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Large-scale computations of dynamically interacting vortex tubes
forming filaments are performed with a view toward investigating
their relationship to turbulent fluid flow. It is shown that the
statistical properties of the tubes are consistent with commonly
accepted observations about turbulence such as the Kolmogorov
inertial range spectrum and lognormality of the vorticity distribu-
tion. A loop-removal algorithm is demonstrated to reduce the
nominally exponential growth rate in the number of tubes to linear
growth without apparent harm to the underlying physics. In this
form, a vortex tube method may become a practical means for
simulating high Reynolds number turbulent flows.

gridfree � turbulence � vortex methods

That the dynamical properties of turbulent flow depend on the
complex interaction of vortical structures is perhaps its most

fundamental property (1, 2). This recognition has motivated
efforts toward exploring the statistical mechanics of large sys-
tems of vortices (2) as a means toward understanding and
explaining why turbulent flow has the characteristics it has.
Interest in vortex systems also extends to their use in numerically
modeling turbulent flow for applications in engineering and
natural systems (3–5). In particular, it has long been thought (6,
7) that representing turbulent flow by freely convecting and
interacting vortex elements has the advantage of avoiding the
unphysical smoothing that commonly occurs in less than fully
resolved grid-based calculations.

The potential advantage of computing turbulence through its
vortices has been historically undermined by the dynamical
complexity of the phenomenon: the self-determination of a
vortex system is an example of an N-body problem and, hence,
very expensive computationally. Moreover, the primary physical
mechanism of interaction, namely vortex stretching and reori-
entation, produces convoluted, spatially intermittent vortical
structures of intricate detail that tend to require a phenomenally
large number of elements for their description through time.

In both of these areas, however, there have been significant
advances in recent years that suggest that it is now feasible to
perform comprehensive numerical simulations of large vortex
systems. In particular, fast methods for solving the N-body
problem, such as the fast multipole method of Greengard and
Rohklin (8, 9), allow for practical computations involving mil-
lions of vortex elements. In an equally important development,
Chorin proposed a rationale for hairpin (10), or more generally,
loop (2) removal, as a physically consistent means of simplifying
the representation of turbulent structures without, possibly,
altering the essential physics of the energy cascade. In fact, the
vortex stretching process is accompanied by folding that brings
energy to small dissipative scales. Direct elimination of folded
vortices in the form of loops removes primarily local energy that
is likely destined for subsequent dissipation at smaller scales. In
this way there is justification for believing that the dynamics of
the remaining vortices will not be unduly harmed if vortex loops
are removed where and when they form.

The present work considers the computed properties of a
turbulent region formed by the short duration pulse of a slotted
jet (i.e., a ‘‘puff’’) as simulated by an advanced, parallel imple-

mentation of a vortex tube method. It is found that central facets
of turbulent flow having to do with energy spectra, correlation
and structure functions, the probability density function (pdf) of
the vorticity field, and the Hausdorff dimension of the vorticity
support are well accounted for by the field of vortex elements.
Moreover, loop removal provides enormous benefit in slowing
the growth in the computational problem with little or no
modification to the underlying physics. It may be concluded from
this work that vortex simulations may offer a viable means for
probing the nature of high-Reynolds-number turbulent physics
as well as forming the basis for practical means for modeling
turbulent flow in more general contexts.

Vortex Simulations
Following a standard approach (10, 11), short, straight vortex
tubes are used as the primary computational element in repre-
senting the flow field. Tubes connected end to end form vortex
filaments. Many filaments are present, and their collective
positions as defined by the tubes gives an instantaneous repre-
sentation of the vorticity field of the simulated flow field.

The ith tube out of N total is distinguished according to its end
points xi

1 and xi
2 and circulation �i and contributes to the velocity

field at a point x according to the Biot–Savart law (5)

�
�i

4�

ri � si

r3 ��r��� , [1]

where ri � xi � x; xi � (xi
1 � xi

2)�2; r � �r�, si � xi
2 � xi

1 is the
axial vector along the segment; �(r) � 1 � (1 � 3

2
r3)e�r3

is
a high-order smoothing function used for desingularizing the
Biot–Savart kernel; and � is a scaling parameter. A typical value
used here is � � 0.0001.

