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The dynamics of transitional and turbulent boundary layers is explored via a hybrid vortex filament/finite volume

simulation scheme in which vortical structures are identified without the constraints imposed by the traditional

assumption that they are synonymous with rotational regions. Vortex furrows consisting of elongated, streamwise-

oriented, raised perturbations to the wall vorticity layer overlying low-speed streaks are found to be the principal

structural element appearing during theKlebanoff-type transition. A number of dynamical properties of the furrows

are considered, providing new insights into such questions as why hairpinlike rotational regions form that occur both

singly and in pairs, why and how low-speed streaks form and why they persist, and why mushroomlike shapes and

“pockets” are found in smoke visualizations of boundary layers. The physical picture of the boundary layer that

emerges from the consideration of the dynamics of the vortex furrows provides some insights into why turbulence in

the boundary layer is self-sustaining.

Nomenclature

Re = Reynolds number
Rθ = momentum thickness Reynolds number
U, u = streamwise velocity and fluctuation
Uτ = friction velocity
V, v = wall-normal velocity and fluctuation
W, w = spanwise velocity and fluctuation
x = streamwise coordinate
y = wall-normal coordinate
z = spanwise coordinate
θ = momentum thickness

Superscript

� = wall variables

I. Introduction

T HAT vortical structures play a major role in the dynamics of
transitioning and turbulent boundary layers is well supported by

evidence obtained from physical experiments and numerical
simulations of turbulent wall-bounded flows. For example, rotational
motion that likely has a vortical origin is visible directly in boundary
layers using smoke or particles [1–5], and coherent, swirlingmotions
appear in velocity data over three-dimensional (3-D) grids produced
in numerical boundary-layer simulations [6]. Coherent regions of
rotating velocity are also revealed to be present via isosurfaces of
several scalar indicators of local swirl [7–9] when applied to grids
of 3-D velocity data taken from numerical simulations [10–13]
and physical experiments [14–18]. The presence of vortices is also
indirectly indicated in such phenomena as low-speed streaks [19],
ejections and sweeps [20], and “pockets” [21]. Identifying what
the structures are and how they contribute to the dynamics of the
boundary layer have long been primary aspects of boundary-layer
research.

For the most part, though not exclusively [22], it is customary to
assume that coherent vortical structures in the boundary layer can be
distinguished from the background flow by their primary property of
having a distinct local swirling or rotating motion. Thus, the concept
of “organized vortical structures” has become largely synonymous
with “regions of rotational motion.” From this point of view, the
most commonly observed structures in transitioning and turbulent
boundary layers have a form that may be described as that of a
“hairpin” consisting of one or two streamwise-oriented “legs”
connected downstream via an “arch” or “horseshoe” vortex. One-
legged hairpins are often referred to as “canes.” It has also been
observed that hairpins often occur in groups called “packets” [23].
In a variety of contexts [6,24], it is known that the vorticity within

hairpin-shaped regions of rotational motion in the boundary layer
does not consistently have an orientation along the axis of the
structures. To some extent, this is a natural consequence of the
presence of considerable ambient spanwise vorticity generated at the
wall surface that is ultimately the source of the vorticity within the
hairpin structures themselves.When the local vorticity and the axis of
the structures are misaligned, there is reason to suspect (by virtue of
the extension of the vortex filaments to the surrounding flow) that the
vorticity outside the structures may have some significant kinematic
or dynamical connection to the vorticity within the structures.
Consequently, by limiting the idea of structure to just the regions of
rotational motion, the potential exists to overlook the true form taken
by the local vorticity that acts as a coherent entitywithin the boundary
layer. It should be noted that to some extent this concern has
motivated recent efforts to include information about shear surfaces
together with the rotational regions [25].
The practice of using isosurfaces of a scalar marker to denote the

position and shape of coherent structures within the flowfield (and
thus the need to decide on an appropriate contour level) adds an
additional level of subjectivity to that inherent in the definition of
vortical structures as regions of rotational motion. Although some
ability to track structures defined this way through the flow has been
achieved [26], in situations in which the rotational strength of a
structure varies in space and/or time, as during its first appearance in
the flow, it may be difficult to arrive at an objective understanding
of the underlying phenomena. Closely related is the problem of
discerning the true physical nature of multiple vortical objects that
lie within close proximity to each other. Different parts of a structure
are likely to have differing magnitudes of rotation besides the fact
that there may be invisible, nonrotational vorticity connecting the
separate objects.
The ambiguity inherent in the definition of structure according

to its rotational field often means that multiple irreconcilable
explanations for phenomena are possible. This is evident in
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discussions concerning the connection between the velocity
signatures of transition and the emergence of vortical structures
[25,27–29]. For example, the shapes of rotational regions can be used
to justify the existence of different kinds of vortical structures such as
hairpin, ring, and U-shaped vortices [30,31] or other objects out of
which different physical models of late transition may be developed.
Similarly, the presence of low-speed streaks has been explained
as due to the action of the lift-up mechanism [32] produced
by streamwise vortices [33,34] as well as being the kinematic
consequence of hairpin vortices organizing into packets [23,35]. The
appearance of new hairpins in the flow has been accounted for as the
end result of a secondary instability on low-speed streaks [34,36–38]
as well as due to autogeneration processes [39,40] in which hairpins
beget more hairpins. In a similar vein, previous explanations for such
phenomena as the simultaneous appearance of both one- and two-
legged hairpins [13,23,41] and retrograde vortices [42] do not
preclude the possibility that such flow objects can be explained via a
different set of physics based on a more comprehensive notion of
what constitutes a vortical structure [43].
One means for visualizing the complete set of vorticity belonging

to structures is to simulate the boundary layer using a vortex filament
scheme. In this, the flowfield is represented via grid-free vortex tubes
forming filaments that freely agglomerate to form large-scale
structures that can be identified by inspection. For example, in jet
flow simulations, vortex rings possessing various structural subtleties
are readily depicted via filaments [44,45]. Likewise, in the case of
shear layers [46,47], filament patterns in the form of roller/rib, chain-
link fence, and oblique rollers with partial pairing are evident. Such
forms match those seen in physical experiments. In previous work
[48,49], boundary-layer flow was studied using a generalization of
the filament scheme that accurately accommodates the production
of vorticity at solid surfaces. Consistent with grid-based studies,
hairpin-shaped regions of rotational motion were evident in
transition, but theywere found to represent the rotational signature of
structures that may be best described as “vortex furrows”: elongated,
streamwise-oriented, raised folds in the surface vorticity layer. Some
of the basic kinematical properties of the furrows were explored with
just limited attention paid to their dynamics. The present study is
focused on the dynamical aspects of furrows with a view toward
revealing how their actions are consistent with a variety of flow
phenomena that have long been observed in boundary layers. Among
the issues to be considered are the relationship of the furrows to one-
and two-legged hairpins, low-speed streaks, and mushroom-shaped
and pocketlike smoke images aswell as themechanisms bywhich the
turbulent field is self-sustaining.
The next two sections briefly review aspects of the numerical

scheme and the computational problem that is solved. Following this,
the basic makeup of the furrows is considered followed by a number
of developments related to their dynamics. Lastly, some discussion of
the breakdown of the furrows to turbulence at the end of transition is
discussed, followed by conclusions.

