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Abstract

A grid-free scheme for solving quasi-one-dimensional, isentropic, compressible flow in the subsonic regime is de-

veloped with a view toward its eventual generalization to three-dimensional turbulent compressible flow. The com-

putational elements contain information about the dilatation and temperature fields. Velocity is recovered by summing

over the contributions of individual elements. Differentiated terms in the governing equations are evaluated using a

moving least-square fit with Gaussian weighting function. The transient flow in a suddenly constricted duct is computed

including relaxation to an equilibrium solution. An accurate scheme to accommodate the passage of dilatation through

the inflow and outflow boundaries is developed using the wave properties of the governing equations. The predicted

duct flow matches the exact equilibrium solution and the expected properties of the transient wave field.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical schemes for predicting compressible turbulent flow parallel the experience with the incom-

pressible case: direct numerical simulations (DNS) are possible and successful at relatively low Reynolds
numbers [11,12,14] while modeling is necessary for high speed flows typically encountered in real world

applications. Among the modeling possibilities, interest in large eddy simulations (LES) for compressible

flow [13] has been rising by virtue of its reduced reliance on modeling in comparison to traditional Reynolds

averaged approaches and the opportunities provided by high speed computers. While LES is traditionally

practiced through grid-based schemes, it is also possible to formulate LES via the grid-free vortex method
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[3,4,15,18], and, after suitable generalization to include the effects of compressibility, a grid-free LES for

compressible flow can be envisaged.

Motivation for the pursuit of grid-free compressible LES schemes is based on a desire to bring to this
case the same advantages intrinsic to incompressible flow. For example: the ability to resolve sharp vortical

features without diffusion, natural self-adaptivity and the deployment of novel subgrid stress models (e.g.

hairpin removal [5]). Moreover, compressible turbulent flow has been shown to be an important phe-

nomenon in its own right (i.e., not conducive to modeling by mere extension of incompressible flow

models). In fact, by their use of Lagrangian elements containing information about the vorticity and di-

latation, grid-free schemes provide an opportunity to separately analyze the role of compressibility within

turbulent flow conditions. This new perspective has the potential to give direct and unique information

about how compressibility affects turbulence.
How best to extend vortex methods to compressible turbulent flow is not self-evident and there have

been a number of recent studies that have explored means of accomplishing this. In [9] the volumetric

expansion associated with a flame front in a model of a combustion tunnel was modeled using grid-free

dilatation elements. The strength and history of the dilatation was tied to the properties of the flame

propagation thereby bypassing the need to directly model the dilatation equation. The results are for the

most part qualitative and show an affinity with experimental observations. A particle method was also used

to study droplet evaporation [20], in which volume sources at the locations of the droplets capture the

expansion part of the velocity field produced during the evaporation process.
In recent activity, Strickland [19] considered the general requirements of a grid-free compressible flow

solver and tested a specific model on radially and spherically symmetric flows containing disturbances to

the vorticity and temperature fields in isentropic conditions. A single set of computational elements con-

tained the vorticity, dilatation and temperature. The wave-like character of the propagating disturbances

was computed successfully. An extension of this [17] was used to solve for a radially symmetric swirl flow

with initially constant temperature. The velocity was recovered from numerical quadrature of the Helm-

holtz decomposition. Differentiated terms in the equations of motion were computed using finite differences

by taking advantage of the ordering of elements that is possible in one-dimensional calculations.
In [7,8] a method deploying a single set of grid-free elements carrying vorticity, dilatation, enthalpy,

entropy, and density was developed. A major focus of this work was the generalization of the particle

strength exchange (PSE) method [6] to accommodate all differentiated terms in the equations of motion. As

in all such schemes depending on quadrature over a field of irregularly spaced elements, it was necessary to

re-mesh periodically. The approach has thus far been applied to computing co-rotating and leapfrogging

vortices in compressible flow, with a special interest in computing the associated acoustic field.

This paper presents a scheme for the grid-free representation of quasi-one-dimensional, isentropic,

compressible, subsonic flow that is the first step in constructing a grid-free LES of compressible turbulence.
In this simpler setting, we wish to develop proven numerical procedures for accommodating the kind of

phenomena that will be present in three-dimensions as well as examine the effectiveness of techniques that

will be more or less necessary in turbulent flow applications. The method has some similarities with the

aforementioned efforts, but differs in a number of aspects so as to be consistent with future extension to 3D

turbulent compressible flow. For example, to avoid the inefficiency and numerical diffusion associated with

remeshing the present scheme uses local least-square fitting to estimate differentiated terms in the governing

equations. Similarly, the velocity field is calculated as the sum of individual contributions from dilatation

elements, rather than as a quadrature approximation to the global integral. In addition, we consider as an
application, the transient development of quasi-one-dimensional flow in a duct that involves wave phe-

nomena, inlet and outlet boundary conditions and convergence to an equilibrium. This flow is readily

generalized to higher dimensions and is relevant to industrial applications.

In the following we first describe the general characteristics of the problem of interest including the basic

requirements of the grid-free solution scheme. Next we consider the velocity computation from the field of
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dilatation elements and then present the numerical algorithm. The final sections present results of com-

putations of duct flow followed by some conclusions.
2. General considerations

We are concerned with a quasi-one-dimensional model of compressible flow in a variable area duct, as

shown in Fig. 1. In this, flow properties are assumed to vary only in the streamwise direction, x, and in time,

t. We assume that the variation in the cross-sectional area of the duct, AðxÞ, is relatively small so that the

assumption of one-dimensionality is reasonable. Equations expressing mass, momentum and energy con-

servation for these conditions may be derived from control volume analyses in which the streamwise ve-
locity is taken to be constant on cross-sections [1]. The result for the density q is

_q ¼ �qðhþ uaÞ; ð1Þ

where the notation ð_Þ � o=ot þ uo=ox represents the total (i.e. convective) derivative, u is the velocity,

h ¼ ou=ox is the dilatation and a � ðdA=dxÞ=A is non-zero only in regions where the duct changes size. A

similar consideration of the momentum balance yields

_u ¼ � 1

q
op
ox

; ð2Þ

where p is the pressure.

