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Direct numerical simulations of scalar fields produced by uniform and line sources in channel flow 
are used as the basis for examining the accuracy of random flight and closure models in predicting 
turbulent scalar transport rates. Closure models of gradient form with an anisotropic eddy diffusivity 
tensor perform well for the uniform source flow and the far field of plumes. In the near field, the 
plumes are seriously distorted due to the inappropriateness of gradient transport in modeling the 
streamwise flux rate. Random flight models are most successful in producing a qualitative rendering 
of the near field of plumes, but are subject to significant quantitative inaccuracies for the low 
Reynolds and Schmidt number flows considered here. Ensembles of particle paths having common 
end points are used to explore the physics of the scalar transport correlation. For plume flows, 
transport in the near field is found to be primarily due to the average effect of the meandering of the 
turbulent fluid over the source, in which the amount of scalar dispersed by a fluid particle correlates 
with the local velocity fluctuation. Farther downstream, displacement transport-which may be 
reasonably modeled via gradient physics-emerges as the principal mechanism behind the scalar 
flux. 

1. INTRODUCTION 

Thermal and mass concentration fields diffusing within 
turbulent shear flows are found in many guises in environ- 
mental science and engineering. Current methods for nu- 
merically predicting such phenomena are largely confined to 
solutions of the Reynolds averaged equations for which the 
turbulent scalar fiux rate must be modeledIT and random 
flight models which mimic the motion of individual tracers 
in turbulence through an assumed Markov process.“-7 Since 
the physical processes underlying the turbulent flux of scalar 
contaminants are only partially understood at the present 
time, closure models for the scalar transport correlation have 
tended to adopt the gradient form. Numerous examples of 
nongradient transport are known to exist in applications,s 
however, and it has long been recognized8-I0 that gradient 
transport models are incapable of representing dispersion 
near the source of contaminant plumes even under homoge- 
neous conditions. The limitations of gradient models and the 
success of random flight models in capturing short time dif- 
fusion in homogeneous turbulence, have been an impetus for 
the extension and application of random flight models to 
inhomogeneous flows. Since gradient transport models are 
compatible with plume growth in the far field, however, they 
have remained a desirable choice in such situations. 

Random flight algorithms suitable for nonhomogen- 
eous turbulence have seen widespread use in 
meteorologica15-7~‘1-‘3 and engineering applications. 
Though the “well-mixed” criterion15 pritides necessary 
conditions on the moments of the random velocity incre- 
ments of the tracers, practical considerations require that ran- 
dom flight models be applied under simplifying assumptions. 
Many tests of the predictions of such models have been 
made against experimental data, sometimes including direct 

comparisons between random flight and closure models. On 
the whole, however, such studies have not been in controlled 
settings where accurate information about the turbulence 
scales and other correlations appearing in the models are 
available. As a result, it has been difficult to discern what the 
relative strengths of the two methodologies are, and espe- 
cially if the substantially greater computational cost of ran- 
dom flight methods in comparison to closure models pays off 
in the form of greater accuracy in the prediction of the near 
field of scalar dispersal. 

Direct numerical simulations (DNS) of turbulent flows 
including scalar transport, provide a useful setting from 
which to carry out objective tests of prediction 
techniques,“z3z16 though admittedly, the attainable Reynolds 
and Schmidt numbers are lower than optimal for the random 
night methodology. From the DNS all of the necessary fluid 
mechanical correlations-including time and length scales 
--needed in implementing scalar diffusion algorithms can be 
computed from the simulated flow. Scalar transport fluxes 
and the mean scalar field itself can also be known to any 
desired extent, so the predictions of the various theories can 
be tested without ambiguity. The wealth of information pro- 
vided by DNS also supplies a means of establishing relation- 
ships between scalar transport and the underlying turbulent 
fluid motion.‘7-21 Such knowledge may be instrumental in 
deriving future improvements to prediction techniques. 

The interest of the current work is twofold. First, we use 
a DNS of diffusing scalar fields in a turbulent channel flow 
to assess the performance and physical integrity of scalar 
transport models under conditions where the turbulence is 
inhomogeneous. Second, we examine the relationship be- 
tween current gradient type closure models and the actual 
physical mechanisms leading to the scalar flux correlation. 
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The intent is to develop an understanding of the physics of 
transport in the near field of plumes to aid in deriving physi- 
cally accurate closure models. We consider scalar fields in a 
turbulent channel flow resulting from a constant source dis- 
tributed uniformly throughout the flow and from a transverse 
line source. In the case of the former, zero boundary condi- 
tions are applied so that the fully developed scalar field is 
one-dimensional, i.e., losses of scalar by diffusion through 
the boundary balance its internal production. This flow has 
been considered in several previous studies.2,16-‘8 The sec- 
ond example consists of plumes developing downstream of 
spanwise-oriented line sources with zero flux, i.e., insulated, 
wall boundary conditions. In one case the source is held at 
y + = 15 and in the other at y ’ = 30. The developing plumes 
are two-dimensional in the mean and are strongly affected by 
the shear and anisotropy of the channel flow. 

Our exploration of the physics of scalar transport is 
through application of a formal analysis of ensembles of 
fluid particle paths computed from a direct numerical simu- 
lation of turbulent channel flow. The approach has been ap- 
plied extensively in previous work to study the rates of 
momentum2” and vorticityu724 transport. Subsequently, it 
was extended= to include the effects of vertical structures in 
causing Reynolds stress. The methodology finds immediate 
application in explaining the physical nature of scalar trans- 
port. The present study initiates such an investigation in the 
context of the DNS of the uniform and line source scalar 
fields. For the plume flow, the properties of transport near the 
source are considered, including how the physical transport 
mechanisms change with downstream distance. The degree 
to which gradient diffusion plays a legitimate role in trans- 
port is explained, as are the physical processes which should 
be taken into account in a physically appropriate model. 

The next section considers some of the current trends in 
modeling scalar fluxes and their relationship to the physics of 
transport as viewed through the Lagrangian technique. We 
then consider in turn the uniform and line source Bows in 
which we directly compare the predictions of closure and 
random flight models. In the last two sections we provide an 
analysis of the physics of the transport correlation in plumes 
and then present conclusions. 

II. TRANSPORT MODELS 

We consider the diffusion of a passive scalar, C, satisfy- 
ing the convective diffusion equation 

ac ac 1 d2C 
-g-+4 z=~(3x2+Q 1 L (1) 

where Ui is the turbulent velocity field, Q is a nonrandom 
source term, SC is the Schmidt number and Re is the Rey- 
nolds number. Alternatively, in the case of the passive diffu- 
sion of internal energy, C may be considered to be the tem- 
perature in which case SC is replaced by the Prandtl number, 
Pr. After averaging, Eq. (1) yields 

ac - ac 1 a2? diiy2 
yjyJi -=- 

aXi Re SC Z -XfQ I I 
(2) 

where c and Vi are ensemble averaged means, c and Ui are 
fluctuations, C = C f c and Ui= Cli + Ui . Closure to Eq. (2) 
depends on modeling the scalar flux rate, &?Y. Most com- 
monly this is done via a gradient law of the form 

where Kii is an anisotropic eddy diffusivity tensor. Our in- 
tent here is to develop a formal treatment of Uic so that Eq. 
(3) can be viewed from a perspective in which the proper 
form for Kii is revealed as well as the relative magnitude that 
Eq. (3) occupies among all of the physical processes causing 
transport. 