II. Vortex Filament Scheme

The hybrid vortex filament scheme employed in simulating the
boundary-layer flow is the same as has been previously described in
detail [48]. It combines a finite volume solution to the full viscous
vorticity equation on a thin prismatic mesh adjacent to the wall
surface with a vortex filament calculation away from the boundaries.
The vortex filaments are formed out of short, straight vortex tubes
linked end to end with each tube defined by its endpoints and
circulation. Vortex tubes on a common filament share the same
circulation. At each time step, newvortices are created at the top layer
of prisms from vorticity that has accumulated there from the wall-
layer mesh computation. The circulation and orientation of the new
tubes is set by requiring that the far-field velocity produced by the
vorticity in the prisms and tubes should be identical. Some small local
distortion in the velocity field is inevitable in this process.
The use of a grid next to solid walls is motivated by the need to

accurately compute the steep vorticity gradients at the surface that
control the viscous flux of new vorticity into the flow. A near-wall

grid is generated outward from the surface triangularization
and covers the region out to approximately y� � 50, where y� ≡
yUτ∕ν and Uτ is the friction velocity. Because the Reynolds number
is meant to be a real parameter in the simulations, the resolution
of the boundary mesh aims toward that of a direct numerical
simulation (DNS).
In the filament computation, the vortex tubes translate, stretch, and

reorient according to the movement of their endpoints. Their
circulation is taken to remain constant in time according to the
approximate applicability of Kelvin’s theorem, it being assumed that
the Reynolds number is sufficiently high to make this a reasonable
model in the flow removed from solid boundaries. Tubes that stretch
beyond a limit are subdivided. Although viscous diffusion is not
explicitly computed for the vortex filaments, vortex loop removal
[50–52] is used to provide spatially and temporally intermittent
dissipation at inertial range scales, with the important benefit of
limiting the growth in the number of vortex tubes to manageable
levels. The principle invoked here is that removing the loops (that
naturally form to accommodate the boundedness of the energy as
it flows to small dissipation scales) dissipates local energy that
otherwise would be destined for removal at finer scales. Loop
removal thus sidesteps the great expense of computing details of the
motion including viscous vorticity diffusion at the tiniest scales.
The velocity field is recovered from a summation over the

contributions of vortex prism sheets and vortex tubes by application
of the Biot–Savart law. A potential flow derived from a distribution
of surface sources is included as a means of enforcing the
nonpenetration boundary condition. The computation of velocities is
made affordable by the use of a parallel implementation of the fast
multipole method [53,54] in which the cost scales linearly with the
number of vortex tubes. Excellent parallel efficiency is achieved for
up to approximately 22 processors.

III. Numerical Problem

The numerical simulation of the boundary layer performed in this
study is inmany respects similar to that considered previously [48]. In
this, a spatially developing flow is computed on both sides of a wide
flat plate of length 1.5, thickness 0.1, and span 2.5 in the streamwise,
vertical, and spanwise �x; y; z� directions, respectively. Though the
fluid arriving at the plate is free of disturbances, the transition from
laminar to turbulent boundary layers on the top and bottom surfaces is
triggered by slight perturbations intrinsic to the act of representing the
flow via many discrete convecting vortex filaments. This may be
contrasted with traditional grid-based simulations in which overt
forcing of the boundary layer is commonly applied to encourage
transition [13,55]. Depending on the size of the vortex tubes,
the density of surface triangles, the Reynolds number, and the
smoothness of the leading edge of the plate, the linear extent of the
initial laminar regime can be significantly varied. In the absence of
specific disturbances that might provoke other modes of transition,
the Klebanoff-type transition is found to consistently occur in the
plate flow wherein parallel low-speed streaks develop out of small
perturbations in the upstream Blasius flow.
For the purposes of the present study, two main calculations are

performed from which the structure of the boundary layer is
analyzed. The first has Reynolds number Re � 1.2 × 105 at the rear
edge, transitions relatively quickly, and reaches turbulent flow
conditions by x � 0.5. The second calculation, which is designed to
have a relatively longer transition region, has a slightly more
streamlined front edge than the first case and a lower Reynolds
number, Re � 7.5 × 104, so that turbulent flow conditions are
delayed until approximately x � 0.9. The numbers of surface
triangles used to represent the plate in the two calculations are,
respectively, 74,274 and 98,080.
The relatively modest Reynolds numbers of the simulated

boundary layers, implying an early onset to transition, reflect the
combined influence of the blunt leading edges of the plates and the
aforementioned sensitivity of the many interacting discrete vortex
tubes to slight velocity perturbations associated with the use of the
Biot–Savart law. Test calculations show that delaying transition by
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increasing the resolution results in a substantially higher computa-
tional cost without materially affecting the properties of the vortical
structures appearing in transition. For example, whereas the density
of structures within the boundary layer increases with Reynolds
number, the obvious physical nature of the structures remains
the same.
The flow in the central part jzj ≤ 0.25 of the plates constitutes a test

section that has mean statistics independent of the spanwise position
and is the exclusive focus of the following analyses. The test section
in both cases is more than five boundary-layer-thicknesses wide and
has dimensions in wall units of �x�; z�� � �6177; 2059� for the
higher-Reynolds-number case and (4890, 1630) for the lower-
Reynolds-number case. Velocity statistics are computed from a time
average of points distributed over the span of the central test section.
In both calculations, a prismatic mesh is erected from the surface

triangles containing 11 layers with a layer of half-width adjacent to
the boundary. Taking y � 0 at the plate surface, the mesh extends to
y � 0.012. The number of surface triangles is more than 50% higher
than in the previous study [48] yet still somewhat less than the degree
of resolution normally associated with a high-quality DNS near the
surface. For example, typical values within the turbulent domain of
the thickness of the half-sheet on thewall surface for the present grids
are, respectively, Δy� � 2.60 and 2.06, which implies that the
spacings between triangles are approximately Δz� � 45 and 31.
Finally, the maximum length of vortex tubes is taken to be 0.005 and
0.01 in the high- and low-Reynolds-number flows, respectively.
These scale to approximately 20–30 in wall units.
The boundary-layer simulation begins from an impulsive start of