In view of our intention to use h as the primary representation of the velocity field, we replace (2) with

the corresponding equation for dilatation, namely,

_h ¼ �h2 � o

ox
1

q
op
ox

� �
; ð3Þ

derived by taking a spatial derivative. Finally, applying an energy balance yields an equation for the in-

ternal energy, e, in the form

_e ¼ � p
q
ðhþ uaÞ; ð4Þ

which becomes an equation for the temperature T after assuming further that e ¼ cvT , where cv is the

specific heat at constant volume. If one adopts a Lagrangian viewpoint such as will be done for this study,
then (1)–(4) may be interpreted as governing the properties of the Lagrangian elements as they move

through the flow field. In this case, the left-hand sides of the equations are interpreted as simple time

derivatives.

For the equilibrium (i.e., non-transient) flow in a duct, mass conservation clearly implies that
x
l

x
r

Fig. 1. Geometry of duct flow.
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quA ¼ Q; ð5Þ

where Q is the constant mass flux down the duct. For incompressible flow with constant density a calcu-
lation of dilatation based on (5) gives

h ¼ �ua; ð6Þ

which means that despite incompressibility, the assumption of one-dimensionality implies that the dilata-

tion is non-zero in regions where the duct changes area. Note that according to (6), (4) is fully consistent

with the constancy of e in isothermal, incompressible flow. Departures of h from (6) will give an indication

(besides changes in q and T ) of the degree to which the flow is truly compressible.

The dynamical description of the flow is completed with an equation of state, which we take to be the

perfect gas law

p ¼ qRT ; ð7Þ

with R the gas constant. Without sacrifice of the essential complexity of the calculation we further assume

isentropic conditions so that

p
p0

¼ q
q0

� �c

; ð8Þ

where p0 and q0 refer to upstream equilibrium conditions and c � cp=cv is the (assumed constant) ratio of

specific heats. Here and henceforth q; p and T are assumed to be scaled with their upstream, equilibrium
values, so that in such locales q ¼ 1, p ¼ 1 and T ¼ 1 where temperature is scaled by T0. Lengths are scaled
by L ¼

ffiffiffiffiffi
A0

p
with A0 denoting the duct area in the upstream, constant region, so that the scaled area

AðxÞ ¼ 1 away from the contraction. It is also convenient to choose the velocity scale as the equilibrium

sound speed c0 ¼
ffiffiffiffiffiffiffiffiffiffi
cRT0

p
so that u, after scaling, is a Mach number. With these choices, time is scaled by

L=c0.
With the aid of (7) and (8), the governing equations can be simplified to a system for just h and T . After

non-dimensionalization, these become

_h ¼ �h2 � 1

c� 1

o2T
ox2

; ð9Þ

and

_T ¼ �ðc� 1ÞT ðhþ uaÞ: ð10Þ

Coupled to these are additional relations representing the movement and distortion of the computational

elements. Assuming that a typical element has length hðtÞ and center X ðtÞ, then the path of the element
satisfies

_X ¼ u; ð11Þ

where u is evaluated at X at time t. Furthermore, it may be shown that, approximately,

_h ¼ hh; ð12Þ

with exact equality following in the limit as h ! 0. It is assumed throughout this work that h is sufficiently

small so that (12) holds with acceptable accuracy.

It may be remarked that as an alternative to separately tracking X and h, one can instead calculate the

movement of the endpoints of elements since this gives the same information. Though this approach may
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potentially offer more accuracy, it is not pursued here since it cannot be practically implemented in higher

dimensions. In contrast, (12) has a straightforward analogy in two and three dimensions.

The complete numerical description of the flow field consists of N elements at locations Xi with lengths hi
and flow properties hi and Ti, where i ¼ 1; . . . ;N . These are contained in the computational domain

xl 6 x6 xr where it is assumed for simplicity that xl and xr are sufficiently far upstream and downstream of

the constriction, respectively, so that AðxÞ ¼ 1 in their vicinity. This assumption allows for a relatively

straightforward modeling of inflow and outflow boundary conditions, as will be seen below. Another

simplifying step is to initiate the calculation with elements covering the complete flow domain and to in-

troduce new elements at the inflow, as necessary, so as to maintain full coverage for all time. Such an

approach is not strictly required, since elements are not needed in regions where h ¼ 0 and T ¼ 1. However,

the modest cost of one-dimensional computations is such that there is little incentive to pursue cost saving
strategies in which only the minimal number of elements is kept at any one time. In higher dimensions the

advantage of eliminating unnecessary elements is greater and it may be anticipated that generalization of

the present scheme to such flows will include a capability for omitting dilatation-free elements.

For most of our computations hi; i ¼ 1; . . . ;N are initially chosen to be equal, though this property is not

generally retained as time proceeds. Some test calculations have also been performed with randomly chosen

values of hi to better mimic conditions expected in higher dimensions, especially when turbulence is present.