Analysis of i&Z proceeds by a Lagrangian technique’2-24 
generalizing a methodology developed by Taylor.’ In this we 
consider an ensemble of fluid particles traveling over a time 
interval 7 which arrive at a given point a at time zero. De- 
noting the initial locations of the fluid particles by b-points 
which vary from one realization to the next-the transport 
correlation F may be expanded via the identity 

-- 
Ui,C,=Ui,Cb+Ui,(Cb-Ca)+Ui,(Cn-Clb) (4) 

where 2, denotes c evaluated at the random point b and so 
forth. As discussed in related contexts and verified 
numerically,“‘-24 the mixing condition ui,cb = 0 is satisfied 
for r large enough. We define the mixing time, say r,, as 
the smallest interval at which Ui,cbCO; 7, may be thought 
of as the time over which events in the flow cause the cor- 
relation between zli and c to develop. Equation (4) thus 
shows that for times + 7,) -. Uic IS a result of the processes 
represented by the last two terms in Eq. (4). 

The second term on the right-hand side of Eq. (4) repre- 
sents transport arising solely from the displacement of fluid 
particles in the presence of an inhomogeneous mean scalar 
field. It formally expresses the concept that the correlation 
between Ui, and c, arises from fluid particles carrying- 
unchanged-the local mean scalar field of their starting 
point, i.e., Ch, to the point a over a mixing time. This ex- 
pression is more general than that derived from the classical 
argument linking the scalar flux to a gradient model. For 
convenience, we will refer to this expression below as the 
“displacement transport” term. 

Nongradient sources of transport are contained in the last 
term in Eq. (4) which can be expanded as 

ZJiUVLC(s)ds + 
f 

O- 

7 -T 
Ui,Q(S)dS 

6) 

after integrating Eq. (1) along a particle path from b to a and 
substituting for C,-Cb. Here, V’?(s) and Q(s) denote 
evaluations of V2C and Q, respectively, at positions of fluid 
particles at time s. The first term on the right-hand side rep- 
resents the correlation between ui and the cumulative 
changes to the scalar field of a fluid particle by molecular 
diffusion along its path. The second term in Eq. (5) expresses 
transport resulting from fluid particles acquiring the scalar as 
they pass through the source. Each of these terms will later 
be shown to play an important role in the plume flow. 
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The displacement term in Eq. (4) can be expanded using 
a Taylor series representation of C, yielding 

s 

0 
zL&- C,) = - 

--+ 
Ui(O)Uj(S)dS g+@l (6) 

I 

where @r contains expressions originating in the higher or- 
der terms in the C, expansion. In a steady, linearly varying 
mean scalar field this term is identically zero. It is clear from 
Eq. (6) that the eddy diffusivity in Eq. (3) will be compatible 
with the underlying physics of the transport correlation if 

I 
0 

Kij’ ui(O)ZLj(s)dS. 
--7 

When r>r,,, is large enough 
>T, Eq. (7) can be expressed 

Kap= Tap-, 

where Greek indices are not 

(7) 

SO that Ui(O)Uj(S)=O for 1~1 
more simply as 

(8) 

summed and we have intro- 
duced a Lagrangian integral time scale through 

I Op 

ZL,IL~ Tap= t4,(ojup(d ds. --Da 

In summary, if lcic were entirely due to gradient transport, so 
that Eq. (3) were exactly true, then Kij would have to be 
given by Eq. (8). As it stands, however, if 9, in Eq. (6) and 
the terms given in Eq. (5) are not zero, as they very likely 
will not be under most circumstances, then by assuming Eq. 
(3) is true, one is in effect using Kij to account for both 
gradient and nongradient physical processes. In this case it 
cannot be expected that Eq. (8) will hold. 

Anisotropy of Kij is essential for a reasonable treatment 
of the wall bounded flows considered here. For example, in 
the case of a unidirectional flow where c = C(y) and diffu- 
sion is in the wall-normal direction y, it is well recognized26 
that the model 

where u, is the scalar eddy viscosity, must have 

v,=T7 w 

where T is an appropriate time scale, often set equal to 2kle. 
Recently developed high Reynolds number models for scalar 
transport’>27 which take 

rc3 dG 
vc=--zr - E- dy 

cannot be meaningfully applied near boundaries since in ef- 
fect they replace 2 by k which have wholly different 
behaviors. Consequently, we limit the models under consid- 
eration to those which are consistent with Eq. (llj as a mini- 
mum condition. 

It is common practice in turbulence modeling to intro- 
duce a turbulent Schmidt number (T, so that v, can be writ- 
ten as v,= v,/(+, where V[ is the eddy viscosity appearing in 
the Reynolds stress model 

dfi 
iii?= - zrt - . 

dy 
(13) 

However, a formal analysis of momentum transport along the 
same lines leading to Eq. (6) shows that the theoretically 
correct eddy viscosity for momentum transport22 is identical 
to Eq. (8). This suggests, in agreement with other analyses,“8 
that one should have vt= v=, i.e., that the physical mecha- 
nism underlying gradient transport does not distinguish be- 
tween scalar and momentum transport. The fact that it is 
often necessary to assume that vt # V, in calculations, is thus 
an artifice of the use of gradient models in representing 
physical processes which are not purely gradient in nature. 

For the purposes of the present study we take two par- 
ticular gradient models as representative of closure models 
for scalar transport. The first is that derived by assuming Eq. 
(3) and Eq. (S), i.e., the physically correct form of @ if 
gradient transport were truly the only mechanism causing 
transport. This is, in effect, a truncation of the exact Lagrang- 
ian expansion for the transport correlation. Its use in the 
subsequent comparisons helps clarify the extent to which 
transport models need to include the complete set of physical 
processes causing transport. To implement the use of Eq. (B), 
the necessary values of uiuj and the scales Tij are obtained 
from direct numerical simulations of the flow field. 

The second mode12,r6 we consider is derived from an 
algebraic analysis of the transport equation for q. In this it 
is assumed that the sum of the scalar flux production terms in 
its own transport equation are aligned in the direction of the 
flux vector. From this an algebraic system of equations for 
G follows whose solution fits the gradient form Eq. (3) with 
tensor eddy viscosity given by 

Kij;& EpkiElm~l~mk~ (14) 

where A is the determinant of the matrix Aii=Co/TSij 
+ JOi/dXj) 

CD-,,4 1+3”‘“‘( “$%-“‘535; (15) 

and the turbulent Reynolds number, RT=4k2/ev. Note that 
an alternative formula for Co given in Ref. 2 gives virtually 
identical results to Eq. (15) in numerical applications and is 
thus not considered here; T is an appropriate time scale, es- 
sentially equivalent to that discussed previously in reference 
to Eq. (11). There are some important similarities between 
Eqs. (8) and (14) which will become more evident below 
when we look at their forms in the particular flows to be 
considered. 

III. UNIFORM SOURCE FLOW FIELD 

We now consider the prediction of the mean scalar field 
due to a steady uniform source in the channel. In this case 
C(y) is one-dimensional and satisfies 

1 d’6 dz 2 o=--- 
ReScdy2--+- dy ReSc ’ (16) 
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where we have set y=x, and v =u2. The arbitrary constant 
magnitude of the source in Eq. (16) is set to match the value 
used in previous studies.2,16-‘8 For these conditions Eq. (8) 
becomes 

de 
E= - T,,T - 

dr 

while the algebraic model Eq. (14) gives 

2k 1 --de ~=--.--vv”- 
eCD dy (18) 

showing the close similarity between the two formulations of 
k’ii in this instance. In view of Eq. (17) it is clear that Eq. 
(18) contains the implicit assumption that 

(19) 

which is, apart from the additional factor Co, the standard 
scaling of the Lagrangian integral scale used in turbulence 
modeling. 