the flow and runs in time until an equilibrium state is achieved. For
example, in the simulation at Re � 7.5 × 104, a leveling off in the
number of vortex tubes occurs at approximately time t � 2, with a
slow relaxation to an equilibrium in the flow conditions well
established by time t � 2.85. Once the equilibrium state is reached,
the flow is computed for an additional 2.2 time units (Δt� � 484) for
the higher-Reynolds-number case and 1 time unit (Δt� � 213) for
the lower Reynolds number case. To limit the number of vortices in
the calculation, a downstream boundary is defined such that all
filaments passing this point are removed from the flow. The missing
vorticity has some effect on the adjacent part of the flow just
upstream. Consequently, attention is confined here to the flow
upstream of x � 1.2. The number of vortex tubes when equilibrium
conditions are reached in the two simulations is 26 million and 40
million, respectively.
Some evidence for the innate physicality of the computed

boundary-layer flow is provided in Figs. 1 and 2, containing plots of
the mean velocity field computed as an average over the data points
within the fully turbulent zone 0.6 ≤ x ≤ 0.7 for the simulation at
Re � 1.2 × 105. In this region, the local value of the Reynolds

number based on the momentum thickness Rθ varies between
602 and 623. The computed constants in the log law U� �
1∕κ log�y�� � B are κ � 0.404 and B � 4.986 that agree well with
awide range of studies [56]. In Fig. 2, the comparison to theDNSdata
is made for the mean velocity scaled by the far-field velocity, and
here, the agreement is quite excellent. Both of these results show that
there is a relatively small and ultimately inconsequential distortion to
the mean velocity in the neighborhood of y� ≈ 50 deriving from the
switch between prisms and tubes at this location.

IV. Vortex Furrows

The vortex filaments used in representing the flow outside the
immediate wall vicinity can be made the basis for visualization of
flow structures that are not readily depicted from traditional grid-
based distributions of velocity and vorticity. For example, Fig. 3
provides a view of the computed vortex filaments in the boundary-
layer simulation at Re � 7.5 × 104 from an overhead vantage point.
The view includes the top surface of the plate from the leading edge at
x � 0 to the position x � 1.2 at the right. The lateral boundaries are
between z � −0.25 and 0.25. At the left, the incoming flow is
laminar with spanwise-aligned vortex filaments. Transition begins
upstream of x � 0.4 with a faint spanwise undulation to the vortices
that gains in strength until elongated streamwise structures appear
(the vortex furrows) in the region 0.4 ≤ x ≤ 1.0. The average
spanwise spacing of the furrows varies between approximately
Δz� � 150 to 225 in viscous units, and they are approximately
1000 viscous units in length. Beyond x � 1, the flow becomes
increasingly turbulent, and the organization of the filaments into
furrows is less distinct.
Some idea of how the structure in Fig. 3 fits in with a more

traditional view of the boundary layer is given in Fig. 4, in which the
isosurfaces of the streamwise velocity fluctuation demarcating low-
and high-speed fluid (u � −0.3 andu � 0.15) are displayed together
with isosurfaces of rotationalmotionmarked using λ2 � −100. Here,

100 101 102
0

5

10

15

20

25

Fig. 1 Semilog plot of U�. — , vortex filament simulation; : : : , DNS
[57]Rθ � 670; — — — ,U� � y� andU� � 1∕0.404 log�y�� � 4.986.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Fig. 2 U∕Umax. — , vortex filament simulation; : : : , Rθ � 670 DNS

[57].

Fig. 3 Overhead view of vortex filaments in the boundary-layer
simulation at Re � 7.5 × 104.
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λ2 is the second eigenvalue of the matrix S2 �W2, where S �
�∇U� ∇Ut�∕2 is the rate-of-strain tensor, W � �∇U − ∇Ut�∕2 is
the rotation tensor, and �∇U�ij � ∂Ui∕∂xj. The rationale for using λ2
to mark the rotational regions, as well as its effectiveness in doing so,
has often been noted [7,9]. In the present case, λ2 is found by first
evaluating the velocity field on a mesh and then computing the
necessary derivatives via finite difference formulas. Within the main
part of the transition region before the onset of turbulence, Fig. 4
shows that the volumes of rotating fluid revealed by isosurfaces of λ2
are in the form of either one- or two-legged hairpins. These straddle
the low-speed streaks as seen in the Klebanoff-type transition and
have a one-to-one correspondence with the furrows. The elongated
regions of high-speed fluid are located adjacent to and outside the
furrows. In a number of instances, the arch vortices are seen to
connect the hairpin legs.
Among the hairpinlike objects in Fig. 4, some are in the form of

nested arch vortices that have a resemblance to “hairpin packets.”
Considerable weight has been attached to the hairpin and hairpin
packets in previous attempts at explaining the dynamics of
transitional and turbulent boundary layers [23]. The evidence in
Figs. 3 and 4 as well as prior studies [48,49] suggests that, whereas
the hairpins are the rotational signature of the furrows, it is only
the latter that are complete structures suitable for analysis of the
boundary-layer physics. Consequently, the primary focus of the

following discussionwill center on elucidating the role of the furrows
in a variety of phenomena associated with boundary layers, whereas
the hairpins will be of subsidiary interest primarily because of their
usefulness in identifying the location and rotational properties of the
furrows.
Some idea of the interior of a typical furrow is given in Fig. 5,

showing, from an end-on perspective, the collections of vortex tubes
intersecting several planes along its length. The profile taken by this
particular furrow at fixed x locations is seen to proceed from an
archlike form at x � 0.58 to a mushroomlike shape by x � 0.7. The
similarity of the latter with the mushroomlike images in smoke-filled
boundary layers is unmistakable [3,58,59] and, moreover, appears to
be closer to and more natural than the connection that is often
assumed between the mushrooms seen in experiments and hairpin
vortices [60]. By x � 0.88, there are the beginnings of a noticeable
distortion away from the mushroomlike profile that signals the
ending of transition. Streamwise-oriented vorticity is seen to
concentrate within the lobes of the mushroomlike parts of the furrow
with orientation in each lobe consistent with the wall-normal growth
of the structure.
The connection between the furrows and the rotational volumes

used in more conventional analyses of boundary-layer structure is
given succinctly in Figs. 6 and 7. The first of these shows the
upstream end of a furrow where it has an archlike form (indicated by
the filaments on three cuts through the furrow) together with the
isosurfaces of rotation. For the sake of clarity, the latter is rendered
somewhat transparently. It is seen that the hairpin legs are associated
with the sides of the arches for which the filaments are forward tilted
and thus possessing streamwise vorticity that generates counter-
rotating motion. This swirling flow is what gets represented
graphically by the hairpin legs in the figure [48]. The filaments at the
most downstream location in Fig. 6 are close to acquiring the
mushroomlike shape that dominates the continuation of this furrow in
the streamwise direction, as shown in Fig. 7. Here, consistent with
Fig. 5, the vortex tubes with a streamwise orientation have become
established within the lobes of the mushrooms as have the hairpin
legs that represent the rotational motion produced by the streamwise
vorticity. Thus, vorticity that only has a streamwise component due to
tilting of filaments at the beginning of a furrow becomes fully
oriented in the streamwise direction when the furrow acquires a
mushroomlike form.