Vortex tubes convect via their end points, and if they stretch
beyond a maximum distance, say, h, they are subdivided. The
circulation of each tube is held constant according to Kelvin’s
theorem. For computations including loop removal, the fila-
ments are monitored at each time step for locations where vortex
tubes contained on the same filament come within close contact
of each other. The resultant loop is then excised, and the
remaining ends of the filament are rejoined. The algorithm is
designed to remove all loops in the flow field at every time step.

The stretching and reorientation of the vortex tubes amounts
to a discrete approximation to the convection and vortex stretch-
ing�reorientation terms in the vorticity transport equation. For
calculations without loop removal, the influence of viscosity is
omitted, and the system may be viewed as a numerical solution
to the Euler equation. With loop removal present, there is an
implied dissipation because local energy is being removed, and
it can be imagined, in principle, that the rate of energy loss is a
function of parameters such as tube length and radius that could
ultimately be tied to a viscosity and Reynolds number. Consid-
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eration of this aspect of loop removal is complicated, however,
by the highly transient nature of the turbulent puffs considered
here, in which the local energy and volumetric vorticity support
change in response to transport processes affecting the size,
composition, and shape of the turbulent zone. As a consequence,
investigation of the energy field and its dissipation requires
further study.

Turbulent Puff
The turbulent puff considered here starts as a jet of short
duration that forms into two counterrotating vortices that sub-
sequently succumb to instabilities leading to a turbulent region,
as illustrated in side view in Fig. 1. As time proceeds the forward
momentum of the vortex system wanes, and the turbulent zone
spreads, enlarges, and approaches an isotropic state. A clear view
of the dense arrangements of tubes that form in turbulent regions
is provided in Fig. 2 showing a round jet computed by the same
technique. Here, a lead vortex ring formed at start up has
transitioned into a significant collection of turbulent vortex
tubes.

The slot in Fig. 1 has unit width (� 0.5 � z � 0.5) with periodic
extensions imposed to either side to ensure a spanwise periodic
velocity field. Image vortex systems with as many as 16 periods
to either side of the test section have been considered. The most
notable effect of the larger calculations is to lessen or remove
spanwise symmetries in the perturbed vortices during the initial
transition period that are caused by the imperfect periodicity.
After transition, such effects are lost, however, so most compu-
tations shown here are done with four images to either side of
the test section.

The jet orifice lies between y � �0.0125 with x denoting the
streamwise direction. The jet has a potential core of unit velocity

extending to �0.0075 and a linear velocity with constant vorticity
imposed in the regions 0.0075 � �y� � 0.0125. The latter zones
are each subdivided into three equal layers of thickness d �
0.005�3 out of which 6 new straight vortex filaments, each
composed of 20 tubes of length h0 � 0.05, enter the computa-
tional domain at every time step during the formation of the puff.
Typically, the turbulent puffs are composed of 6,440 filaments
and are formed over a time interval of 0.25. After this time the
potential velocity field used in initiating the puff is turned off,
and the subsequent behavior of the vortices is exclusively
through self-induced motion. It should be noted that because of
periodicity, the filaments are, in effect, infinitely long, and so any
possible influence there may be from the vorticity � not
satisfying the ��� � 0 identity is removed from the calculations.

Taking Ut and Ub as the velocities at the top and bottom edge
of one of the vorticity layers in the nozzle, the material volume
of a tube produced during the time interval 	t is V0 � h0d(Ut �
Ub)	t�2, and its circulation is � � 	t(Ut

2 � Ub
2)�2. An initial

radius of r0 � 
V0���h0 is implied for the tubes. By keeping
track of the number of times, say, qi, a tube subdivides, as in ref.
11, the volume of the ith tube is Vi � V0�2qi, and its cross-
sectional area is Ai � Vi�si, where si � �si� is its length. Assuming
constant vorticity over each tube, it follows that the vorticity
magnitude at any time is given by �i � �i�Ai.

Results
In keeping with the goal of studying the potentially significant
effect of loop removal on the physical properties of the vortex
systems, calculations are performed both with and without loop
removal. Apart from loop removal, the computed turbulent puffs
can be expected to be sensitive to the imposed minimum vortex
length, h, that controls the range of resolved scales. Beyond this
parameter, the only other potentially consequential parameter is
the numerical cut-off radius �, but tests showed that its variation
has at best a slight quantitative effect that does not affect the
conclusions of this work.