We have performed a direct numerical simulation of the 
uniform source flow field from which the scalar mean and 
flux correlations are extracted for comparison with model 
predictions. This also provides values of 7, k, E, and T,, 
appearing in Eqs. (17) and (18). The simulations incorporate 
a mesh with 64X65X 64 points in the streamwise, wall- 
normal and spanwise directions, respectively, and the dimen- 
sions of the computational box are 1250X 250X625 ex- 
pressed in wall units. The numerical scheme is equivalent to 
that used in previous studies and is described in detail by 
Handler et al.29 The Reynolds number R,= U,.hlv= 1.35, 
where U, is the friction velocity and h is the channel half- 
width, and Sc=O.71. The c and fi fields, Reynolds stresses, 
UiUj, and transport correlations, F, agree closely with those 
found in previous studies.&i6-” 

From the simulated velocity field the time scale T,, was 
computed by first generating large ensembles of fluid par- 
ticles arriving at fixed distances above the wall. To get highly 
accurate paths, velocities of the fluid particles at off nodal 
points were found by cubic Hermite interpolation.30 The es- 
timates of Tz3 are limited to the range 06~ ’ ~40, so that it 
was necessary to extrapolate Tz2 to the centerline to get the 
complete curve for Tz2 needed in solving Eq. (16) using Eq. 
(17). Figure 1 shows the computed values of Tz2) given in 
wall units, i.e., scaled by v/U~, together with the fitted curve 
used in Eq. (17). The latter is derived from a least square fit 
using MATLAB in the region where the data is available, and 
its smooth extension via a parabola to the “ideal” value of 
Tz2 at the centerline. By “ideal,” we refer to T,, computed 
from (17) using the DNS data. This is the hypothetical mag- 
nitude that Tz2 would have at a point if the gradient model 
were locally exact there. A curve denoting the ideal T,, ev- 
erywhere across the channel is also shown in the figure, to- 
gether with the time scale given in Eq. (19). Near the wall 
the ideal form of T22 is significantly different from that com- 
puted from the DNS, suggesting that other physical effects 
besides gradient transport influence the iZ correlation in this 
region. Farther from the wall, the agreement becomes closer 

o L... ( f 0 
20 

..--I 
40 60 .a0 100 120 

?I+ 

FIG. 1. Lagrangian integral scale T 22 in channel How. 0, from DNS;-: 
fit to DNS; - - - : “ideal” values; - . - : computed from Eq. (19). 

suggesting that a gradient model may have some legitimacy 
away from the boundary. It is noteworthy that Eq. (19) 
agrees closely with the ideal Tz2 For a sizable part of the 
channel, though they diverge near the centerline and near the 
wall, where the former goes to zero. The latter difference 
is largely immaterial to the performance of Eq. (19), 
however, since the appearance of 7 in the eddy viscosity 
assures that the molecular diffusion coefficient will dominate 
Eq. (18) near the wall. 

Random flight models discussed by Thomson5V7 and von 
Dop et aL6 were investigated here. For the uniform source 
channel f-low c is one-dimensional so that only diffusion in 
the wall-normal direction need be considered. To implement 
the models, tracers were released into the flow at each time 
step A.t ’ = 1 from 40 uniformly spaced locations spanning 
the channel. The zero boundary condition was enforced by 
eliminating particles moving outside the domain. The num- 
ber of tracers in the calculation grew to a statistically steady 
state, after which time the instantaneous C field was sampled 
at every tenth time step over a time period of r + = 5 000. The 
resulting ensemble of realizations was averaged to obtain a 
prediction of 2. At equilibrium, approximately 58 000 trac- 
ers were contained in the calculation. 

We consider two random flight models. In the first, ad- 
vancement of tracer position, y”, and velocity, v”, from time 
step nAt to (n+ 1)At is through the rules 

Y n+l=yn+vnAt+E 00) 
and 

+/d*+l, 121) 

where 5 is a normally distributed random variable with mean 
0 and variance 2AtlRe SC, i.e., .$= N(0,2AtlRe SC). The in- 
clusion of this random change in position is necessary to 
accommodate molecular diffusion of the scalar; ,!L is also a 
random variable, though it is not necessarily Gaussian. For 
diffusion in nonhomogeneous conditions, necessary values 

3096 Phys. Fluids, Vol. 6, No. 9, September 1994 P. S. Bernard and A. L. Rovelstad 



for its moments have been derived by Thomson.’ These 
show that ,u would be Gaussian-to first order in A t-if 
both v were Gaussian and the condition Tzz(d7/ 
dy)/z< 1 were satisfied. In the present case, however, nei- 
ther of these requirements are met, so it is unlikely that ,U 
should be Gaussian. In generating ,U for practical applica- 
tions it is only possible to force a few of its moments to their 
correct values, so a degree of arbitrariness in the selection of 
,u is to be expected. 

According to the well-mixed criterion of Thomson,’ 
the mean, b*, variance, cr2 and skewness, Sk, of ,U should 
be, ,G=At(d7/dy), c?=A~[2~JTLz+(d~/dy)] and Sk 
=At[3~/T22+(d~/dy)-u3/vZ(dv2/dy)]. Jn our imple- 
mentation of Eq. (21) we took ,u to be both Gaussian, in 
which case the first two moments are specified, or non- 
Gaussian where a sum of two Gaussian variable? was used 
to meet the conditions on three moments. We also experi- 
mented with simplifications to the exact moment formulas. 
The most successful of the computations incorporated the 
non-Gaussian variable with the skewness simplified to 
Sk=3 Ati?IT22. The benefit of taking the skewness into ac- 
count agrees with the earlier findings of Thomson for a test 
calculation under highly nonhomogeneous conditions. 

A second random flight model consists of replacing Eq. 
(21) by the relation5 

02) 

In contrast to the previous algorithm, Gaussianity of v does 
imply that ,U is Gaussian to O(At), suggesting that there 
may be somewhat more justification for making ,u Gaussian 
in this case. The computations showed, however, that various 
choices for ,u, both Gaussian and non-Gaussian, give similar 
results. The best performance, though only marginally, 
came from specifying the first three moments according -- 
to ,ii=(At/2)(dv’/dy), lr2=At{2&Tz2 + ?[d(v3/v2)/ 
dy]} andSk = 3AtvlT31. In this case, the skewness has 
been abbreviated from its full exoression, namelv, 
&=A.t{3&22+~ 3’2[d(2 -32 ‘)/i? 3’2]/d;}. -’ 

The time scale in Eqs. (21) and (22) is indicated as 
Tz2 with the definition given in Eq. (9) since this choice is 
consistent with the premises upon which the random flight 
models are based. It should be noted, however, that neither 
this assumption nor the model itself are rigorously derived, 
so that it is conceivable that other choices for Tzz may yield 
superior performance. Apart from a test calculation with Eq. 
(19), which did not yield significantly different results, the 
question was not pursued further except to gauge the sensi- 
tivity of C to the midchannel values of the DNS predictions 
of T,, which is not precisely known for y+>40. In this, the 
previously discussed extrapolation of Tz2 to the centerline 
was altered by 30%. This had a negligible effect on C sug- 
gesting that the present conclusions concerning the random 
flight models would not be significantly different if more 
complete data for Tz2 were available. 

Figure 2 compares C predicted from the closure models FIG. 3. C! for uniform source from random Right models. ~: DNS; 
Eqs. (17) and (18) against the solution determined from the -- - : from Eqs. izo), i21); -. - : from Eqs. (ZO), (22). 

