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The assumption of self-preservation permits an analytical determination of the 
energy decay in isotropic turbulence. Batchelor (1948), who was the first to carry out 
a detailed study of this problem, based his analysis on the assumption that the 
Loitsianskii integral is a dynamic invariant - a widely accepted hypothesis that was 
later discovered to be invalid. Nonetheless, it  appears that the self-preserving 
isotropic decay problem has never been reinvestigated in depth subsequent to this 
earlier work. In the present paper such an analysis is carried out, yielding a much 
more complete picture of self-preserving isotropic turbulence. It is proven rigorously 
that complete self-preserving isotropic turbulence admits two general types of 
asymptotic solutions : one where the turbulent kinetic energy K - t-' and one where 
K - t-O with an exponent a > 1 that is determined explicitly by the initial 
conditions. By a fixed-point analysis and numerical integration of the exact one- 
point equations, it is demonstrated that the K - t-' power law decay is the 
asymptotically consistent high-Reynolds-number solution ; the K - t-" decay law is 
only achieved in the limit as t + 00 and the turbulence Reynolds number R, vanishes. 
Arguments are provided which indicate that a t-' power law decay is the asymptotic 
state toward which a complete self-preserving isotropic turbulence is driven at  high 
Reynolds numbers in order to resolve an O(R:) imbalance between vortex stretching 
and viscous diffusion. Unlike in previous studies, the asymptotic approach to a 
complete self-preserving state is investigated which uncovers some surprising results. 

1 

1. Introduction 
Despite the fact that isotropic turbulence constitutes the simplest type of 

turbulent flow, it is still not possible to render the problem analytically tractable 
without the introduction of additional hypotheses. The idealization of self- 
preservation - wherein the two-point double and triple longitudinal velocity 
correlations are assumed to admit self-similar solutions with respect to a single 
lengthscale L(t)  - has served as a useful hypothesis since its introduction by von 
Karman & Howarth (1938). In another classic paper that followed, Batchelor (1948) 
studied the energy decay in self-preserving isotropic turbulence in considerable 
detail. He concluded that the only complete self-preserving solution that was 
internally consistent existed at low turbulence Reynolds numbers where the 
turbulent kinetic energy K - t-i - a power law consistent with the final period of 
decay. Batchelor (1948) also found a self-preserving solution to the Karman- 
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Howarth equation in the limit of infinite Reynolds numbers for which 
Loitsianskii's integral was an invariant. This solution -wherein L(t)  is the integral 
lengthscale A and K - t-y - was put forth by Batchelor as the only full self- 
preserving solution a t  high Reynolds numbers. Of course, additional partial self- 
preserving solutions were shown by Batchelor to exist in other Reynolds-number 
regimes. 

Objections were later raised to the use of the Loitsianskii integral as a dynamic 
invariant: a t  high Reynolds numbers this integral can be shown to be a weak 
function of time (see Proudman & Reid 1954 and Batchelor & Proudman 1956). 
Saffman (1967) proposed an alternative dynamic invariant which yields a K - t-) 
power law decay in the infinite-Reynolds-number limit (see Hinze 1975). While the 
results of Batchelor and Saffman formally constitute complete self-preserving 
solutions to  the inviscid Karman-Howarth equation, it must be kept in mind that 
they only exhibit partial self-preservation with respect to the full viscous equation. 
Namely, there is self-preservation only for the range of energy-containing eddies with 
integral lengthscale A (here, A/A < 1 where h is the Taylor microscale). These two 
solutions have been widely accepted in the turbulence literature as the predicted 
decay laws for self-preserving isotropic turbulence at high Reynolds numbers. 

Implicit in the analysis of Batchelor (1948) is the existence of a complete self- 
preserving solution consistent with high Reynolds numbers - namely a K - t-' 
power law decay. The collapsing lengthscale L(t)  for this full self-preserving solution 
is necessarily the Taylor microscale (i.e. for any complete self-preserving solution of 
the viscous Karman-Howarth equation we must have L a A).  This solution -which 
was postulated a few years earlier by Dryden (1943) - was dismissed by Batchelor on 
thc grounds that Loitsianskii's integral was not a dynamic invariant therein. While 
the result by Dryden has been mentioned subsequently in the literature (cf. Hinze 
1975; Monin & Yaglom 1975 and Korneyev & Sedov 1976), it has largely been 
disregarded by the turbulence community. The reason for this appears to be two- 
fold: ( a )  a K - t-' power law decay has not been observed in the most accurate 
isotropic decay experiments, and ( b )  since h / A  + 0 as Re + 00, questions can be raised 
about the suitability of the Taylor microscale as the collapsing lengthscale of the 
energy-containing eddies. 

Recently, George (1987, 1989, 1992) revived this issue concerning the existence of 
complete self-preserving solutions in isotropic turbulence. In  an interesting paper he 
claimed to find a complete self-preserving solution, valid for all Reynolds numbers, in 
which the kinetic energy decayed as K - t-a with 01 determined by the initial 
conditions. George (1987) - who based his analysis on the dynamic equation for the 
energy spectrum rather than on the Karman-Howarth equation - made no explicit 
mention of the complete self-preserving K - t- l  solution. Strictly speaking, the 
solution presented by George was an alternative self-preserving solution to that of 
KarmBn & Howarth (1938) and Batchelor (1948) since he relaxed the constraint that 
the triple longitudinal velocity correlation be self-similar in the classical sense. 

The purpose of the present paper is to address the issue of complete self- 
preservation in an effort to  clarify the following basic questions. 

(i) What is the complete self-preserving solution for isotropic turbulence a t  high 
Reynolds numbers ? 