This modification is found to have minimal effect on the results, as will be demonstrated below.
3. Velocity evaluation

Velocity is computed by summing the contributions from individual dilatation elements in analogy to the

approach that would naturally be pursued in higher dimensions. Thus, consistent with having dilatation hi
and size hi, the ith element produces the velocity field

UiðxÞ ¼
�hihi=2 x6Xi � hi=2;
hiðx� XiÞ x� Xij j < hi=2;
hihi=2 xPXi þ hi=2;

8<
: ð13Þ

that is illustrated in Fig. 2. Clearly, hi is assumed to be distributed uniformly over the element. The total

velocity field at x is a sum of contributions from all elements and takes the form
Fig. 2. Velocity contributed by a dilatation element.
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uðxÞ ¼ C þ
XN
i¼1

UiðxÞ; ð14Þ

where the constant C represents a one-dimensional potential flow used to satisfy boundary conditions.
Eq. (14) needs to satisfy the far field condition uð�1Þ ¼ u0 in which case after solving for C using (13)

and back substituting, (14) becomes

uðxÞ ¼ u0 þ
XN
i¼1

ðUiðxÞ þ hihi=2Þ: ð15Þ

For the isentropic flow considered here, it is also the case that uðþ1Þ ¼ u0 since the duct has the same

uniform area both upstream and downstream of the constriction. This yields from (15) the consistency

condition

XN
i¼1

hihi ¼ 0; ð16Þ

which is just a numerical approximation to the identity

Z 1

�1
hðxÞdx ¼ 0: ð17Þ

There is nothing in the argument leading to (14) that limits the sum in that equation to dilatation ele-

ments lying in the region of interest between x ¼ xl and x ¼ xr. In fact, all elements containing non-zero

dilatation must be included in that relation. In particular, as will be seen below, during the transient de-

velopment of the duct flow, waves carry h out toward x ¼ �1 from the contraction. Thus, despite our

interest in the flow in the computational region only, it is still necessary to take into account the presence of
dilatation outside the computational domain. This must be done without explicitly providing elements to

keep track of this part of the dilatation field since otherwise there would be no end to the extent of the

computational domain. This problem is similar in principle to that faced in vortex methods when vorticity

lying outside the region of interest must nevertheless be accounted for when determining the velocity field

[2].

In this study we use the wave properties of the governing equations to help recover the effect of dilatation

that passes outside the computational domain. This is done in such a way that outward moving waves pass

through the boundaries without reflecting unphysical waves back into the computational domain. This
approach may be contrasted, for example, with that in [7] where a special class of boundary elements is

introduced in order to accomplish a similar objective.

For x limited to the computational region (i.e., xl 6 x6 xr), it is evident that all elements for which xi > xr
make no contribution to the sum in (15) (since UiðxÞ þ hihi=2 ¼ 0 in such cases). Moreover, the contribution

of elements for which xi < xl can be combined together into a term approximating

Dl �
Z xl

�1
hðxÞdx; ð18Þ

thereby yielding the result

uðxÞ ¼ u0 þ Dl þ
XN
i¼1

ðUiðxÞ þ hihi=2Þ; ð19Þ
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where it is to be understood here and henceforth that the summation in (19) is only over the elements lying

within the computational domain, and x satisfies xl 6 x6 xr. Defining,

Dr �
Z 1

xr

hðxÞdx; ð20Þ

according to (16) and (17)

Dl þ
XN
i¼1

hihi þ Dr ¼ 0; ð21Þ

in which case (19) can be rearranged as

uðxÞ ¼ u0 þ
1

2
Dl þ

XN
i¼1

UiðxÞ �
1

2
Dr; ð22Þ

which is the velocity relation that will be used in this study. Dl and Dr depend only on h outside the
computational domain, and in fact are related to the velocities at the left and right boundaries, respectively,

through the identities

ul � uðxlÞ ¼ u0 þ Dl ð23Þ

and

ur � uðxrÞ ¼ u0 � Dr: ð24Þ

These relations may be derived from either (18) and (20) or (21) and (22). For (22) to be useful in de-

termining velocities in the numerical scheme, the changes of Dl and Dr in time must be determined over the

course of the flow evolution. In fact, this information can be found using the wave structure of the

equations as will be shown below in the course of our presentation of the algorithm.
4. Numerical algorithm

For the flows of interest in this study a Lagrangian particle method can only get the end steady state

solution as the result of computing the time accurate (i.e., physical) transient solution. For the present work

the initial state is generally taken to be the uniform conditions u0i ¼ u0, T 0
i ¼ 1, and h0i ¼ 0 for i ¼ 1; . . . ;N

where the superscript denotes the time step of the calculation. Typically h0i ¼ h where h � ðxr � xlÞ=N and
Xi ¼ ði� 0:5Þh; i ¼ 1; . . . ;N except when variable hi are prescribed. Conceptually the problem of interest

may be viewed as an initially constant area duct with uniform flow that is suddenly indented to the shape

given by AðxÞ at time 0.

For convenience in this discussion it will be assumed that the element closest to the inlet has i ¼ 1 while

the one nearest the outlet has i ¼ N . At the start of any time integration step that brings the solution from

tn ¼ ndt to tnþ1 ¼ ðnþ 1Þdt, Xn
i , h

n
i , T

n
i and hni , i ¼ 1; . . . ;N are known and such that they are located en-

tirely within the computational domain. It is also assumed that the respective ends of elements 1 and N are

aligned flush with the inlet and outlet boundaries (i.e., the conditions xl ¼ X1 � h1=2 and xr ¼ XN þ hN=2 are
satisfied). In fact, these last conditions are always true since they will be forced to be satisfied at the end of

each time step. It is also assumed, for reasons to become clear momentarily, that boundary values of ve-

locity and temperature are computed and saved at every time step. These are denoted by unl and unr for the
velocities at the left and right boundaries at time tn, respectively, and similarly for T n

l and T n
r . Finally, it is

assumed that Dn
l and Dn

r are known at the start of each time step.
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Time advancement is achieved via a second order Runge–Kutta scheme applied to (9)–(12). A fourth

order Runge–Kutta algorithm was also tested and yielded similar outcomes. The Lagrangian nature of the

method combined with the use of h as a primary variable leads to some technical complexity in the im-
plementation of boundary conditions. To simplify this discussion it proves to be advantageous to present in

sequence the steps in the algorithm that advance the solution for one time step.