Fig. 4 During transition, isosurfaces marking low speed streaks are
accompanied on one or both sides by isosurfaces of λ2 indicating the
presence of hairpinlike rotational regions. Between the hairpins
isosurfaces of high-speed fluid reveal the presence of sweeping motions.

The view is for the same time, domain and simulation as in Fig. 3.
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f)
Fig. 5 End-on view of filaments on equally spaced spanwise cuts through a furrow at a fixed time: a) x � 0.58, b) x � 0.64, c) x � 0.7, d) x � 0.76,
e) x � 0.82, and f) x � 0.88.
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Figures 6 and 7 help make clear the distinction between the vortex
furrows that represent self-contained and complete vortical structures
on the one hand and the hairpin vortices that represent just that part of
the furrows having to do with their rotational motion. Nonrotational
vorticity, both in the stem and across the top of themushroom-shaped
profile, plays a seemingly essential role in producing a structure that
contains rotational motion in the form of hairpins. Subsequently, it
will be seen that the form taken by the furrows, including the specific
arrangement of vorticity within them, is determined by the dynamical
process bywhich the streamwise-oriented vorticity is produced in the
flowfield.
On many occasions, single-legged hairpins are observed in the

filament simulations, as, for example, in Fig. 4 at x � 0.6, z � 0.16.
Examination of the filament field underlying a typical example of this
occurrence, as shown inFig. 8, explainswhy just a single leg is visible
and not two. Thus, in this case, the filaments comprising the furrow,
as seen on spanwise planes at three locations, are tilted to one side
with the mushroom lobe closest to the wall being the location of the
single hairpin leg. Evidently, the roll-up process that forms the lobes
and with it hairpins essentially atrophies on the side of the furrow
tilted away from thewall, whereas the side closest to the ground plane
strongly interacts with the wall vorticity leading to the development
of a single streamwise column of rotational motion. As before, there

is significant streamwise vorticity within the now single lobe of the
mushroom. Despite having only one sense of rotation, low-speed
fluid accumulates beneath the tilted furrow forming a streak and is
ejected outward in very much the same way as happens for a
symmetric mushroom having two hairpin legs.
The connection between the hairpin legs and furrows provided by

Figs. 6–8 has the beneficial consequence of offering a relatively
simple and unified explanation for why both one- and two-legged
hairpins are observed in boundary layers. In fact, in all cases, they are
the rotational signature of furrows, but sometimes the furrows acquire
a tilt to one side or the other that promotes the growth of only a single
leg. Why furrows tilt away from the symmetric state appears to be a
result of an intrinsic instability, as will become evident next when
considering the flow at the end of transition. It thus appears that noisy
flow conditions (e.g., due to sound or other disturbances [61]) may
promote a tendency for mushrooms to tilt, thus causing the more
frequent observation of single-legged hairpins when rotational
regions are mapped out.

V. Dynamics

Observation of the simulated flowfields reveals that the furrows
occupy relatively stable positions within the flow, showing only
minor shifts up- and downstream or laterally during extended time
periods beforemoving off downstream to be potentially replaced by a
new furrow. Despite the stability of the furrows as a whole, the
filaments ofwhich they are composed experience avariety of changes
as they rapidly convect downstreamwithin the furrows. This suggests
that the physics of the flow associated with the furrows may be
considered from both the point of view of the furrows in their entirety,
including their formation and life cycle, as well as from the
perspective of the processes affecting the development of thevorticity
within them. How the two aspects of the furrows are related to each
other can be understood after considering each of the dynamical
properties separately.

A. Within the Furrows

The existence of a favored convection velocity that may be
associated with coherent events within the boundary layer has often
been measured and used in describing the evolution of structures
[23]. In the present context, it is of interest to discern if there is a
specific convection speed that may be associated with the movement
of filaments along the plate and specifically within the furrows. One
way to compute such a speed, if it exists, is by the translation along
the plate of peaks in appropriate space-time velocity correlations.
Specifically, the velocity at a given position, say x � xo, y � yo at
time to, can be correlated with upstream velocities at an earlier
time via

Fig. 6 Vortex filaments intersecting three spanwise planes near the
upstream end of a furrow together with isosurfaces of λ2 that represent
the local rotational field.

Fig. 7 Downstream continuation of the furrow in Fig. 6 showing
isosurfaces of rotation filling out the lobes of filaments forming a
mushroom shape.

Fig. 8 Single hairpin leg representing the rotational signature of a tilted

furrow.
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Rvv�xo; yo; to; x; y; t�

�
PNz

i�1 v�xo; yo; zi; to�v�x; yo; zi; t����������������������������������������������PNz
i�1 v�xo; yo; zi; to�2

q ����������������������������������������PNz
i�1 v�x; yo; zi; t�2

q (1)

where v�x; y; z; t� is the wall-normal velocity in the boundary layer,
t ≤ to, and the sums are over Nz equally spaced points covering the
span of the test section. A typical result for Rvv in the late transition
region at xo � 0.336, yo � 0.026 for the Re � 1.2 × 105 simulation
is shown in Fig. 9. The presence of a favored correlation between
upstream velocities at a given time and downstream velocities at
earlier times is evident in the downstream shifting of maximum
correlation with increasing time delay. Figure 10 shows the locations
of the correlation peaks as a function of time. Evidently, to good
accuracy, the translational speed of the peak is constant in time, and
so there is little ambiguity in determining the implied convection
velocity from a least-squares fit to the data. The convection speed in

this case is computed to be 0.735, and values close to this may be
computed for a wide range of nearby locations. If the data used in
establishing the correlation is limited to the narrow region within a
single furrow, then a similar result occurs as in Figs. 9 and 10with the
primary difference being a somewhat slower decay in the peak
correlation amplitude and a lower convection velocity, typically
around 0.67, that no doubt reflects the fact that low-speed streaks are
centered within the furrows. The convection speeds computed here
are in the same range as has been found in many prior studies.
By plotting the filaments in a furrow from the perspective of an

observermovingwith the previously determined convection speed, it
becomes possible to see the general outlines of what the dynamics of
the vorticity field looks likewithin the furrows. Aview from above of
the filaments in a furrow at four consecutive times is given in Fig. 11.
The accumulation and concentration of significant streamwise
vorticity along the length of the furrow is evident. To see how the
vortex filament field develops in time within the furrow, an end-on
view is provided in Fig. 12 of the vorticity within the small region
outlined in Fig. 11 that is convecting downstream at speed 0.7. From