FIG. 2. c for uniform source from closure schemes. - : DNS; - - - : 
from Eq. (17); - . - : from Eq. (18). 

direct numerical simulation. A similar comparison, but for 
the random flight models, is shown in Fig. 3. Evidently, de- 
spite whatever limitations there may be in the physical va- 
lidity of gradient transport models, they are nonetheless quite 
adequate for predicting this flow. The slightly greater accu- 
racy of the algebraic model over Eq. (17) may be attributed 
to its time scale being lower than Tzz in the region out to 
y + = 20. This leads to a higher slope in C near the wall and 
thus to a better fit farther from the wall. Figure 3 shows that 
the scalar fields predicted by random flight models are gen- 
erally less accurate than the closure models. The model 
based on Eq. (21) is more quantitatively correct than Eq. 
(,22), though its shape is somewhat unphysical in appearance. 
The second model does capture the near wall field quite well, 
but seriously overpredicts C near the centerline. The rela- 
tively low Schmidt and Reynolds numbers of the calcula- 
tions may be partly responsible for this outcome since the 
perceived strength of random flight models is at larger values 
of these parameters. It may be concluded that under the re- 
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FIG. 4. Lagrangian decomposit ion of Vc in uniform source flow. -: 
,, - - - : gradient contribution from Eq. (17); - ’ - : nongradient con- 
tribution. 

striction of low SC, closure schemes represent a better choice 
than random flight models for predicting one-dimensional 
diffusion under highly inhomogeneous conditions. 

The total contribution to ZZ from nongradient effects 
may be calculated by taking the difference between Vc and 
Eq. (17). A plot of the resulting breakdown of Vc is shown in 
Fig. 4 for the region where T,, is known. This has very 
much the same features’” as a similar decomposit ion of the 
Reynolds shear stress iii?. Ln particular, gradient transport 
overpredicts iZ near the wall and underpredicts it away from 
the wall. The similarity of the c and l? profiles suggests that 
it is highly likely that this occurs for the same reasons as 
noted previously for momentum transport. In essence, a lin- 
ear approximation to c near the wall overestimates the con- 
tribution to u,(ch- c,) from particles traveling toward the 
wall, yet is reasonably accurate for particles traveling away 
from the wall. The result is an overprediction. Further from 
the wall the opposite occurs when the linear approximation is 
acceptable for those particles traveling wallward, yet under- 
estimates the contribution of particles traveling outward, so 
that u,(cb - c,) is underpredicted. Even though nongradient 
effects contribute nontrivially to Vc, the flux is never coun- 
tergradient so that the use of Eq. (17) cannot be ruled out a 
priori. Evidently, Eq. (18) is most successful since it benefi- 
cially modifies Tz2 to compensate for nongradient physics in 
the uniform source flow. 

Though the streamwise scalar flux UC does not appear 
explicitly in Eq. (16), it is nevertheless instructive to see how 
successfully this correlation can be modeled by the algebraic 
and truncated Lagrangian approaches, Here Eq. (8) gives 

ac 
UC= -ET1, 7 

d.Y 

while Eq. (14) asserts that 

UC=- 

(23) 

(24) 

'0 

FIG. 5. Comparison of UC predictions in uniform source flow. __ : DNS; 
_ - : from Eq. (23); - . - : from Eq. (24). 

where S=dfi/dy is the shear rate. Apart from the term de- 
pending on S in Eq. (24), one can view the algebraic model 
as implicitly modeling T,, by T/CD, i.e., identical to the 
previous model for Tz2 implied by Eq. (18). A comparison of 
Eqs. (23) and (24) versus the DNS solution is shown in Fig. 
5. Values for T,, in Eq. (23) were computed from the simu- 
lation in very much the same way as Tzz was calculated. 
Further discussion of these and other time scales will be 
presented below in the context of the plume flow field. 

Both of the models Eqs. (23) and (24) are in serious 
disagreement with the simulation results. The error in UC by 
Eq. (24) is less than it would be if the shear term were not 
included, though closer agreement still would have been 
achieved if a  larger value of T  had been used. Such a choice 
can be justified, in fact, since T,, is much larger than T,, as 
will be seen below. This also helps explain why Eq. (23) 
very much overpredicts UC in comparison to Eq. (24). The 
prediction of UC from Eq. (23) follows a similar pattern as -. for UC m that it overpredicts near the wall and underpredicts 
away from it. Presumably this has the same physical expla- 
nation. Note that both gradient models are unphysical at the 
centerline where they predict iiZ is zero, in contradiction 
with the simulation which suggests it is not. Evidently, 
streamwise transport near the centerline owes its presence to 
physical phenomena distinctly different from gradient trans- 
port. This is an interesting point which will be considered in 
future work. 

IV. PLUMES 

The simulation of plumes was carried out by equating Q 
in Eq. (1) to a Gaussian source term of the form 

Q- loo e  - Ioocc~+(y-)‘,,)2) 
3-r 

where the elevation of the source above the wall, y, , was set 
to either y,i = 15 or 30. For these calculations R,= 145, the 
mesh contained 96X97X 96 points and the dimensions of 
the computational region were 1822X290X683. The 
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FIG. 6. c  contours for simulated plume flow. (a) Source at y+= 15, (b) 
source at y+=30. 

source was turned on at t ’ = 0 causing the subsequent plume 
to develop within a fully developed channel flow. Numerical __I - 
values of c, UC, and UC as functions of x and y were ob- 
tained by averaging instantaneous realizations across the 
span. To get smoother statistics. many of the results pre- 
sented below are the result of averaging over two indepen- 
dent realizations of the flow field. 

It is in the nature of the developing plume that its mean 
properties reach steady state in an ever lengthening region 
extending downstream from the source. Beyond this domain 
the average plume properties are time dependent. Our subse- 
quent interpretation of the computed scalar fields considers 
both steady and nonsteady aspects of the developing plumes. 
Time accurate numerical schemes were used so that the mod- 
eled scalar fields could be meaningfully compared to the 
DNS field at any time after initiation of the plume. For the 
present study, comparisons are made generally at t + = 82. 

Figure 6 shows the contours of c for the simulated 
plumes at t ’ = 82 For these and similar plots, the contour . 
lines are in increments of unity. Contours of Q coming from 
Eq. (25) are superimposed so that the response of the plumes 
to source location may be observed. A significant difference 
hetween the two figures is the shift in the peak of c to a 
point on the wall surface when the source is brought from 
Y ’ = 30 to 15. At y ’ = 3 0, the concentration peak in the near 
field remains immediately behind the center of the source, 
very much as it would be if the plume were developing in 
homogeneous turbulence in a uniform flow. The considerable 
differences between the plumes is due, in part, to the distrib- 
uted nature of the source and the very much reduced convec- 
tion and transport occurring at points close to the wall. The 
plume at y + = 15 is consistent with the expectation31 that at 
points sufficiently far downstream, the peak concentration on 
a given cross section in the steady region of the plume 
should lie at the wall. The later region may be identified by 
the presence of contours ending nearly normal to the wall. 
According to Fig. 6(a) this extends to approximately 
xt ~250. For the y ’ = 30 plume the point where the maxi- 
mum c at a fixed x is on the surface is much farther down- 
stream, beyond the limit of x ’ -L; 600 shown in the figure. 