4.1. First Runge–Kutta step

At the outset note that any numerical procedure for solving (9)–(12) requires evaluation of ani , u
n
i and

o2T n
i =ox

2. Among these, ani ; i ¼ 1; . . . ;N are computed straightforwardly from the properties of AðxÞ at the
positions Xi. uni ; i ¼ 1; . . . ;N are readily computed from (22) using the information available at time tn. The
calculation of o2T n

i =ox
2 poses some problems. In this work it is computed using a local weighted least-

square fit of a fourth degree polynomial that is determined according to the collection of elements lying in a

local domain jx� Xij6 l, where the distance l is a parameter that needs to be specified. The Gaussian

weighting function

wðx� XiÞ ¼ e�ðx�XiÞ2=r2 ð25Þ

with parameter r2 is used in the least-square fit. The choice r2 ¼ l2=10 has been found through numerical
experimentation to be acceptable. For the most part l is taken to be the same for all elements without

regard to their position. We also do not vary l with N , so the number of elements that fall within the local

least-square window is not forced to be the same for all calculations. A similar least-square approach was

used by Marshall and Grant [16] in a vortex method calculation of axisymmetric flows with and without

swirl. In that study a quadratic polynomial was used and the scale of the Gaussian weight function de-

pended on the particle spacing. For the present application the latter approach generally led to instability,

particularly for the higher range of u0. This may be attributable, in part, to the use of quadratic polynomials

that are increasingly unable to accurately resolve the sharp features of T and its second derivative that
appear as u0 increases. In fact, for large u0 it was found that stability requires that the least-square fit be

over a window of a minimal size and N must be relatively large. These conditions cannot be satisfied if the

window size scales with the particle size. It is also noteworthy that the least-square fit tends to cause in-

stabilities in the computed fields if uniform weighting is used in place of (25). One exception is that a

smooth transition from (25) to uniform weighting proves to be beneficial in permitting waves to pass

smoothly through the outflow boundary. The change in form from Gaussian to uniform weighting is done

via a homotopy beginning at the distance l from the outflow boundary.

For elements close to the inlet and outlet a complete set of data with which to make the least-square fits
is not available from the elements lying in the computational domain. To get a collection of symmetrically

placed data for fits at these locations it is necessary to use data outside the computational domain. In fact, a

means of acquiring such data is offered by the wave structure of solutions near the inlet and outlet where

AðxÞ ¼ 1 so standard results apply from the one-dimensional gas dynamics equations. In particular, the

hyperbolic system of equations for u and T that may be derived from (2) and (10) (after eliminating p and q)
has right and left traveling characteristic families, xþ and x�, respectively, determined as the solution to

dxþ

dt
¼ uþ

ffiffiffiffi
T

p
ð26Þ

and

dx�

dt
¼ u�

ffiffiffiffi
T

p
; ð27Þ
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where
ffiffiffiffi
T

p
is equivalent to the sound speed c in the present scaling. The Riemann invariant

Rþ � u
2
þ

ffiffiffiffi
T

p

c� 1
ð28Þ

is constant on lines given by (26) while

R� � u
2
�

ffiffiffiffi
T

p

c� 1
ð29Þ

is constant on (27).

In the vicinity of x ¼ xr, the characteristics moving toward the duct contraction (i.e., in the negative x
direction) are in the x� family. Each of these originate in a region with velocity u0 and temperature 1, so

they have the same value of R�, namely, u0=2� 1=ðc� 1Þ. This means that u and T in this region are related

via

u
2
�

ffiffiffiffi
T

p

c� 1
¼ u0

2
� 1

c� 1
; ð30Þ

a formula that supplies a means of obtaining Tr once ur is computed from (24). In fact,

Tr ¼ 1ð þ ður � u0Þðc� 1Þ=2Þ2: ð31Þ

The fact that Rþ is constant along right moving characteristics proceeding away from the contraction,

together with the validity of (30) in this region implies that u and T are constants on the xþ lines leaving

from xr at any given time. These lines are therefore straight with slope given by ur þ
ffiffiffiffi
Tr

p
and they provide a

means for recreating the T distribution for x > xr for purposes of supplying the data needed for the least

square fit of T used in computing o2T n
i =ox

2. The procedure is illustrated in Fig. 3 where it is seen that the xþ

family of lines originating at xr at earlier times tn�1; tn�2; . . . and so forth are extended forward in time until

tn, where they occupy locations xn;kr � xr þ ðn� kÞdtðukr þ
ffiffiffiffiffi
T k
r

p
Þ; k ¼ n; ðn� 1Þ; . . . and have temperatures

T k
r . For a typical dt used in the simulations the points xn;kr are much more closely spaced than the dilatation

elements, so the actual data needed for the least-square fits is obtained from the data pairs ðxn;kr ; T k
r Þ by

interpolation over points spaced by h.
Without giving the details it may be shown that similar considerations apply to obtaining temperature

data ahead of the inlet boundary. In this case, analogously to (31) there is

Tl ¼ ð1� ðul � u0Þðc� 1Þ=2Þ2; ð32Þ
t = n dt

(n-1) dt

(n-2) dt

(n-3) dt

x = xr

Fig. 3. Filled circles denote the locations of T values that form the basis for a least-square fit of T near the outflow boundary.