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9 Space-time velocity correlation in Eq. (1) evaluated for
xo � 0.336, yo � 0.026. From right to left, the curves are for t − to � 0,
−0.023, −0.043, −0.066, −0.085.
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Fig. 10 Linear fit to correlation peaks in Fig. 9.
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Fig. 11 Overhead view of vortex filaments in a furrow as it evolves in time: a) t� � 0, b) t� � 10.9 c) t� � 23.9, and d) t� � 43.4. Window moves at
speed 0.7.
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this perspective, the vorticity is seen to pass through a sequence of
states from arch- to mushroomlike forms, the same as what existed at
a fixed time along the length of a furrow in Fig. 5. The distance over
which the change in Fig. 12 takes place is approximatelyΔx� � 575.
It may be concluded that, during the lifetime of the furrow,which is

substantially longer than the time interval captured in Figs. 11 and 12,
the vorticity passes through it as if in an assembly line undergoing a
continuous transformation from archlike to mushroomlike forms.
While this process occurs, the furrow shifts slowly in position as does
the location along the furrowwhere the filament profiles change from
archlike to mushroomlike forms. In the example shown in Fig. 11, it
is also the case that the furrow is subject to transitory disturbances that
cause tilting of the mushroom structure. The sequence of images
shows a distortion to the furrow that moves downstream with the
result that the furrow returns to a symmetric form in the last view. This
suggests that the furrows do not feed a steady stream of identically
shaped mushroomlike vortical forms into the posttransitional flow
downstream but rather a continuously changing array of structures
that vary in angle and other qualities. This viewpoint will be seen to
be supported by the analysis of the late transition considered in
Sec. VI.
The sequence of images in Fig. 12, or equivalently, the images in

Fig. 5 at a fixed time, gives some insights into how the mushroom
shapes are created. For example, the wall-normal vorticity contained
within the two sides of the archlike structures at the upstream end
of the furrows is initially separated in the spanwise direction with a
low-speed streak between them. As the archlike structures move
downstream, thewall-normal vorticity at their sides is pushed toward
the center by the counter-rotating motion associated with the
furrow that includes the ejection of low-speed fluid outward from the
middle. As the process continues, the relatively narrow stems of
the mushroom-shaped vortices are formed as is also the general
mushroom shape of the furrow itself. How the lobes acquire
streamwise vorticity is a question that will now be considered.

B. Creation of Streamwise Vorticity

Although the mushroomlike profiles of the furrows appear to be a
natural expression of the underlying counter-rotating motion
associatedwith them, it is clearly the presence of streamwise vorticity
in the lobes that drives the process forward by creating the counter-
rotating motion in the first place. Thus, explaining the mechanism by

which streamwise vorticity accumulates in the mushroom lobes so as
to reinforce the counter-rotating motion first induced by forward-
tilted vorticity within the archlike structures is a key step in
understanding how the boundary layer works during transition and
possibly also under turbulent flow conditions.
A view of the process by which the streamwise vorticity is gener-

ated can be had by following the time history of initially spanwise lines
of tracer particles in thevicinity of the furrows.With a sufficiently fine-
grained coverage, the tracers well account for the reorientation and
stretching ofmaterial lines as theymove in the flow. If it is assumed that
the tracers are sufficiently far from thewall, so that the direct influence
of viscosity can be neglected, then the material lines may be taken to
also represent the convection of vortex filaments in the same locations.
Note that the neglect of viscosity among the filaments within the
numerical scheme is justified through the same set of assumptions.
Analysis of the creation of streamwise orientation from initially
spanwise-aligned material lines can go far toward explaining from
whence the streamwise vorticity appears within the furrows.
Figure 13 shows the evolution of an initially spanwisematerial line

at x � 0.5 that is purposefully chosen at an altitude and spanwise
position that strongly interacts with a furrow, in this case, the furrow
that is highlighted in Figs. 6 and 7. Tracer particles on the material
element are initially equally separated so that the extent of localized
stretching can be intuited from the subsequent spacing of elements.
From the end-on perspective in Fig. 13, the material line is seen to
initially rise upward as part of the ejecting low-speed fluid that is
contained within the central part of the furrow. As the tracers rise,
they curl up inside the lobe area of the flow due to the influence of the
counter-rotating motion centered in the top part of the furrow.
Substantial stretching of the material line across the top of the furrow
is evident.
By the third image in Fig. 13, some streamwise orientation of the

tracers begins to take hold at locations to either side of the rounded
upward ejecting central part of the line. This is made clear in Figs. 14
and 15 showing the tracers from top and side views, respectively. The
positions where the streamwise orientation becomes visible are
where the high-speed sweeping fluid carried wallward due to the
counter-rotating velocity field most closely encounters the ejecting
low-speed fluid. The extent and degree of streamwise orientation
grows in the subsequent views in Fig. 13, with the lobes of the
mushroom shapes becoming the central location where the
streamwise parts of the material line accumulate.

0.1 0.11 0.12 0.13 0.14 0.15
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0.04

a)

0.1 0.11 0.12 0.13 0.14 0.15
0
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0.04

b)

0.1 0.11 0.12 0.13 0.14 0.15
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c)
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0.04

d)

Fig. 12 Evolution in time of the filaments within the moving window in Fig. 11: a) t� � 0, b) t� � 10.9, c) t� � 23.9, and d) t� � 43.4.
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The top and side views of the tracers in Figs. 14 and 15,
respectively, give a clearer view of the way in which the material line
reorients into the streamwise direction. In particular, Fig. 15 shows
how the tracers are initially pushed backward as they rise because
they are immersed in ejecting low-speed fluid. At the same time,
the rising tracers encounter faster-moving fluid and begin to be
uniformly pushed forward, except at the points on the side where the
high-speed fluid curves in toward the central plane of the furrow.
Here, the large differential in the streamwise velocity between the
ejecting fluid in the center of the furrow and the sweeping fluid
coming inward from outside pulls the tracers into the streamwise
direction. Initially, the turning of the line segment is caused primarily
by the retarded fluid, as in the third and fourth images in Figs. 14 and
15, but subsequently, the figures show that the lengthening into the
streamwise direction is also driven by faster-moving fluid. This may
be a consequence of the continual rise in the streamwise line
segments, as seen in the last images in Fig. 15, which would act

to increase the effect of the fast-moving fluid relative to that of the
slow-moving fluid. The gathering of the rising streamwise tracers in
the lobes fits in with the upward downstream tilt of the mushroom-
shaped furrows, as seen in Fig. 7.
The physical model suggested by Figs. 13–15 of how initially