To directly gauge the effect of loop removal two calculations
with h � 0.0375 were performed that agreed in every way except
for the presence or absence of loop removal. A third calculation
was initiated from the case with loop removal at time t � 3.5, by
suddenly reducing h by a factor of 1�3 from 0.0375 to 0.025. The
properties of these three runs are representative of what can be
expected from the kind of vortex simulations considered here.

The time history of the number of vortices in the three
calculations is shown in Fig. 3. Without loop removal, the growth
rate is exponentially fast, reaching 1,258,829 tubes at t � 1.77. In
the last time step of this calculation, 72,802 new vortex tubes

Fig. 1. Side view of vortices in the turbulent puff at times 0.35 (Top), 0.71
(Middle), and 1.31 (Bottom).

Fig. 2. Turbulent vortices in a round jet.

Fig. 3. Number of vortices with time. Line a, no loop removal, h � 0.0375; line
b, loop removal, h � 0.025; line c, loop removal, h � 0.0375.

Bernard PNAS � July 5, 2006 � vol. 103 � no. 27 � 10175

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



appear. In contrast, the same run with loop removal has a
relatively slow, linear growth in the number of tubes so that it is
possible to continue the calculation for a much longer time.
Results are shown here up to t � 13.4, when there are 555,681
vortices. A similar linear growth rate develops in the case with
h � 0.025 after an initial transient during which the number of
tubes jumps because of the sharper restriction on their length. It
may be noted that the linear growth rate is slightly higher for the
smaller value of h. This computation was continued to t � 7.5
when there were 746,161 vortices.

Fig. 4 shows the number of vortices removed at each time step
for the calculations considered in Fig. 3. Evidently, there is quite
a bit of variability from time step to time step, although the rate
of removal correlates with the total number of vortices. It is clear
that as h decreases, the rate of creation of new tubes increases,
but so too does the rate of formation of new loops, with the result
that the overall tube growth rate remains linear. In the two cases
shown in Fig. 4, the cumulative number of tubes eliminated is

10 million, so that the total number that stay in the simulations
is actually just a small fraction of those that have made an
appearance since the beginning of the puff.

That the number of tubes grows despite the presence of loop
removal to a large extent reflects the spread of the turbulence
into a larger fluid volume. In fact, the spanwise averaged energy
is initially greatest toward the center of the puff but subsequently
diminishes and spreads outward as time proceeds. Fixed sub-
volumes within the central part of the turbulent region, when
loop removal is present, appear to have either a constant or
slightly declining number of tubes during the course of the
simulations. A more complete understanding of the relationship
between the number of tubes and the local turbulent statistics
requires consideration of the time variation of energy and thus
will not be considered here. One last observation is that the
process of loop removal also removes volume occupied by
vorticity, so that in this case the support of the vorticity field of
necessity declines.

The images of turbulent fields in Figs. 1 and 2 are common to
flows both with or without loop removal. In contrast, if individual
filaments are displayed, such as in Fig. 5, then it is seen that the
presence of loop removal causes a significant reduction in the
density with which the vortices are packed into a given volume. This
disparity, however, does not appear to have great effect on the
properties of the turbulent statistics, as now will be considered.

Spectrum. For the purpose of acquiring statistics with which to
assess the physicality of the turbulent puffs, velocities are
computed on a grid of uniformly spaced points covering the

spanwise period lying within the region consisting of tubes. Fig.
6 shows the computed velocity components on a typical spanwise
cut through a puff, making clear that the data are fully within the
turbulent regime.