Characteristic lines emanating from x ¼ xr at times preceding tn are shown as diagonal lines.
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a relation that may be used after ul is first computed from (23). Moreover, the least-square fit of T at points

near x ¼ xl is aided by data obtained by interpolation from temperatures T k
l associated with the locations

xn;kl � xl þ ðn� kÞdtðukl �
ffiffiffiffiffi
T k
l

p
Þ; k ¼ n; ðn� 1Þ; . . . Finally, it should be noted that during the startup phase

of the calculation, before disturbances created by the constriction reach the boundaries, it is assumed that

ukl ¼ ukr ¼ u0 and T k
l ¼ T k

r ¼ 1 for k ¼ 0;�1;�2; . . . to as early a time as is necessary for the least-square fit.

Once o2T n
i =ox

2 is computed, the solution to (9)–(12) can be advanced through the first step of a second

order Runge–Kutta scheme given by

X �
i ¼ Xn

i þ dt uni ; ð33Þ
h�i ¼ hni � dt ðhni Þ
2

�
þ 1

c� 1

o2T n
i

ox2

�
; ð34Þ
T �
i ¼ T n

i � dtðc� 1ÞT n
i hni
�

þ uni a
n
i

�
; ð35Þ
h�i ¼ hni þ dt hni h
n
i ; ð36Þ

yielding the provisional values, X �
i ; h

�
i ; T

�
i and h�i ; i ¼ 1; . . . ;N for the solution at t þ dt.

4.2. Second Runge–Kutta step

As part of the second step of the Runge–Kutta scheme it is necessary to evaluate u�i ; a
�
i and o2T �

i =ox
2

using the provisional solution obtained from (33)–(36). As before, computing a�i is straightforward using

the values of X �
i . In addition, o2T �

i =ox
2 may be computed using the least-square approach applied to the

data points ðX �
i ; T

�
i Þ. Near the boundary this data is supplemented by information about T outside the

domain that is reconstructed from the local wave structure. In particular, as depicted in Fig. 4 for the outlet

boundary, T values can be established at locations determined by the characteristics departing from xl and
xr at earlier times and extended until tnþ1.

The computation of u�i from (22) can be done once D�
l and D�

r are computed. The later calculation must
be sensitive to the effect of the motion of the elements and characteristics that has taken place during the

first step of the Runge–Kutta scheme. Two observations need to be made:

(1) While Dn
r , for example, represents the integral of h over the region xP xr at tn, it also represents the

integral of h over the region xP xr þ dtðunr þ
ffiffiffiffiffi
T n
r

p
Þ at time tnþ1. This follows from the constancy of u on the

right moving characteristics leaving from xr and the definitions in (20) and (24). A similar observation
t + dt

(n-1) dt

(n-2) dt

(n-3) dt

x = xr

Fig. 4. Filled circles denote the locations of T values forming the basis for a least-square fit of T near the outflow boundary at the start

of the second step of the Runge–Kutta scheme. Movement of the dilatation elements to positions X �
i is also indicated.
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applies at the left boundary: thus Dn
l represents the integral of h in x6 xl at tn and also x6 xl þ dtðunl �

ffiffiffiffiffi
T n
l

p
Þ

at time tnþ1.

(2) The computational elements are no longer flush with xl and xr after the first Runge–Kutta step. In
particular, the N th element now lies so that it extends past the boundary at xr (i.e. X �

N þ h�N=2 > xr) as seen
in Fig. 5. Similarly, a gap has formed between xl and X �

1 � h�1=2.
A simple way of proceeding at this point is to recognize that the formalism leading to (22)–(24) is equally

valid if it is applied to a temporary computational domain encompassing the left and rightmost points of

the dilatation elements at positions X �
i . In this scheme, quantities D�

l and D�
r are required that provide for

dilatation lying in x6X �
1 � h�1=2 and xPX �

N þ h�N=2, respectively, at time tnþ1. In view of the first obser-

vation above, these quantities are readily computed from Dl and Dr, by adding appropriate corrections that

approximate
R
hdx over the gap regions that form between X �

N þ h�N=2 and xr þ dtðunr þ
ffiffiffiffiffi
T n
r

p
Þ at the outflow

boundary and xl þ dtðunl �
ffiffiffiffiffi
T n
l

p
Þ and X �

1 � h�1=2 at the inflow boundary. The situation at the outlet is il-

lustrated in Fig. 5. Since we want D�
r to equal

R
hdx for xPX �

N þ h�N=2, it is clear that an approximation to

this is

D�
r ¼ Dn

r þ ðdt
ffiffiffiffiffi
T n
r

p
Þh�j

x¼ðxrþunr dtþ
ffiffiffiffi
T n
r

p
dt=2Þ; ð37Þ

where
ffiffiffiffiffi
T n
r

p
dt is the size of the gap between the end of the N th element and the characteristic that left from

xr at time tn. A similar consideration yields the relation

D�
l ¼ Dn

l þ ðdt
ffiffiffiffiffi
T n
l

p
Þh�jx¼ðxlþun

l
dt�

ffiffiffiffi
T n
l

p
dt=2Þ ð38Þ

at the left boundary. The required values of h� in (37) and (38) are found via interpolation using the set of h�i
at X �

i together with h values outside the computational domain. The latter are easily computed from the