spanwise material lines develop a streamwise component may
account for the creation and augmentation of streamwise vorticity
within the furrows. Thus, if the vorticity initially aligned in the
negative z direction after having been created by shearing at the solid
surface develops similarly to the material line element just discussed,
then it is not hard to see that the plus and minus streamwise
orientations of the vorticity arriving in the final positions in Fig. 14
are exactly what is required to generate the counter-rotating motion
that drives the process forward. In essence, the counter-rotating
motion generated by the archlike structures that first appear in
transition causes the production of more streamwise vorticity that
enhances the counter-rotating motion and thus causes the emergence
of the mushroom-shaped structures with streamwise-oriented vorti-
citywithin their lobes. The phenomenon is thus self-reinforcing and a
good candidate to be prevalent in the boundary-layer transition as
well as under turbulent flow conditions.
In the case of tiltedmushrooms associatedwith a single hairpin leg,

as in Fig. 8, the streamwise vorticity appears to develop according to
the same general mechanism as for a symmetric furrow. For example,
Figs. 16 and 17 illustrate the motion of an initially spanwise material
line as it interacts with the tilted furrow in Fig. 8. The end-on view in
Fig. 16 shows that the rising tracers roll up into the one lobe of the
mushroom. As before, the differential in speed between ejecting low-
speed fluid and high-speed fluid sweeping around the mushroom
lobe tilted toward the ground is most elevated at a point just below the
lobe. Here, the tracers are redirected into the streamwise direction as
they aggregate within the mushroom lobe, as seen in the sequence
in Fig. 17.

C. Creation of Furrows

The boundary-layer calculations performed in this study begin by
applying an impulsive start to the flowfield. As time progresses, an
instability appears in the developing laminar flow that leads to the
appearance of the furrows and eventually the fully developed
turbulent field that forms downstream of the point where the furrows
succumb to instability. Once established, the furrows appear to be
relatively long lived in the sense that, for example, over the time
Δt� � 320 of the simulation at Re � 7.5 × 104, a single furrow is
observed to move off downstream and disappear with a new furrow

Fig. 13 End-on view of material line element: a)–f) correspond to equally spaced times over an interval of length Δt � 0.192 (Δt� � 40.9).

Fig. 14 Top view of material line element as it moves downstream at
times corresponding to those in Fig. 13.

Fig. 15 Side view of material line element as it moves downstream at
times corresponding to those in Fig. 13.
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taking its place. The specifics by which the changeover in the furrow
occurs are shown in Fig. 18. First, the furrow that has reached the end
of its life cycle is centered at z � 0.075. During the elapsed time
between the two images in the figure, Δt� � 38, its upstream end
moves from approximately x � 0.6 to 0.7. Second, indicated by the
arrows, a new furrow grows from a relatively short disturbance
extending over the interval 0.5 ≤ x ≤ 0.7 in the first image to a much
longer streamwise interval 0.5 ≤ x ≤ 0.85 in the second image.
An examination of the filaments on the cross sections of the new

furrow in Fig. 18a shows that they are arranged in the form of archlike
vortices. In contrast, a short while later, the downstream part of the
new furrow in Fig. 18b has developed mushroomlike vortices,
whereas the upstream part remains archlike. It may be concluded that
simple archlike perturbations in the background spanwise vorticity
progress downstream acquiring mushroomlike forms and leaving

fully developed furrows in their wake. In other words, the same
process discussed in the preceding section by which vortices
traveling along the boundary layer within a furrow turn from archlike
to mushroomlike forms is also responsible for the creation of new
furrows.
Because low-speed streaks underlie the furrows, as was illustrated

in Fig. 4, the process by which furrows develop in the flow also
explains how and why low-speed streaks develop. In the first
instance, the furrows have the capacity to concentrate low-speed fluid
beneath their positions by virtue of the counter-rotatingmotion that is
integral to their construction. As furrows develop in length and
become elongated, so toowill the spatial extent of the low-speed fluid
that they foster. Thus, low-speed streaks of considerable streamwise
extent are produced. By similar reasoning, the observed persistence
of streaks for relatively long times in the flow corresponds to the
similar persistence of the furrows.
An often-cited supposition [33,62] maintains that low-speed

streaks are created by counter-rotatingmotion produced by the legs of
hairpin vortices that are themselves created in the wake of
downstream convecting arch or horseshoe vortices. An alternative
model suggests that low-speed streaks are created as the kinematical
consequence of the formation of hairpin packets [23]. In fact, the first
of these ideas is essentially an indirect way of describing how the
streamwise growth of furrows leads to the creation of streaks. Thus,
because hairpin legs naturally appear as the rotational signature of
furrows, the connection between hairpin legs and low-speed streaks

Fig. 16 End-on view ofmaterial line element associatedwith the single-lobed vortex in Fig. 8: a)–f) correspond to equally spaced times over an interval of
length Δt � 0.192 (Δt� � 40.9).

Fig. 17 Top view ofmaterial line element, moving downstream, at times
corresponding to those in Fig. 16.

Fig. 18 As the furrow at z � 0.075 moves off downstream, a new furrow indicated by arrows develops nearby: a) t� � 0 and b) t� � 38.
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may be viewed as a byproduct of the prima facie connection that
furrows have with the streaks.

D. Pockets

Smoked-marked boundary layers, when viewed from above, have
been observed [21] to contain “pockets” consisting of distinctively
shaped regions that are largely devoid of smoke. Such structures are
also visible in numerical boundary layers [63] by using a sufficiently
large number of tracer particles to model the appearance of smoke.
Explanations that have been given to account for the existence of
pockets tend to require the action of a variety of special vortical
objects whose existence has yet to be firmly established. Thus, it is of
interest to discover if pockets are present in the filament simulations
of the boundary layer and, if so, find out what connection they might
have with the vortex furrows.
Tomodel the presence of smoke in the computed boundary layer at

Re � 1.2 × 105 equally spaced tracers on a line spanning the test
section at x � 0.2 and y� � 50 were released at uniform time
intervals. At this location, which is within the transition region, a
series of furrows exist verymuch theway they do in Fig. 3 at the lower
Reynolds number. Releasing particles into the flow at this location is
a convenient means of seeing if a connection exists between furrows
and pockets because the former is the only kind of vortical structure in
the flow in this region. In fact, the computed motion of the tracers, as
shown in Fig. 19 over the time interval Δt� � 30.4, shows that
structureswith the appearance of pockets form for each of the furrows
in the field of view. In this, lines oriented mainly in the flow direction
represent streamlines, whereas spanwise lines connect groups of
particles that are placed into the flow at the same time step.
Characteristic of pockets, the structures contain regions largely
scoured of tracers and in this and other details are reminiscent of the
tracer-marked objects seen in a previous computation of a spatially

developing transitioning boundary layer [64]. Where furrowlike
structures appear in the fully turbulent region, a similar connection to
pocketlike images of tracers can be seen to occur.
A 3-D view of how the counter-rotating motion associated with a

furrow causes the appearance of a pocket is given in Fig. 20. In this,
the tracers inside the furrow decelerate while ejecting outward
through the center, whereas tracers to the side are accelerated
downward toward thewall. The stretching across the top of the furrow
that was evident in Fig. 13f is responsible for clearing away tracers
toward the sides where they roll up in the lobes to create the
distinctive edging of the pockets. The characteristic shape of the
pockets can be attributed to the fact that the sideways spreading of the
smoke precedes the cumulative effect of the roll up in gathering
particles into the region of the lobes. The demarcated boundary of the
pockets tapers downstream because the longer the particles are
influenced by the velocity field produced by the furrow themore they
have circulated through the lobes. For some of the pockets, such as
the second one from the right in Fig. 19, roll up of the tracers occurs
on just one side suggesting that the underlying furrow is tilted and has
just a single hairpin leg.