For a two-dimensional mean scalar field, the truncated 
Lagrangian expansion Eq. (8) yields 

160 

80 

60 

0’ 1 
0 10 20 30 40 50 60 

II+ 

FIG. 7. Lagrangian integral time scales for R,- 145 simulation. +: T,,; X: 
T  ,2; *: T,,; 0: TZ2. 

ac aC 
ii&--~ T,, __g  -iii? T,, -, 

8X d.V 

ac ac 
UC=---uu Tzl dx -?Tz2 - 

dY 
(27) 

in which four distinct Lagrangian integral scales make an 
appearance. To utilize Eqs. (26) and (27) as a model, the 
Reynolds stresses and time scales need to be supplied exter- 
nally. In the present case these were obtained from the chan- 
nel Row simulation at R,= 145. Values of the scales at 10 
positions between y ’ = 0 and y + = 42 were obtained from 
appropriate ensembles of backward particle paths computed 
over a time interval t + = 43.8. JLeast square fits to the scale 
values were computed for the region encompassing the scale 
data and these were extrapolated at constant value to cover 
the lateral extent over which the plumes spread during the 
time period t+ = 82. Figure 7 shows approximate curves for 
all four scales together with the data points used in determin- 
ing them. Note that TIz is very large near the wall, as men- 
tioned previously in reference to the evaluation of Eq. (23). 
For those cases where the scales are of a magnitude close to 
or greater than 43.8, which applies generally to Trr and 
T12 > extrapolation of the partial integrals in Eq. (8) had to be 
used to estimate the scales, since the correlation functions 
were not yet zero. The curves in Fig. 7 are fully consistent 
with similar data acquired for the R,- 125 simulation by 
Rovelstad.‘4 For example, one may observe the close simi- 
larity between the T,, data in Figs. 1 and 7. 

For two-dimensional mean Rows the algebraic model 
Eq. (14) predicts that 

iZ=- 

W  

(29) 

Phys. Fluids, Vol. 6, No. 9, September 1994 P. S. Bernard and A. L. Rovelstad 3099 



where, as before, T=2kl~. When S=O these equations be- Alternative choices for (J-C, ,pZ) involving conditions on the 
come equivalent to Eqs. C.26) and (27) under the assumption higher moments can be postulated as in the one-dimensional 
that all of the scales are equal to T/CD. With this restriction, case, though the advantages of this strategy remains unclear 
the algebraic approach is equivalent to previously developed at the present time. In fact, for the high shear environment of 
models.“’ the current application, this may be detrimental.” 

Numerical solutions to Eq. (2) containing either Eqs. 
(26) and (27) or Eqs. (28) and (29) were obtained using the 
ADI algorithm applied to second-order differences of all spa- 
tially differentiated terms. The computational domain was 
taken to be -200=%xf~1800, O<y’<150. A uniform 
finite difference mesh was used with dimensions 1000 X 100 
and At’ = 0.1. Zero flux boundary conditions were imposed 
on all boundaries. The computed results were found to be 
independent of time and space discretization as well as do- 
main size. 

For the simulation of the plume using the random night 
methodology, we used the multidimensional model of 
Thomson7 which generalizes the second of the two one- 
dimensional models considered previously. In this case trac- 
ers are represented by their positions (x”,y”) and velocities 
(lJ*, Vn). The mean and fluctuating velocities at the tracer 
locations are denoted by (u”, v”) and (un,un), respectively. 
Particle positions are updated by the rules 

Pfl=xn+@+un)At+&, (30) 

Y ‘*+‘=yn+u”At+& (31) 

where (& ,&) are mutually independent Gaussian random 
variables with means 0 and variances 2/Re SC. Coupled to 
Eqs. (30) and (31) are the relations 

As in the one-dimensional case considered previously, it 
is natural to equate the scales in Eqs. (32), (33) and (36)- 
(38) with the equivalent Lagrangian integral scales. The con- 
nection is not rigorous and other choices may be justified. In 
this regard it was found that for the scale values in Fig. 7, 
(rZ2 is negative near the wall due to the term containing - 
UU, so some modification of the scales is necessary. Several 
different strategies for ensuring the positive definiteness of 
uaZFre explored including replacing Tzl by T12, dropping 
the uv terms in Eqs. (36) and (38) and eliminating all terms 
containing T,, and T,, from Eqs. (32), (33) and (36)-(38). 
For the latter case a calculation was also done with 
Til = Tz2= T/CD as used in Eqs. (28) and (29), though this 
had little effect on the solution. For all these approaches it 
was verified that the realizability condition 
I~12l=+J- mZ2 was satisfied. The best results were ob- 
tained when the terms depending on T2, and Tlz were 
dropped. This solution, with T, i and T,, given from Fig. 7, 
is featured below. 

Random variables with the specified covariances 
Eqs. (36)-(38) were generated by computing two inde- 
pendent random variables vl=~(O,(~l1+~22 

+x)/2) and ~2=N(O,(a,, + q2-Q/2) where 
Z% = (gll - cr& + 40:?/2, and then setting 

(32) 

At At 
v vn-~Ll*-~ v* T CL 

(33) 
21 

where (u *, v *) are computed on alternate time steps through 
the relations 

(,“I) =( :‘:j .,t( ;;$;) (34) 

and 

(35) 

As discussed by Thomson7 the random vector (pl ,,~a) is 
taken to be Gaussian with zero mean and covariance 
(rij~E”i~j given by 

At - At _ 
u2+-UV . 

TZl i 

(361 

(38) 

,xl=(cr12 vl-- ~(a22--11+r,) ml/D, (39) 

p2=($J.22- u,,+C) v1+~12 d/D (40) 

where D= (~“+~(~~~-c~,~))/2. To simulate the plume 
flow, tracer particles were released into the channel at each 
time step from a grid of locations covering the source: 200 in 
the case of the y +-15 plume and 225 for the y’=30 
plume. The amount of scalar given to each tracer depended 
on the amplitude of Q at its initial location. The integration 
time step was At’ = 0.5 and the plume was computed for 
164 time steps representing an elapsed time of t ’ =82. To 
get smooth statistics, the calculation was repeated 500 times 
and averaged. The independence of the algorithm to time 
step was tested by repeating the calculation with At’ =O.4 
for 205 time steps. The average statistics from this calcula- 
tion could not be distinguished from the first. 

Plots of the predicted plumes based on Eqs. (26)-(29) 
and the random flight model are shown in Figs. 8-10. Com- 
paring these to the direct numerical simulation results in Fig. 
6 gives insight into the qualitative performance of the mod- 
els. It is noteworthy that all of the models successfully pre- 
dict that the peak of the y ’ = 15 plume is at the wall surface 
and not behind the source, as it is for the y ’ = 30 plume. By 
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FIG. 8. c  contours computed using E!qs. (26) and (27). (a) Source at FIG. 10. 6 contours computed using random flight model Eqs. (30)-(38). 
yt=15, (b) source aty+=30. (a) Source aty+=lS, (b) source atyt=30. 

counting the number of contour lines in each figure, it may 
be concluded that the maximum c tends to be overpredicted 
by all of the models with the exception of the random flight 
model at y ’ = 15. Here, the accumulation of the scalar on 
the wall surface near the source is underpredicted. All of the 
models slightly overpredict the downstream widening of the 
plumes. Focusing on the downstream extent of the steady 
regime at t ‘-82, Figs. g(a)-10(a) show that the closure 
models are qualitatively correct in this regard while the ran- 
dom flight model at y ’ = 15 does not show an adequate re- 
sponse to the presence of the wall, having similar character- 
istics as the y * = 30 plume. All of the models are better at 
predicting the structure of the y ’ =30 plume than the 
Y ’ = 15 plume, presumably because the greater homogeneity 
of the turbulence away from the wall places less of a demand 
on the modeling. 

The expectation that the random flight model should be 
better at capturing the near field dispersion than gradient 

models is well borne out, at least qualitatively, by the current 
results. This is especially apparent from comparing the 
plumes in Figs. 6(a) and 10(a). In contrast, Figs. 8(a) and 
9(a) show an unphysical distortion of the plume in which c 
diffuses too far upstream. A similar exaggeration of the up- 
stream dispersion by the closure models is also visible for 
the y + = 30 plume. 