simple finite difference approximations

hnþ1;k
l � ukl � uk�1

l

Dxnþ1;k
l

ð39Þ

and
x = xr

un dt
  

r Tn1/2
dt

  
r

Fig. 5. The N th element has moved past xr a distance given approximately by unr dt. The characteristic departing from xr arrives at
xr þ dtðunr þ

ffiffiffiffiffiffi
T n
r

p
Þ after time dt.
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hnþ1;k
r � uk�1

r � ukr
Dxnþ1;k

r

ð40Þ

for k ¼ n; n� 1; . . . where Dxnþ1;k
l � xnþ1;k

l � xnþ1;k�1
l and Dxnþ1;k

r � xnþ1;k�1
r � xnþ1;k

r . Eq. (39) applies at the

points xnþ1;k
l þ Dxnþ1;k

l =2 while (40) is at the points xnþ1;k
r þ Dxnþ1;k

r =2. The accuracy of these approximations

is aided by the small magnitudes of Dxnþ1;k
l and Dxnþ1;k

r .

Using D�
l and D�

r computed from (37) and (38) in a formula similar to (22) gives a means of computing u�i .
Now all is ready to effect the second step of the Runge–Kutta algorithm:

xnþ1
i ¼ xni þ dtðuni þ u�i Þ=2; ð41Þ
hnþ1
i ¼ hni � dt ððhni Þ

2

�
þ ðh�i Þ

2Þ=2þ 1

c� 1

o2T n
i

ox2

�
þ o2T �

i

ox2

��
2

�
; ð42Þ
T nþ1
i ¼ T n

i � dtðc� 1ÞðT n
i hni
�

þ uni a
n
i

�
þ T �

i h�i
�

þ u�i a
�
i

�
Þ=2; ð43Þ
hnþ1
i ¼ hni þ dtðhni h

n
i þ h�i h

�
i Þ=2; ð44Þ

that produces the solution at tnþ1.

4.3. Boundary conditions

The completion of the time integration step consists of determining Dnþ1
l and Dnþ1

r , enforcing boundary

conditions and adjusting the length and positions of the elements closest to the inlet and outlet so they are

flush with the boundaries. The first of these tasks parallels our previous approach to computing D�
l and D�

r ,

only this time the assumption is in effect that the ends of elements 1 and N are exactly at xl and xr, re-
spectively, since they will be so by the end of the time step. According to our first observation above, Dnþ1

l

and Dnþ1
r are computed by adding to Dn

l and Dn
r , respectively, the amount of h filling the region between the

boundaries and the characteristics that moved out during the interval dt. Using interpolation the following

approximations are then suggested:

Dnþ1
l ¼ Dn

l þ ðdt
ffiffiffiffiffi
T n
l

p
Þhnþ1jx¼ðxlþun

l
dt�

ffiffiffiffi
T n
l

p
dt=2Þ � ðdt unl Þh

nþ1jx¼ðxlþun
l
dt=2Þ ð45Þ

and

Dnþ1
r ¼ Dn

r þ ðdt
ffiffiffiffiffi
T n
r

p
Þhnþ1j

x¼ðxrþunr dtþ
ffiffiffiffi
T n
r

p
dt=2Þ þ ðdt unr Þh

nþ1jx¼ðxrþunr dt=2Þ: ð46Þ
xl

h1 h1

X1X1

(a) (b)

Fig. 6. At each time step the element closest to the inlet is lengthened so that its leftmost point is at the inlet: (a) after element moves,

(b) revised element.
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It now follows that unþ1
l and unþ1

r can be obtained from (23) and (24), respectively, while T nþ1
r and T nþ1

l are

computed from (31) and (32).

The simple adjustments of Xnþ1
1 and hnþ1

1 illustrated in Fig. 6 are done to enforce the condition
X1 � h1=2 ¼ xl. This then necessitates slight modification to T nþ1

1 and hnþ1
1 so that they correspond to the

new position of the element center. The former is found from cubic interpolation over the updated tem-

perature field. hnþ1
1 on the other hand is calculated in such a way as to preserve the total integrated dila-

tation within the region between xl and X1 þ h1=2. This leads to the equation

½hnþ1
1 hnþ1

1 �new ¼ ½hnþ1
1 hnþ1

1 �old þ ðunl dtÞh
nþ1jx¼ðxlþun

l
dt=2Þ; ð47Þ

which is solved for hnþ1
1 on the left-hand side. The second term on the right-hand side accounts for dila-

tation in the gap created by the first element moving to the right.

At the outlet boundary an opposite procedure is performed. Here, element N is truncated so that its
downstream end is at xr. Xnþ1

N and hnþ1
N are modified in an obvious way. T nþ1

N is found by interpolation, while

similar to (47) the velocity difference across the N th element is maintained before and after adjustment via

the relation

½hnþ1
N hnþ1

N �new ¼ ½hnþ1
N hnþ1

N �old � ðunr dtÞh
nþ1jx¼ðxrþunr dt=2Þ; ð48Þ

which is once again used to get hnþ1
N on the left-hand side. The use of (47) and (48) or equivalent appears to

be necessary. For example, determining the updated h by interpolation in this instance can lead to unac-

ceptable oscillations in the solution.