E. Hairpins

Hairpin vortices as revealed by the isosurfaces of rotation often
contain archlike regions that either connect the two legs of a
symmetric hairpin or form the top part of a one-legged cane vortex.
Normally, the rotational motion in the archlike part of the hairpin is
taken to be the direct consequence of vorticity aligned along the axis
of the structure. Such an explanation is compatible with the tendency
of hairpins to project outward above the intense spanwise vorticity
lying adjacent to solid surfaces. In the same vein, the hairpin packet
model interprets the appearance of multiple archlike regions of
rotation as the signature of multiple hairpins that have developed
together to form a packet. Because hairpin legs were shown
previously to represent the rotational signature of furrows, it is of
interest to see in what way the archlike regions of rotation in hairpins
might also fit in with the underlying presence of furrows.
It may be noticed at several positions in Fig. 4 [e.g.,
�x; z� � �0.9; 0.1�; �0.9;−0.15�; �1;−0.08�] that arched vortices
positioned over low-speed streaks seemingly connect the adjacent
hairpin legs. Thus, the present simulations share this kind of
rotational structure with many boundary-layer simulations and
experiments [13,33,61]. A close-up view of the isosurfaces of
rotation for a typical event of this kind taken from theRe � 1.2 × 105

Fig. 19 Imageof tracerparticlesmodeling smoke in the boundary layer reveals thepresence of pockets corresponding to vortex furrows.Directionof flow
is upward.
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Fig. 20 Effect of a furrowonparticles simulating smoke in theboundary
layer.

Fig. 21 Isosurfaces of λ2 � −60 suggesting the presence of two hairpin
vortices in the Re � 1.2 × 105 simulation.
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simulation is given in Fig. 21. A well-formed hairpin is seen to be
present in the foregroundwith a second one attached to it and situated
just downstream. Traditionally, this arrangement tends to be
interpreted asmeaning that two hairpinvortices are present that likely
originated out of a common disturbance to the upstream boundary
layer. The vortex filaments underlying this pair of hairpinlike regions
of rotation are shown in Fig. 22 from the same perspective as in
Fig. 21. The object that is revealed from the filaments is seen to be a
somewhat perturbed furrow in which some spanwise vorticity has

accumulated as bulges at those positions where the apparent archlike
vortices in Fig. 21 are visible. Perhaps the most notable aspect of the
figures is the subtlety with which the positioning of filaments leads to
quite distinctive regions of rotation.
The concentrated formations of streamwise vorticity in Fig. 22 are

indicative of a mushroomlike profile to the furrow that persists
through the locations where the arch vortices occur. The regions
where the spanwise vorticity concentrates on the top of the furrow
presumably arise from shear-layer roll up due to interaction with the
high-speed outer flow. In this case, the arched vortices appearing in
Fig. 21 have a very different interpretation than that of being the top
part of well-defined hairpin vortices.
An example of another commonly observed rotational structure in

the filament simulation is depicted in Fig. 23. Here, three arch- or
canelike rotational regions are connected with a single hairpin leg.
Such structures are suggestive of the organization that is often
described as being associated with a hairpin packet, but the
underlying filaments, shown on several cuts in Fig. 24, reveal that the
causative flow structure is a tilted furrow. In fact, images similar to
those in Fig. 24 can be seen at any cross section of the structure in
Fig. 23, with the main variation being that the size of the tilted
mushroom depends on whether the cut is within or outside one of the
bulges. For example, the structures in Figs. 24d and 24e appear larger
than the others because they are within the arch segments, and the
others are not. As in the case of Fig. 21, the three spanwise-oriented
archlike regions in Fig. 23 result from roll up of the highly stretched
spanwise vorticity at the top of the furrow and cannot be regarded as
independent arch vortices.
The specific examples of archlike structures considered in Figs. 21

and 23 are representative of many other similar events seen in the
filament simulations. Evidently, whether or not the furrows are
symmetric or tilted, they can project substantial spanwise vorticity
into the fast-moving outer flow where shear-layer instabilities
promote the roll up of the vorticity into a form forwhich the rotational
signature is that of single or nested hairpinlike structures. Once such
processes start, the potential increases for the furrows to devolve into
complex forms, and the flow becomes turbulent. Some basic aspects
of this process as it affects the breakdown of furrows into turbulence
is now considered.

VI. Breakdown to Turbulence

The shear instability out of which the rotational regions in Figs. 21
and 23 appear may be viewed as an initial stage in a sequence of
dynamical events by which the furrows breakdown toward a
turbulent state. Ever more complex distortions of the vorticity in the
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Fig. 22 Vortex filaments underlying the event in Fig. 21 seen from the

identical angle.

Fig. 23 Isosurfaces of λ2 � −30 suggesting the presence of three
archlike vortices in the Re � 1.2 × 105 simulation.
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Fig. 24 End-on view of filaments within the structure in Fig. 23: a) x � 0.24, b) x � 0.26, c) x � 0.28, d) x � 0.3, e) x � 0.32, and f) x � 0.34.
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furrows beyond the point illustrated in the preceding section occurs as
the vorticity in the furrow moves into the turbulent region. Some
indication of this is evident in Fig. 3, in which the furrows spread
laterally and interact with neighboring furrows creating structures of
greater complexity than those upstream.
A different perspective on the processes at work at the end of