The near field errors associated with the closure models 
may be attributed to a fundamental failure of Eqs. (26) and 
(28) to accurately represent UC near the source. In particular, 
Fig. 11 is a plot of the DNS prediction of E on a streamwise 
cut at y ’ = 1.5 through the y + = 15 plume, together with 
evaluations of Eqs. (26) and (28) using the @  field computed 
from the DNS solution. The latter are the values z would 
have if the models were free of error. It is seen that z is 
negligible upstream of x ’ = - 20, becomes negative through 
the source region and then slowly rises into the steady part of 
the plume. In contrast, Eqs. (26) and (28) predict a large 

-;,i \! , , , m -m.] - 00 0 100 200 ~~ 300 400 
++ i”+ 

FIG. 9. i: contours computed using Eqs. (28) and (29). (a) Source at FIG. 11. UC for y+ = 1_5 plume on the line y +=lS. -: DNS; ---: 
y+=lS, (b) source aty’=30. Eq. i26) using correct C; - . - : Eq. (28) using correct c. 

Phys. Fluids, Vol. 6, No. 9, September 1994 P. S. Bernard and A. L. Rovelstad 3101 



T--- -- 1 -_- -- 
1 12~----- 

I 

FIG. 12. Comparison of c on line y + = I 5 for y ’ = 15 plume. __ : DNS; 
- - - : from Eqs. (26) and (27); - -: from Eqs. (28) and (29); ... : 
random fliit model. 

FIG. 13. Comparison of 6 on liney+=30 for y+=30 plume. ---: DNS; 
- - - : from Eqs. (26) and (27); - ’ - : from Eqs. (28) and (29); ... : 
random flight model. 

- 
negative spike in UC near the origin of the plume. This be- 
havio; is attributable to the dependence of Eqs. (26) and (28) 
on Xl&, which is large and positive at the upstream end of 
the plume. Since T, 1 is much larger than T/CD, Eq. (26) is 
less accurate than Eq. (28) and the plume in Fig. 8(a) spreads 
farther upstream than that in Fig. 9(a). Note that in this situ- 
ation the shear term in Eq. (28) does not act to improve the 
prediction of ? as it did in the case of the uniform source. 
Downstream of the source, Eqs. (26) and (28) quickly relax 
to slowly varying negative values attributable to their terms 
depending on JclJy. For the truncated Lagrangian model in 
Eq. (26) this agrees closely with the correct value, suggesting - 
that UC may very well be describable by gradient transport 
far enough downstream of the source. Note that the greater 
accuracy of Eq. (26) over (28) in this instance must stem 
from the use of the physical time scales rather than the model 
TIC,. In particular, if gradient transport were the only sig- 
nificant process present in the flow, then Eq. (26) would have 
to be more accurate than Eq. (28). 

A quantitative view of the accuracy of the models is 
given in Figs. 12-15 showing the predicted c fields on x and 
y coordinate lines intersecting the plumes. Figures 12 and 13 
are cuts in the streamwise direction at the level of the centers 
of the sources at y ’ = 15 and 30, respectively. The scalar 
field distribution across the y+ = 15 plume at xc = 100 and 
500 is shown in Figs. 14(a) and 14(b), and a similar plot for 
the y + =30 plume is shown in Figs. 15(a) and 15(b). The 
line X+ = 100 is relatively close to the source, where the 
plume has reached steady state, while x ’ = 500 is away from 
the immediate sphere of influence of the source in the region 
which is still developing at t + = 82. According to Figs. 12 
and 13, the closure models achieve considerable quantitative 
accuracy downstream of the source, in fact, reproducing the 
general trends quite well. Only in the near field is their ac- 
curacy seriously degraded by overprediction brought on by 
the unphysical upstream diffusion caused by the gradient 
models. Evidently, this has little consequence for the down- 

FIG. 14. Comparison of C? for y + = 15 plume. ~ : DNS; - - - : from 
Eqs. (26) and (27); -. - : from Eqs. (28) and (29); ... : random flight 
model. (a) x ’ = 100, (b) xt=SOO. 
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FIG. 15. Comparison of & for y ‘= 30 plume. ---: DNS; - - - : from 
Eqs. (26) and (27); - * -: from Eqs. (28) and (29); ... : random flight 
model. (a) x+=100, (b) xt ~500. 

FIG. 16. Vc for y ’ =30 plume. -: DNS; - - - : Eq. (27) using correct 
5; - ’ -: Eq. (29) using correct 2. (a) xc=.lOO, [bj x+=300. 

stream solution. The near field errors are noticeably less for 
the y.+ =30 plume presumably because the greater convec- 
tion velocity of the flow counteracts the errors in UC. 

The figures call into question the quantitative accuracy 
of the random flight model for treating two-dimensional 
plumes in low Reynolds number turbulence. It substantially 
overpredicts the plume magnitude near the source in both 
cases, while in the far field it underpredicts the y ’ = 1.5 
plume yet overpredicts the y + = 30 plume. The principal 
strength of the method is in capturing the distribution of C at 
the upstream end of the plumes, a property which is clearly 
superior for the random flight model than the closure 
schemes. 

The mean scalar profiles for the cross-stream slice 
shown in Fig. 14(a) reveal that the closure models are rela- 
tively successful in capturing the complete trend of the 
plume in the steady region. The accuracy is fairly well main- 
tamed into the nonsteady region as well, as seen in Fig. 
14(b). For the y ‘= 30 plume in Fig. 15(a), similar results - 
are obtained, though there is a slight overprediction in the 
lateral spreading and the errors near the wall become fairly 
pronounced downstream, as seen in Fig. 15(b). The plots of 

C for the random flight model bring into sharper focus the 
difficulty faced by this method in correctly perceiving the 
influence of the boundary. As seen in Fig. 14(a), reasonable 
accuracy is achieved only for y+>20, while the behavior 
adjacent to the wall is clearly unsatisfactory. For the 
y + =30 plume, the difficulty in resolving the wall influence 
becomes quite noticeable in Fig. 15(b) at X+ = JO0 where the 
plume is now in contact with the wall. At X+ = 100, before 
the wall effect is significant, the trend of C is well repre- 
sented, apart from the peak which is too high. 

We have previously considered the suitability of gradient 
modeling of UC in the near and far field of the plume, and we 
now consider the same question for the lateral transport cor- 
relation Vc. Figure 16 compares Vc from the DNS with Eqs. 
(27) and (29) evaluated using the correct C field, at cuts 
across the y + = 30 plume at 100 and 300. Significant errors 
in the gradient models are evident at xc = 100 in Fig. 16(a) 
but not in Fig. 16(b) at x+ = 300. At the first of these loca- 
tions fluid particles are within an integral time scale of the 
origin, so the gradient model should be of questionable va- 
lidity, as first predicted by the classical analysis of Taylor.g 
The second position belongs to the approximately steady re- 
gion downstream of the near field where gradient transport 
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has a greater likelihood of being legitimate. Evidently, Fig. 
16(b) does not contradict this supposition. In the next section 
we will discuss in greater detail the physical mechanisms - 
behind these properties of UC. 

The quantitative differences between the scalar fields 
and fluxes predicted by the two closure models are almost 
entirely due to the different values used for the scales. In 
particular, applying Eqs. (28) and (29) with S = 0 was found 
to cause less than a one percent change in the computed 
mean scalar. This appears to be a consequence of the fact that -. beyond the source region, UC 1s the dominant turbulent in- 
tluence on the plume and its modeling via Eq. (29) has no 
dependence on shear. In summary, gradient models may have 
some success in predicting the far field of plumes in nonho- 
mogeneous turbulence, so long as they include the basic de- 
pendence on Reynolds stress exhibited by Eqs. (26) and (27) 
or Eqs. (28) and (29). The use of physically accurate scales 
improves the predictions of the far field fluxes at the expense 
of greater errors in the near field, while the opposite happens 
if the modeled scales are used. Both strategies give compa- 
rable predictions of the mean scalar field. 

