algorithm is successful on 52 out of
53 segments for a success rate of 98%. Four out of sixteen
simulated flows had a success rate of 100%. The median
success rate was more than 98%. The algorithm performs
better on configuration S, where the median success rate is
over 99%, whereas the rate is 95% for configuration R.

—— min RTT
78t — estimate |/
- fixed delay
w761
£ 6
||: 74
x

0 20 40 60 80
Time (seconds)

Figure 5: The interval [0,90] is broken into 53 seg-
ments of 257 packets each. The lower curve is the
RTT estimate, the upper curve is the minimum true
RTT on each interval, and the dashed line is the
fixed delay. This plot is for flow 2 of simulation R2.

Upon obtaining an estimate of the RTT lower bound we
proceed to estimate the sequence of flights using the method
outlined in Section 2.6. The sequence of round-trip times are
then estimated as the time from the start of one flight to the
start of the next flight. The median absolute error for the
flight sizes as an estimate of the true CW is between 0.3 and
1.0 packets for all simulated flows. The flight size is usually

less than the true CW; this bias is due to delayed ACKs. The
RTT estimates have no bias, their median absolute errors are
summarized in Table 3.

R1 R2 S1 S2
48 25% 99 51% |11 056% |29 1.5%
1.2 1.5% [11 1.4% | 04 0.49% | 0.5 0.62%
05 13% |04 1.0% |04 1.0% |04 1.0%
03 1.1% |03 11% |03 11% |04 1.5%

= W Do =

Table 3: The first number in each box is the median
absolute error (in ms) of the RTT estimate. The
second number is the error relative to the true RTT.

4. CONCLUSION

We have presented a novel algorithm for inferring the mini-
mum RTT of a flow from passive measurements. The results
of the algorithm agree quite well with the true congestion
window and RTT as recorded by the simulator. The main
advantage of this algorithm is its flexibility. It assumes noth-
ing about the position of the monitoring point, the flavor of
TCP or the nature of cross traffic, and most importantly
it still functions even if the ACKs are not observed at the
monitor. The six different estimates of the RTT provide ro-
bustness should one or more of them fail to be correct. The
techniques introduced in this paper will prove to be useful
even as new TCP flavors and options are introduced. They
may also prove useful in inferring characteristics of conges-
tion.

5. ADDITIONAL AUTHORS

Additional authors: Brian Hunt, Edward Ott and James
Yorke (University of Maryland) and Eric Harder (US De-
partment of Defense).

6. REFERENCES
[1] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP connection characteristics
through passive measurements. In Proc. of the IEEE
INFOCOM. IEEE, 2004.

[2] H. Jiang and C. Dovrolis. Passive estimation of TCP
round-trip times. Computer Communications Review,
July 2002.

[3] D. Katabi, I. Bazzi, and X. Yang. A passive approach
for detecting shared bottlenecks. In Proc. of the IEEE
International Conference on Computer
Communications and Networks. IEEE, 2001.

[4] ns2 Network Simulator.
http://www.isi.edu/nsnam/ns, 2000.

[5] Passive Measurement and Analysis archive. National
Laboratory for Applied Network Research.
http://pma.nlanr.net, 2005.

[6] W. Press, S. Teukolsky, W. Vetterling, and
B. Flannery. Numerical Recipes in C. Cambridge
University Press, 1992.

[7] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the characteristics and origins of internet flow rates.
In Proceedings of ACM SIGCOMM, Aug. 2002.