transition and into the turbulent region is provided by Fig. 25, in
which the profiles of the filaments at several streamwise positions in
the Re � 7.5 × 104 simulation are shown at a fixed time. The
organization into mushrooms that is largely intact in the most
upstream location at x � 0.8 is virtually nonexistent by x � 0.95.
Individual mushrooms are seen to follow different paths to a more
chaotic state over the spatial extent in the figure. Thus, those centered
at z � −0.23, −0.04, and 0.225 tilt over until they are almost upside
down and are intensely interacting with the surface vorticity. Others,
at z � −0.175 and 0.01, appear to twist sideways, whereas those at
z � 0.1 and 0.16 tilt toward each other, initiating a strong mutual
interaction. It may be concluded that the furrows are either
intrinsically unstable or are sensitive to the disruptive influence of
nearby perturbations that promote the likelihood of breakdown. As
mentioned in the preceding sections, the predilection for tilting when
disturbed provides an explanation for why single-legged hairpins are
more prevalent than two-legged hairpins in noisy flow conditions.
An interesting side light to the tendency for furrows to tilt is the

effect that this may have on their rotational signature. For example,
Fig. 26 illustrates a case in which extreme tilting of a furrow toward
the ground plane is accompanied by twisting of the hairpin legs that
have developed within the mushroom lobes. Without knowledge of
the underlying filament field, very different explanations for the
appearance of the crossed hairpin legs can be imagined. In fact, such
structures appearing in rotational fields play an important role in
recent analyses of the growth of secondary instabilities on low-speed
streaks leading to breakdown [34,38]. Clearly the evidence in Fig. 26
warrants reinterpretation of streak breakdown from the point of view
of the downstream development of instabilities in the furrows.
In a number of different ways, the preceding discussion has made

clear that the literal interpretation of structure via isosurfaces of

rotation is likely to oversimplify the nature of the true vortical forms
giving rise to rotation in the first place. The capacity for distortion can
only increase as the flow becomes fully chaotic in the turbulent zone,
and the shapes taken on by regions of strong rotation, such as those
depicted at the downstream side of Fig. 4, give little clue as to what
may be inferred about the underlying vorticity field. Note, as well,
that in this case the vorticity filament field itself, such as that shown in
Fig. 3, is not readily interpreted in terms of simple vortical objects.
Despite these obstacles, some general observations can be made

about vortical structures in the turbulent region. In particular, Fig. 3
suggests that the vorticity enters the turbulent zone in groups of
somewhat affiliated structures that form along the furrows during
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Fig. 25 Filaments at a fixed time showing progression to turbulent flow at the end of transition: a) x � 0.8, b) x � 0.85, c) x � 0.90, and d) x � 0.95.

Fig. 26 Twisting of a furrow near the end of transition.

12 AIAA Early Edition / BERNARD

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

A
R

Y
L

A
N

D
 o

n 
Ju

ly
 3

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
18

11
 



their breakdown, rather than as a continuous stream of vorticity. In
other words, segments of the posttransitional furrows detach in some
sense from themore stable upstream parts and become self-contained
structures in the immediate wake of the transition region. The forms
taken by these vortices are far more varied than the simple arches and
mushrooms that dominate transition because the result of interacting
with neighboring vortices and the wall leads to an endless variety of
structural forms. Differences in structures from one place to another
depend on how the vorticity in the furrows tilts, twists, and bends
and whether it detaches from the wall layer or interacts with the
ground plane.
Vortical structures that share a common origin in a particular

furrow can be imagined to maintain some degree of self-coherency
within the boundary layer as they convect for some distance
downstream. A sense of this organization is visible in Figs. 3 and 4 as
a continuing delineation between vortices originating in neighboring
furrows that only slowly lessens with downstream distance.
Eventually, as depicted in a prior simulation [48], this kind of
coherency is no longer obvious to the naked eye. The downstream
maintenance of a relationship between vortices that have derived
from a particular furrow may be equivalent to the internal organiza-
tion attributed to hairpin packets as they grow due to the multi-
plication of hairpin vortices [12]. The difference between the present
result and packets is that the underlying structure formed out of
furrows is not readily describable in the simple terms of a collection
of nested hairpin vortices.

VII. Conclusions

This study has considered the structural aspects of boundary-layer
flow determined from simulations based on a hybrid vortex filament/
finite volume scheme. The natural tendency of vortex filaments
to agglomerate to form coherent structures allowed for the
determination of structure unrestricted by the imposition of its
traditional definition in terms of regions of rotational motion. Vortex
furrows were found to be the dominant structural entity in the
transitional boundary layer subject to Klebanoff-type instability.
Hairpin vortices that are widely touted as representing a dominant
aspect of turbulent boundary layers are found to represent the
rotational motion associated with furrows and have no standing as
structures in their own right.
The view of the boundary-layer dynamics provided by the furrows

offers a unified and relatively simple explanation for a range of
disparate phenomena that have been difficult to account for in a
systematic way using the traditional view of structure as rotational
regions. Thus, one- and two-legged hairpins represent the rotational
signature of tilted and symmetric furrows, respectively. The intrinsic
instability of the symmetric mushroomlike form means that noisy
flow conditions are likely to favor one-legged over two-legged
hairpins. Low-speed streaks appear simultaneously with the furrows
whose innate counter-rotating motion concentrates low-speed fluid
beneath them. The length of the streaks coincides with the length of
the furrows, and the persistence of the low-speed streaks for long
times is consistent with the persistence of the furrows. Structures
marked by smokewith the appearance of pockets andmushrooms are
seen to reflect the direct influence that vortex furrows have upon
smoke within the boundary layer. The robust mechanism within the
furrows that promotes the generation of streamwise vorticity can
be seen as providing a basis for understanding how and why the
turbulence is self-sustaining. This process both creates furrows in the
first place and maintains them over long time periods as the vorticity
passes through them from archlike to mushroomlike forms.
The innate sensitivity of the furrows to disturbances leads to their

breakdown and the commencement of the turbulent regime. Among
the factors affecting the furrows is an apparent shear-layer-type
instability on the top surface exposed to the freestream velocity that
causes roll up of the spanwise vorticity and the appearance of archlike
vortices in the rotational field. Other influences on the furrows lead to
their tilting, twisting, and interactions with neighboring structures
and the wall vorticity. The complex mushroomlike forms produced
by the furrows dispel into the posttransitional region as discrete

collections of filaments. The lingering coherence of structures
arriving into the turbulent field from particular furrows may be
reflected in some of the organization taken to be that of hairpin
packets. In general, the filament configurations underlying packet-
like regions do not appear to be in the form of nested hairpin vortices.
Finally, there is evidence to suggest that the kinds of processes
centered on furrows that have been presented here are also common
to the fully turbulent field when local conditions are favorable.
The formalism for investigating the physics of the boundary layer

provided by the vortex furrows has the potential to advance
understanding in a number of directions beyond those considered
here. These include elucidating details of the instabilities during
transition, explaining the structural makeup of turbulent spots, and
providing clearer insights into the nature of the complex filament
field in the turbulent region. Each of these areas will be considered in
future work. It is also the case that a number of the descriptions of the
furrows provided here may be amenable to verification from grid-
based direct numerical simulation computations, and it is hoped that
such efforts will be forthcoming in the future.
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