Since the element at the inlet boundary grows slightly in length after each time step it is necessary to

periodically subdivide it when it increases beyond a given length. Similarly, the element at the outlet shrinks
after each time step and it must occasionally be merged with its nearest neighbor when it is too short. The

performance of the algorithm proves to be for the most part insensitive to the exact criterion used to de-

termine when it is time for subdivision and merger. In typical runs, the maximum length of an element is

taken to be 3=2h, while the minimum length is h=2. After element merger or division the position, length,

temperature and dilatation of the new elements are determined very much the same way they are during the

boundary adjustment at each time step. At this point the integration step is complete and the calculation of

a new time step can be initiated.
5. Duct flow

For purposes of illustrating the performance of the numerical algorithm, flow in a quasi-one-dimen-

sional duct with area

AðxÞ ¼ ½1� b=4fcosðpð1þ 2xÞÞ � 1g2�2 jxj6 0:5;
1 jxj > 0:5

	
ð49Þ

is computed. The maximum constriction is ð1� bÞ2 occurring at x ¼ 0. For the results here the parameter

b ¼ 0:05, so the minimum of AðxÞ is 0.9025. This is a relatively small constriction; for example, b ¼ 0:1 for

the duct in Fig. 1. For most calculations xl ¼ �1 and xr ¼ 1.

It is a simple matter to find the steady state solution corresponding to (49). In fact, for an Eulerian frame

of reference in steady flow, (2) and (10) yield the coupled ordinary differential equations

du ¼ �a
Tu

2
; ð50Þ
dx T � u
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dT
dx

¼ ðc� 1Þa Tu2

T � u2
; ð51Þ

that may be solved for u and T (e.g., using Matlab). For any given upstream condition the local Mach

number M ¼ u=
ffiffiffiffi
T

p
peaks at the throat except when the downstream flow is supersonic. For the geometry

given by (49) with b ¼ 0:05, M ¼ 1 first appears at the throat when u0 � 0:681. This then is an upper limit

to what we may choose for u0 if, as is the case here, we want to confine our attention strictly to the subsonic

regime.

We use the steady state solution computed from (50) and (51) to test the accuracy of the solution of the
grid-free scheme after its passage from the initial state through a transient to an equilibrium flow condition.

Since we are proposing a Lagrangian method, the individual computational elements are not in equilib-

rium. Rather, equilibrium is achieved when each individual element traveling through the computational

domain undergoes a similar history. It will suffice here, however, to observe that equilibrium exists for all

practical purposes when the plots of velocity, temperature and other fields do not visibly change in time.

Since we take constant properties equal to those in the far field as initial conditions, there is always a

significant non-steady regime to be crossed. Moreover, even if the equilibrium values of T and u are initially
prescribed on elements covering the domain, there remains no obvious means of assigning an equilibrium
distribution for h, so this quantity will still have to evolve in time for a complete equilibrium to be reached.

Figs. 7 and 8 present the transient behavior of T and u, respectively, for the flow with u0 ¼ 0:5, N ¼ 600,

l ¼ 0:075 and dt ¼ 0:0005. These results are independent of N so long as it is not so small as to prevent
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Fig. 7. T in increments of 0.2 from t ¼ 0:2 to 2.4 (left to right and top to bottom) for u0 ¼ 0:5 solution.
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adequate resolution of the spatial variation in the computed fields, most notably o2T=ox2 as will be seen

subsequently. For large dt the method is unstable, but when dt is sufficiently small (e.g., so as to satisfy a

CFL type condition) the solutions are independent of this parameter. Fig. 7 shows the development of

downstream and upstream traveling waves that originate in the nozzle region. The downstream wave moves

with a speed consistent with the right moving characteristics given by (26) while the upstream wave is

consistent with (27). Thus, as is evident in the figures, the downstream wave passes through xr by t � 1 while
the upstream traveling wave passes through xl by t � 2:4. Both of the waves cleanly progress through the

boundary without noticeable distortion or reflection. In the downstream wave T and u are below the

ambient while T > 1 and u < u0 for the upstream wave. After both waves leave the domain all that remains

is the equilibrium solution. This is compared to the exact solution computed from (50) and (51) in Figs. 9

and 10. Clearly the correctness of this aspect of the computation has been established, for example, the

maximum error of u in Fig. 10 is 4:9474� 10�4.

The first few images in Fig. 8 show that in response to the sudden appearance of the constriction, u
initially decreases in front of it, though later, in equilibrium, this deficit is gone. Fig. 11 containing the
corresponding time history of h shows that the initial slow down in u is a compressive motion (with h < 0)

that is the initial basis for the upstream traveling wave. In effect, information about the presence of the

constriction travels upstream at speed u�
ffiffiffiffi
T

p
, leaving in its wake the ensuing equilibrium flow in which the

fluid expands as it approaches the constriction and contracts upon passing it. A similar commentary applies

to the downstream moving wave created by the sudden appearance of the constriction, except that its

leading edge is seen from Fig. 11 to be an expansion of the fluid, followed by a compression.
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The equilibrium h field for u0 ¼ 0:5 is compared to the quasi-1D incompressible h given by (6) in Fig. 12.

At this Mach number there is clearly a significant additional compression/expansion associated purely with

compressibility.

A different perspective on the transient solution is given in Figs. 13–16 giving T , u, h, and o2T =ox2,
respectively, at equally spaced time intervals for a solution with u0 ¼ 0:4 on the larger region jxj6 1:5. The
constancy of the maxima and minima of T and u in the waves is shown in Figs. 13 and 14. On the other

hand, the h plot in Fig. 15 reveals a steepening of the wave front associated with the upstream compressive
wave while the trailing rarefaction has diminishing amplitude. A relatively short distance further up the

duct the left-moving wave will develop a shock with temperature jump given by the difference between the

upstream ambient and the maximum of T and a jump in velocity from u0 to its minimum. Behind the shock

the flow relaxes back to the ambient condition. The leading edge of the right traveling wave is a rarefaction

that spreads slowly while its trailing edge steepens. These features are also evident in Fig. 15.