V. TRANSPORT PHYSICS 

Our previous results suggest that improvements to the 
modeling of the turbulent flux rate in the near field of plumes 
are essential if progress is to be made in predicting contami- 
nant dispersal through the Reynolds averaged formulation. 
Errors associated with gradient models near sources may not 
only affect the near field, but may also contribute to inaccu- 
racies downstream, even where they do have a degree of 
legitimacy. The Lagrangian methodology presented earlier 
provides a systematic means for exploring the physics of the 
flux correlation. In the following we adopt this approach to- 
ward illuminating the physical processes responsible for 
transport, including an analysis of how and where the 
changeover to gradient physics takes place along the plume. 
The results given here cover only some of the principal as- - 
pects of the UC correlation. We leave a more comprehensive 
treatment to a subsequent study in which the influence of 
coherent vertical structures is also taken into account. 

The physics of the scalar flux in the near field of a tur- 
bulent plume was first considered by Taylor” who showed 
that the lateral growth rate near the source is incompatible 
with the 6 growth implied by a diffusion equation. In par- 
ticular, for flight times less than the local Lagrangian integral 
scale, the random positions of fluid particles initially at the 
source cannot be accurately described as having undergone a 
sum of independent random steps. Instead, their initial mo- 
tion persists over a time on the order of the integral time 
scale, leading to a lateral growth rate in the plume propor- 
tional to t. Through various devices3*733 it has been argued 
that a gradient law modified to admit space or time depen- 
dent eddy diffusivities may account for the near field fux 
rate. These theories lack rigorous justification, however, and 
are subject to a number of conceptual difficulties, including 
the assumption that the eddy diffusivity is a property of the 
plume and not exclusively of the underlying turbulent flow. 
For plumes with countergradient transport in the near field,” 

FIG. 17. Contours of Vc for y+= I5 plume. Points represent locations 
where Eqs. (4) and (41) were evaluated. 

such models may be a priori disqualified. After we formally 
apply our transport analysis, it will become still more evident 
that the physics of the near field must have little to do with 
the gradient transport mechanism, even if modified to have a 
variable eddy diffusivity. 

Our analysis of Vc proceeds by evaluating the terms in 
the Lagrangian decomposition Eqs. (4) and (5) applied to the 
plume flow. We specifically consider the y + = 15 plume at a 
series of points arrayed along the line y + = 30. These inter- 
sect the region of peak Vc as may be seen in Fig. 17 where - 
the positive contours of UC are plotted together with the 
points where the Lagrangian decomposition is evaluated. 
Note that Vc is positive on the side of the plume facing away 
from the wall in accordance with the expected direction of 
the turbulent flux. To evaluate Eqs. (4) and (5), ensembles of 
200 particle paths each were computed with termination 
points distributed uniformly across the span at each of the 
points in Fig. 17. A second ensemble at each point was ob- 
tained using a later realization of the flow field so as to 
enhance the smoothness of the statistics. 

It is a property of the plume flow that fluid particles 
upstream of the source must necessarily have C =O. Since 
we have defined the mixing time as the earliest time at which 
vacbmO, 7, must always be less than or equal to the mini- 
mum time needed for the fluid particles in an ensemble to 
have traveled from positions b upstream of the plume origin 
to the point a. In particular, for such a time interval, 
Ch=Ch=ch=O so certainly u,ch=O. When point a is just 
downstream of the source, the fluid particles arriving at a 
were upstream of the plume a short time earlier. and it can be 
expected that u,ch will be zero for relatively small 7. It is 
thus evident that the mixing time must be small for points 
near the source, and progressively increase downstream. For 
distances far enough downstream, it is likely that the natural 
decorrelation caused by random motion would cause u&b to 
be zero for a time interval r well before all the Auid particles 
in an ensemble are located upstream of the source. This im- 
plies that r, will approach an equilibrium value as X+ in- 
creases. 

Figure 18 shows the dependence of mixing time, com- 
puted here as the time where u,cb is within 5% of zero, on 
the distance downstream of the source. As anticipated, r,,, is 
small for X+ near the source, rising linearly until 
x ’ w 120, beyond which it shows a tendency toward level- 
ing off to a value near Q-Z- 13. This is in the same range as 
3-z aty ’ =30 for the uniform source flow, a result which is 
not unexpected, since the mixing process-when it takes 
place entirely within the plume- should be similar to that 
occurring in the uniform source flow. 

Insight into the physical processes underlying the scalar 
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FIG. 18. Mixing time at points in Fig. 17. 

flux will now be obtained from evaluating the decomposition 
in Fq. (4) at x’ =20 and 160, the first and last points indi- 
cated in Fig. 17. Figure 19 shows the r dependence of each 
of the terms in Eq. (4)-scaled by u,c,--at these two Ioca- 
tions. As suggested by Fig. 18, u,cb is zero after a shorter 
time interval at X+ - 20 than at X+ = 160. In either case the 
usefulness of Eq. (4) in revealing the transport physics is 
manifest only after 7> T,~. 

Contrasting the displacement transport term between 
Figs. 19(a) and 19(b), it is clear that in the former case it is 
zero when u,cbfirst approaches zero, while in the latter case 
it is at a peak with intimations of a plateau. Quite the oppo- 
site occurs in regards to the correlation u,(C,- C,,), which 
equals u,c, as the mixing time is reached at x ’ = 20 in Fig. 
19(a), yet is only a relatively minor effect for the point 
X’ = 160. The pattern in Fig. 19(a) rapidly appears in Fig. 
19(b) once G- is large enough for the fluid particles in the 
ensemble to be upstream of the source. In this case the dis- 
placement term must be identically zero since c, = 0 if b is 
upstream of the plume. 

While the decomposition of Vc in Eq. (4) is potentially 
useful for any r> 7,) Fig. 19(b) suggests that the most 
physically beneficial interpretation occurs when T= v-~. 
From this perspective, it is evident that displacement trans- 
port represents a dominant effect in the creation of the UC 
correlation at x+ = 160, while it has little role at x ’ = 20. 
Previous analyses”,= have shown that the most significant 
source of displacement transport lies in motions induced by 
large quasistreamwise vertical structures. The time scale of 
these events, which is on the order of the eddy turnover time, 
is much greater than the short mixing time near the plume 
origin. Consequently, it is not surprising that displacement 
transport only becomes a factor in the scalar flux farther 
downstream, where the mixing time is larger. 

Figure 19(a) does show that some of the physics of dis- 
placement transport are active in the flow near the source, 
since this term rises to a positive peak before dropping to 
zero just when mixing occurs. To gain an idea of when the 
displacement physics begins to dominate the scalar flux, Fig. 

4,20bB ff 
FIG. 19. Evaluation of Eq. (4) normalized by y,c, for y ‘= 15 plume. 

__ 
__ : u,c,; --- : v,(C,-C,); - I - : u,(C,--C,). (a) x+=20, 
y+=30; (b)x+=lfX, y+=30. 

20 gives a plot of the displacement transport terms for sev- 
eral stations between x+ =20 and 160. An increasingly 
broad peak is observed after x+ > 130 indicating the ascen- 
dency of the displacement process at this distance from the 
source. At points farther downstream than were considered 
here, it is anticipated that a definite plateau in each of the 
terms of Eq. (4) will become evident. 