Spanwise periodicity is particularly convenient for the calcu-
lation of one-dimensional velocity spectra using a fast Fourier
transform (FFT). Thus, N � 1 discrete points are placed in the
z direction with velocities at points 1 and N � 1 equal to each
other. The FFT performed for u, v, w yield the Fourier coeffi-
cients ûk, v̂k, ŵk, respectively, and from these the energy spec-
trum is computed via

E�k� � ��ûk�2 � �v̂k�2 � �ŵk�2��2, [2]

where the overbar denotes averaging over many parallel lines
through the turbulent zone. For the puff without loop removal,
the averaging is done over 841 lines with N � 1,000 spread
uniformly over the domain 0.48 � x � 0.62, �0.07 � y � 0.07.
With loop removal, the later time of the calculation means that
the puff has spread further, and accordingly the velocity data are
accumulated over the larger region 0.6 � x � 0.8, �0.15 � y �

Fig. 4. Number of vortices eliminated at each time step by loop-removal
algorithm. Curve a, h � 0.025; curve b, h � 0.0375.

Fig. 5. Vortex filaments in turbulent flow. (a) A single filament comprising
1,903 tubes at t � 13.4, with loop removal. (b) A single filament comprising
3,485 tubes at t � 1.77, without loop removal.

Fig. 6. Velocity traces in the spanwise direction.
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0.1 covered by a uniform arrangement of 41 � 51 lines and N �
250 points each. In fact, tests showed the energy-containing part
of E(k) to be insensitive to N for values 
250.

The energy spectra corresponding to puffs with and without
loop removal are shown in Fig. 7 where the data with h � 0.025
is used for the former. In both cases, the results from the last
computed time step is used in the analysis. The larger data set
available with loop removal results in somewhat less scatter in
the data for this case. The vertical shift of the curves reflects the
different average energies of the data sets. Just the largest 3
decades of the energy are plotted. The spectra show character-
istics typical of those seen in physical experiments and other
simulations (12, 13). Straight lines indicating an exact Kolmog-
orov �5�3 spectrum are included, and it is clear that the data are
compatible with this law. Results are plotted in terms of k	,
where 	 is the longitudinal Taylor microscale discussed in the
next section.

A closeup view of the �5�3 region, which roughly includes
wave numbers in the range 1 � k	 � 3 in both cases, is plotted
in Fig. 8. Here, the straight lines are determined by least-squares
fits by using the data points indicated with �. The computed
slopes without and with loop removal are, respectively, �1.681
and �1.679, values that are slightly higher in magnitude than
�5�3 and thus perhaps compatible with current views of the role
of intermittency (14) in modulating the 5�3 law. More extensive
computations will have to be done before a more definitive
statement can be made on this point. An important conclusion
here is that the inclusion of loop removal appears to have no
adverse effect on the energy spectrum or the presence of the
Kolmogorov law.

Correlation and Structure Functions. Additional insights into the
physicality of the vortex simulations can be had by examining the
velocity correlation and structure functions in the light of
previous results. By using the same velocity data as previously,
the longitudinal correlation function f(r) � w(z)w(z � r) and
transverse correlation functions gu(r) � u(z)u(z � r) and gv(r) �
v(z)v(z � r) were computed in which the separation between
points is in the z direction. These functions are shown in Fig. 9
vs. r�	, where 	 is determined from f by fitting a parabola to the
data in the vicinity of r � 0. It is found that 	 � 0.0114 in the
case without loop removal and 	 � 0.0136 with loop removal and
h � 0.025. For the loop removal case at t � 13.4 and h � 0.0375,
it is found that 	 � 0.0142. These results suggest that either
through dissipation or otherwise, loop removal has some effect
on raising the minimum resolved scale of the simulations.

The trend in the correlation functions in Fig. 9 is consistent
with physical experiments and classical theory as it pertains to
isotropic turbulence. In particular, f remains positive, whereas
the transverse correlations develop negative regions for suffi-
ciently large separations. The latter two are clearly close to each
other in form and distinct from f. If the flow were exactly
isotropic then gu � gv, so by this measure the flow is close to but
not exactly isotropic. Another implication of isotropy is the
identity g(r) � f(r) � r�2f�(r), where f� � df�dr. The right-hand
side of this relation is plotted as symbols, and it is seen that this
relation well agrees with the transverse correlation function gv
until r � 5	, where the results begin to show the effects of
insufficient averaging. It may be concluded that during the times
considered the flow achieves a nearly isotropic state in the y–z
plane perpendicular to the direction of the original jet, whereas
lingering effects of the startup flow delay the exact appearance
of isotropy in the streamwise direction. These conclusions also
are supported by the transient behavior of the normal Reynolds
stresses in which v2 and w2 tend to be close in magnitude,
whereas u2 approaches the other two as time proceeds.