Since the present scheme is not designed to model shocks and the upstream wave is progressing rapidly

toward a singularity, there is clearly a limit on how far upstream xl can be chosen. In fact, even before the

appearance of the shock, the compression of the flow leads to an exceedingly rapid variation in T that is
strongly reflected in o2T =ox2 as seen in Fig. 16. For example, in the short distance from )1 to )1.5 the

magnitude of o2T=ox2 increases by approximately 40%, placing great demands on resolution and the least-

square fit. Computations show that if there is insufficient elements to resolve the details of T including its

second derivative, spurious waves are likely to develop that cause instability, mainly in the form of high

frequency waves that pass through the boundary causing unphysical changes to Dl and Dr that induce
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further waves and so on. As a general rule, the resolution required for o2T=ox2 in the upstream wave is

much more restrictive than that required in the equilibrium solution through the nozzle and this is therefore

the pacing item that determines an acceptable flow resolution.
According to our previous analysis of the boundary conditions, (28) should have a constant common

value for the waves on the left side of the constriction that are traveling toward the inflow boundary, while

(29) should be uniformly constant for the waves traveling on the right side of the constriction toward the

outflow boundary. Figs. 17 and 18 are plots of the respective Riemann invariants for the same data as in

Figs. 7–11. These conform to the expected behavior in which Rþ ¼ 2:75 and R� ¼ �2:25 thus helping to

validate the physicality of this aspect of the solution.

Another interesting aspect of the computations is the behavior of h. Fig. 19 contains a space–time

contour plot of h for the solution with u0 ¼ 0:5. Vertical lines give a view of the h distribution among the
elements at a fixed time. The transient behavior of h can be reconstructed by regarding the figure from left

to right. Dashed and solid contours signify h below and above the nominal value h, respectively. According

to the figure, it takes considerably longer, until t � 6:5, for equilibrium to be established in this case than it

does for the other variables in Figs. 7, 8 and 11. Among the phenomena is a slight rise in h that travels

rapidly downstream with the main wave, followed by a deficit in h that moves downstream at essentially the

convection velocity. Moving upstream with the principal wave from the constriction is a region of small h.
When this disturbance reaches xl at approximately t ¼ 2, it appears to reflect off the boundary in the form

of a wave of h > h that travels downstream the length of the domain from xl to xr at the convection speed.
This wave temporarily disturbs the h equilibrium that had already formed in the constriction region before

passing through and leaving the computational domain at the downstream boundary. The end result is an

equilibrium with the dilatation elements stretching as they approach the constriction and contracting back

to their original length as they depart.
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Fig. 18. Constancy of (29) on right moving characteristics.
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Computations were also done in which the domain was initially divided into randomly sized elements,

and kept this way for all time by randomly varying the size of the incoming elements at the upstream

boundary. A typical distribution of element lengths for one such computation is shown in Fig. 20. In fact,
the predicted u and T fields associated with this solution are indistinguishable from those in Figs. 9 and 10

based on more uniformly sized elements. This result is consistent with the observations of Marshall and

Grant in a related context [16] and suggests that the least-square algorithm used in this work, after ap-

propriate generalization, may also succeed in the context of three-dimensional, turbulent flow.

Another test of the accuracy of the algorithm, including how well the velocity field is evaluated, is given

by examining the degree to which the computed solutions are consistent with the identity (17). In fact, using

the definitions of Dl and Dr this leads to the approximation

0 ¼ Dl þ
XN
i¼1

hihi þ Dr; ð52Þ

where the sum is over the elements in the computational domain. Some idea of how well the computed

solution for the case with u0 ¼ 0:5 satisfies (52) is given in Fig. 21. It is seen that the sum of the three terms

remains very small despite the passage of the waves through the boundaries. First, while the right moving

wave passes through xr beginning at approximately t ¼ 0:5, the sum over interior elements balances with Dr.

Later, at t ¼ 1:5 it balances with Dl as the left moving wave travels through the inflow boundary. In essence

this figure shows the successful transfer of h between the computational domain and the exterior region.

Note that prior to the first wave reaching a boundary, the sum of terms in (52) can only be non-zero due to
the summation term. According to the figure this source of error is quite small. Finally, after each wave has

left the domain, Dl and Dr should be zero to reflect the fact that their integrated dilatation makes no

contribution to velocity in the computational region. Indeed this criterion is seen also to be well met.
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Fig. 21. Decomposition in (52) as a function of time for the solution with u0 ¼ 0:5. - � -, Dl; ––,
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6. Conclusions

A grid-free scheme for solving quasi-one dimensional, isentropic, compressible flow has been derived and
shown to work well in the solution of subsonic compressible flow through a constricted duct. An essential

aspect of this work is the treatment of inflow and outflow boundary conditions using the wave properties of

the 1D gas dynamics equations. These had to accommodate the need for data sets with which to do least

square fitting of the temperature field at points adjacent to the boundaries as well as allow for the passage of

dilatation carried by waves without significant distortion or reflection back into the flow. Left for future

work is how to best maintain resolution of compression waves that develop into shocks as they move into

the undisturbed fluid.

The present scheme has been developed with a view to its extension to 3D flows. In the latter case the
velocity will be recovered from a sum over the contributions from individual dilatation elements according

to 3D potential flow formulas. There will, in addition, be velocities due to vortex elements. We expect that

least-square fitting in 3D should be feasible [10] though techniques that accelerate the process may be

necessary if the number of elements is large. Generalization of the present technique for accommodating the

inflow and outflow boundary conditions to 3D represents an interesting aspect of future work. It is also

desirable in the interest of efficiency to equip the 3D analogue of this approach with a capability for adding

and subtracting dilatation elements where necessary.
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