Despite the dominant role of displacement physics com- 
mencing near x + = 150, it is unlikely that the gradient trans- 
port mechanism is an accurate model for this process until 
further downstream. In fact, fluid particles arriving near 
x+ = 1 SO after the mixing time travel through a region of 
rapid variation in c which is poorly modeled by the linear 
representation required for gradient laws. Only farther down- 
stream is it likely that fluid particles will travel through a 
relatively uniform part of the plume so that the gradient re- 
lation may be more approximately valid. 

If the physics of Gin the near field is dominated by 
the process u,(C,-Cb), as was concluded from Fig. 19(a), 
then it is of some interest to explore the relative importance 
of the terms in the decomposition Eq. (5), viz. 
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FIG. 20. Displacement transport terms for points in Fig. 17. The curves 
from smailest to largest peak are for xi~20,40,60,80,90,130.140,150,160, 
respectively. 

u.(C.-chr=& _ I 
0 c_-i_ uJw(s)ds + T I 

0 -- 
u,Q(sW --7 

(41) 

in this region. For this purpose Fig. 21 shows the result of an 
evaluation of Eq. (41) at the representative point X’ = 20, 
y + = 30. It is seen that Z chiefly arises from the second 
term in Eq. (41) accounting for the cumulative scalar ac- 
quired by fluid particles as they meander through the source. 
The overprediction of ij-z; by this term is balanced by a nega- 
tive contribution from the first term in Eq. (41). Since the 
latter is nonzero, there must be a correlation between u and 
the gain or loss of scalar by molecular diffusion. 

To better understand the result in Fig. 21, we show the 
individual contributions to the integral terms in Eq. (41) 
made by the 400 particles in the ensemble. In Fig. 22 is 

1.41 I I 

-0.4L 8 
0 1 2 3 4 5 6 7 a 

r+ 

FIG. 21. Evaluation of Eq. (41) normalized by u,c, for point 
~+=2O,y+=30 in y+=15 plume. -: u,(C,-Cb); - - -: molecular 
diffusion term; - . - : source term. 
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FIG. 22. individual contributions to u,(C,-C,) from paths in ensemble. 
(URe Sc)J?! p,V*C(s)ds: f; 1’1 p,Q(s)ds: 0. 

plotted, for each particle, the magnitude of 
(i/Re Sc)J!,u,V*C(s)ds (+ symbol) and J”,u,Q(s)ds 
(0 symbol) versus initial y ’ location. Since the end points 
of the fluid particles are at y+ =30, those beginning at 
y ’ <30 generally have u,>O, while those starting at 
y’>30 have u,<O. Evidently, very few particles gain or 
lose significant amounts of scalar by molecular diffusion, 
and those that do are traveling from below y ’ = 30 contrib- 
uting negatively to (l/Re Sc)J?,u,V*C(s)ds. This sug- 
gests that V’C(s)cf~ for these particles so that they are 
losing the scalar which they recently acquired while passing 
through the source. This phenomenon is responsible for the 
negative contribution of the molecular diffusion term to 
u,(C,-Cb) shown in Fig. 21. For r+<l, u,(C,-Ch)<O 
while J?$uQ(s)ds= 0. In this case, fuid particles which 
no longer are in the source region are losing scalar by mo- 
lecular diffusion. 

The proximity of x4 = 20, y+=30 to the source ac- 
counts for the many significant contributions to 
J?y,Q(s)& evident in Fig . 22. Since fluid particles trav- 
eling away from the wall (ua>O) are likely to pass through 
a greater portion of the source than fluid particles heading 
toward the wall, positive contributions dominate over nega- 
tive ones, and the net flux is positive. The largest positive 
contributions to J!!p,Q(s)ds come from the relatively 
small number of particles which have traveled from points 
closest to the wall and thus have had occasion to pass 
through a greater portion of the source centered at y ’ = 15. 
The relatively large vertical travel of these particles away 
from the wall suggest that they are associated with ejections 
of low speed fluid-a major factor in the dynamics of the 
flow in the vicinity of y ’ = 30. 

We see from these considerations that scalar transport at 
a given point near the source depends on its position relative 
to the source and to the dynamical events associated with the 
underlying vertical structure of the boundary region. This 
process has little connection to the mechanisms ordinarily 
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associated with gradient transport and it is difficult to see 
how allowing the eddy diffusivity to have plume dependent 
properties comes closer to modeling the correct physics. The 
outlook for gradient models improves considerably with dis- 
tance downstream from the plume origin when displacement 
transport becomes the dominant mechanism behind the tur- 
bulent scalar flux. 

VI. CONCLUSIONS 

The performance of random flight and closure models in 
predicting scalar transport under low Reynolds and Schmidt 
number conditions has been examined within the controlled 
setting offered by a direct numerical simulation of turbulent 
channel flow with uniform and line sources. It is evident that 
under the highly anisotropic and inhomogeneous conditions 
of the channel, closure models provide substantially better 
overall quantitative accuracy than random fight models at a 
reduced computational cost. The range of applications of clo- 
sure models in the gradient form is limited, however, by their 
failure to accommodate the near field of plumes. Though 
random flight models provide greater realism in modeling 
near the plume source, they are prone to substantial errors in 
the mean scalar field and do not appear to accommodate well 
the presence of solid boundaries in multidimensional flow. 

The anisotropic gradient models given in Eqs. (26) and 
(27) or Eqs. (28) and (29) proved to be adequate for model- 
ing the steady far field of plumes. Since the shear terms in 
Eq. (28) had very little effect on predictions, the most impor- 
tant issue in the development of gradient models is the 
choice of time scales. The use of the theoretically derived 
Lagrangian integral scales has the advantage of being more 
accurate in the far field of the plume, though this is gained 
only at the expense of a significant distortion in the near 
field. Through its use of simplified scales, the algebraic 
model reduces the errors in the near field, but is then some- 
what less accurate in representing transport in the far field. 
For the predicted scalar fields, however, both alternatives are 
found to have comparable accuracy. Implementation of Eqs. 
(28) and (29) in applications may be easier than Eqs. (26) 
and (27) since it may be problematical to obtain values of the 
four Lagrangian integral scales under general flow condi- 
tions. In both cases, the Reynolds stresses need to be avail- 
able, and for the algebraic model, k and E, as well. Such 
quantities must generally be acquired from closure schemes 
which are prone to considerable errors themselves. Conse- 
quently, the practical implementation of scalar flux models 
will often be subject to additional errors which are unrelated 
to their form. 

A high priority in improving the accuracy of predictions 
based on turbulent scalar transport models must lie in in- 
creasing their range of applicability to include the near field 
of plumes. As a step toward this end, we have made a limited 
application of the Lagrangian methodology to the lateral 
transport correlation at various points where it is at a local 
peak. This showed in some detail why gradient transport is 
unlikely to be a significant factor in the near field of plumes. 
In particular, the mixing time is too small for displacement 
transport to fully create a correlation between u and c. Far- 
ther downstream, where fluid particles spend much longer 

times within the plume, the physical mechanisms behind the 
scalar flux shifts to that of displacement transport which may 
be reasonably well modeled via a gradient term. In the near 
field, the scalar is dispersed as the turbulent flow meanders 
over the source. To the extent that organized vertical struc- 
tures dominate the convection of fluid particles in the wall 
region, they may be an important factor in near field scalar 
diffusion. This process is slightly offset by an effective trans- 
port caused by fluid particles systematically losing scalar by 
molecular diffusion after leaving the source. The prediction 
of scalar fields in inhomogeneous turbulence should be con- 
siderably advanced once models of these fundamental pro- 
cesses are developed. 
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