Structure functions representing averages of velocity differ-
ences are of interest for what they might reveal about the inertial
subrange in the context of physical space. The properties of the
simulations considered here limit the amount of averaging
available with which to make precise estimates of structure
functions, particularly those of high order. Nonetheless, some
useful results have emerged, especially from the long time
simulation with h � 0.0375 where the turbulent zone is most
homogeneous. Of note is a computation of the longitudinal
structure function Sp(r) � �u(x � r) � u(x)�p for p � 2, 3, 4 shown
in Fig. 10 that is obtained from averaging over 12,750 lines

Fig. 7. Energy spectrum. Shown are spectra with no loop removal (upper
curve) and loop removal (lower curve). Also shown are lines with �5�3 slope.

Fig. 8. Detailed view of the inertial range spectrum of Fig. 7. Shown are
spectra with no loop removal (upper data) and loop removal (lower data).

Fig. 9. Correlation functions: f, solid line; gu, dashed line; gv, dash-dot line;
f(r) � r�2f�(r), *. (a) Without loop removal. (b) With loop removal.

Bernard PNAS � July 5, 2006 � vol. 103 � no. 27 � 10177

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



oriented in the x direction through the puff. Here, log–log plots
of the structure functions are shown with straight lines repre-
senting power-laws r p/3 reflecting the Kolmogorov theory of the
inertial range (15). In each case it is seen that the computed
results are compatible with theory over an apparent inertial
range given approximately by 1 � r�	 � 3. As in the case of the
spectra considered previously, more extensive computations will
be needed before nuances associated with shifts in the exponents
caused by intermittency can be accurately explored with this
technique.

Lognormality. The present computation affords the opportunity
to make a more comprehensive examination of the pdf of the
vorticity field than has been possible in the past. In particular,
theoretical arguments (2, 16) supported by some relatively crude
computations (11) have suggested that vorticity satisfies a log-
normal distribution, and the goal here is to see whether this
hypothesis is supported by the present work. Fig. 11 shows the
pdf of ln(�), where � � ���, for the computed flows with and
without loop removal. The vorticity values used in obtaining the
pdf are taken from large sets of tubes contained in a fixed volume
of space. Also plotted are Gaussian distributions with mean and
variance corresponding to the data.

In the case without loop removal, there appears to be no doubt
that the vorticity obeys a lognormal distribution, because the
agreement between the computed and fitted pdfs are excellent.
With loop removal, the pdf is close to Gaussian, but the fit is not
as exact as in the former case. In particular, there is a slight
shortfall in the peak region with a corresponding widening of the
distribution. These features are observed for the data taken from
both calculations with loop removal and for different times, so
it is presumably a real aspect of the loop removal process. If there
are any implications of this behavior on the flow physics, they
remain to be discovered.

Hausdorff Dimension. It is expected that the end result of vortex
stretching in the limit of infinite Reynolds number is to confine
the support of the vorticity field to a fractal set. Arguments have
been put forward (2) suggesting that the highly resolved vorticity
lives on a set of Hausdorff dimension in the neighborhood of 2.5,
and this estimate has been supported in computations involving
a single turbulent vortex (11). The present computations offer an
opportunity to make a more comprehensive assessment of the
Hausdorff dimension than previously.

For the present work, the Hausdorff dimension is estimated
for the vorticity lying in a fixed central region of space within the
turbulent puff. Only the simulation without loop removal is
considered because the presence of loop removal prevents the
vorticity from evolving toward an ultimate fractal state. Two
approaches are considered here. The first is a calculation similar

Fig. 10. Structure functions p � 2, 3, 4 (top to bottom) for t � 13.4, h � 0.0375
with loop removal. Straight lines have slopes 2�3, 1, 4�3 (top to bottom).

Fig. 11. pdf of ln(�). *, computed from vortex tubes; solid line, Gaussian
determined from vorticity mean and variance. (a) Without loop removal. (b)
With loop removal.

Fig. 12. Slope of S(D) curves vs. D. Zero crossing is at �2.483.

Fig. 13. N(n) vs. n showing shift from slope 3.11 to 2.638 as n increases.
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to that in ref. 11 in which the tendency of the radii of the vortex
tubes to decrease in time is used as a substitute for covering the
vorticity support with a series of diminishing self-similar objects.
In particular, the sums S(D) � ¥i
i

D, where 
i denotes the linear
dimension of the ith object used in covering the vorticity, is
calculated by means of S(D) � ¥isiri

(D�1), where the sum in this
case is over the tubes contained in the fixed region 0.5 � x � 0.6,
�y� � 0.05, �z� � 0.5. The Hausdorff dimension is the value of D
for which S(D) remains constant in time. It should be noted that
despite the global conservation of the vorticity volume, the
volume occupied by vorticity in the subregion used in evaluating
S(D) decreases while the number of tubes grows from 272,117 to
629,747 as t ranges from 1.64 to 1.77. The implicit assumption
here is that this volume reduction is part of the relaxation toward
the final fractal state to which the vorticity is progressing.

The large amount of tubes in the collection volume results in
smooth variation in S(D) with time. A precise estimate of the
slope of the S(D) curves can be had from least-squares fits, and
this slope is plotted in Fig. 12. It is evident that there is a zero
crossing to the curve near D � 2.5. A linear fit near this point
shows that the crossing is at D � 2.483, which is thus an estimate
of the Hausdorff dimension.

A second scheme for computing D is by means of the
box-counting dimension, assuming as it often is, that this method
provides a practical substitute for directly computing the Haus-
dorff dimension of fractal objects (17). The box dimension is
obtained by first covering a volume containing the vortices at a
fixed time with cubes of various sizes with n denoting the number
of cubes lying in one of the coordinate directions. For each n, the
number of cubes intersecting the vortex tubes, N(n) is counted,
and the estimate of D is taken to be limn3�(log(N(n)))�(log(n)).
In practical terms, the vortex tubes at a fixed time are not fractal,
and D is estimated from a least-squares fit of a straight line to
a log–log plot of N(n) vs. n in an appropriate range of n. For small
n the slope is expected to be near 3 because a small number of
large boxes covers most of the domain. At the other extreme,
when n is large, the slope is 3 because many small boxes fit inside
the vortex tubes. The box dimension, if it should exist, is the slope
of a straight line in a middle range of n. Fig. 13 shows such a

calculation for the data at time t � 1.65 for which the radii of the
tubes is such that the boxes at the upper range of n are just fitting
into the tubes. A clear change in slope from 3.11 to 2.638 occurs
as determined from least-squares fits. The latter value may be
taken as an estimate of the box-counting dimension of the vortex
tubes.

The difference between the two estimates of Hausdorff di-
mension attempted here undoubtedly lies within the uncertainty
of the calculations. It is reasonable to conclude that both
methods affirm the conjecture that the highly stretched vorticity
resides on a fractal set of dimension substantially below 3 and in
the neighborhood of 2.5.

Conclusions
The results of this study suggest that beyond their superficial
‘‘turbulent’’ appearance, numerical simulations of vortex tubes
forming filaments have characteristics that closely agree with
physical experiments and direct numerical simulations of turbu-
lent flow. Among the significant findings is a substantial Kol-
mogorov inertial range in the energy spectrum that is also
revealed appropriately in the structure functions, lognormality
of the vorticity field, the approach toward isotropy in the
two-point correlation functions, and a Hausdorff dimension for
stretched vorticity that is consistent with earlier theory and
computation.

An important conclusion of this work is that although loop
removal has a dramatic effect in curtailing the explosive growth
in the number of vortices, it is not at the expense of the essential
physics of the simulation. In fact, apart from some subtle effects
on the pdf of ln(�), the computations with loop removal have
similar physics to the undisturbed simulation. Loop removal does
affect energy, and finding the nature of this relationship should
be a priority for further investigation.

I thank J. Geiger for assistance with the preparation of Fig. 2 and Drs.
P. Collins, J. Krispin, and M. Potts for assistance with the development
and use of the VorCat, Inc. (Rockville, MD) implementation of the 3D
vortex tube method. The computations were performed on the National
Science Foundation Terascale Computing System at the Pittsburgh
Supercomputing Center.
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