(ii) What detailed predictions does this solution yield for the energy decay, 
particularly during the initial approach to a state of complete self-preservation 1 

(iii) Is this solution compatible with the results of physical experiments and 
alternative theoretical approaches ? 
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In so far as the first two points are concerned, it will be shown unequivocally that 
the only complete self-preserving solution that is consistent with a high-Reynolds- 
number isotropic turbulence has a K - t-' asymptotic power law decay. Unlike 
previous studies, this is demonstrated in a straightforward manner based on a fixed- 
point analysis of the one-point equations. This analysis leads to an interesting 
interpretation of the physical significance of a K - t-' power law decay and allows us 
to examine small departures from a state of complete self-preservation. The detailed 
predictions of this complete self-preserving solution - which, to the best of our 
knowledge, have never been examined in depth in the literature - will be compared 
with the results of physical experiments and alternative theoretical approaches in the 
sections to follow. 

2. Theoretical background 
We will consider isotropic turbulence governed by the incompressible Navier- 

Stokes equations 

-+u -= --+ ap vv2ut, au, au, 
at *axj ax, 

where ut is the velocity vector, p is the pressure and v is the kinematic viscosity. The 
two-point double and triple longitudinal velocity correlations, denoted by f(r, t )  and 
k(r ,  t ) ,  respectively, are defined in the standard way: 

u(x, t )  u(x + r,  t )  
f(.,t) = - 

U2 

u2(x, t)u(x+r,t) k ( r , t )  = - 
(U2) i  

, 

, 

(3) 

(4) 

where u is any component of the velocity, x and x+r are any two spatial points 
separated by a distance r = Irl in the direction of u, and an overbar denotes a spatial 
average (cf. Hinze 1975). For isotropic turbulence, f and k satisfy the KBrman- 
Howarth equation 

which is obtained - directly from the NavierStokes equations. The turbulent kinetic 
energy K = h d u t  is a solution of the differential equation 

where 

K =  - E ,  

- 
E = VWiWt = VWZ 

is the turbulent dissipation rate, W ,  is the vorticity vector and d is the enstrophy. 
The turbulent dissipation rate is a solution of the differential equation 
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where (9) 

are the velocity derivative skewness, the coefficient of the enstrophy destruction, the 
turbulence Reynolds number, and the Taylor microscale, respectively. Equations (6) 
and (8) - which are rearranged versions of those that appear in Krirman & Howarth 
(1938) and Batchelor (1948) - are obtained, respectively, by setting r = 0 in (5) and 
in the equation obtained by differentiating (5) twice with respect to r .  Since 
8, = S ,  ( t )  and G = G(t) are directly related to the correlations f and k (which cannot 
both be obtained from the Karman-Howarth equation ( 5 ) )  it is clear that the 
problem of isotropic decay is not closed. I n  order to achieve closure, additional 
assumptions must be made such as the one of complete self-preservation that will be 
discussed in this paper. 

For an isotropic turbulence to  be self-preserving in the sense of Karman & 
Howarth (1938) and Batchelor (1948), we must have 

where L = L(t)  is a uniquely specified similarity lengthscale. For it to exhibit 
complete self-preservation, all scales of the turbulence - namely, the full range of 
0 < r < 00 - must decay according to (12) and (13); partial self-preservation is 
satisfied if (12) and (13) only apply to  some restricted range of 0 < r < r,,,. We will 
focus our attention on complete self-preserving solutions in the analysis to follow. In  
view of the identity (Batchelor 1948) 

€ =  -1OvK - 

it follows from (11) that 

h g ]  = -1. 
r-0 

Hence, for any complete self-preserving isotropic turbulence, we must have 

A2 - 
L2f’’(0) = -1, 

from which it can be concluded that 

L K h  

sincef””(0) is a constant. It therefore follows that the Taylor microscale is the only 
similarity lengthscale that can yield complete self-preserving solutions to the full viscous 
equations of motion for isotropic turbulence. 
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we may set L = h and then substitute (12)-(13) into (9)-(lo), respectively, to get 

s K -  - -&"(o) = constant, 

G =f""(O) = constant, 

where a prime denotes a derivative with respect to the variable 7 = r/h.  
Consequently, 

649 

Without any loss of generality for a complete self-preserving isotropic turbulence 

. 

S ,  = SKo,  G = Go, (18) 

where the notation ( .  )o denotes the initial value. The substitution of (18) into (6) and 
(8) then yields the transport equations 

K =  - E ,  (19) 

for complete self-preserving isotropic turbulence. This is a closed system for the 
determination of K and E once KO, e0, SKo and Go are provided. To simplify the 
subsequent presentation, the quantity Go - which is the coefficient of the term for the 
destruction of enstrophy in (20) -will henceforth be referred to as the 'palinstrophy 
coefficient ' following the terminology used by Lesieur (1990). Accordingly, the 
assumption of complete self-preservation is seen to lead to closure in the following 
sense : if initial conditions for the skewness and the palinstrophy coeficient are provided 
- i n  addition to initial conditions for K and E - then the energy decay can be calculated 
explicitly for all later times. 

For complete self-preserving isotropic turbulence, the K&rmBn-Howarth 
equation (5) takes the form 

or, equivalently, 

after replacing A using ( l l ) ,  (19) and (20) with R, = (g)ith/v = (20/3)iRf. Equation 
(22) will have a solution if R, = constant as first noticed by Dryden (1943); this is a 
K - t-' power law decay. However, (22) also has solutions where R, = R, ( t )  when 
separability is invoked. The separability condition implies that each side of (22) is 
equal to zero individually, yielding differential equations from which explicit 
solutions for !and k" may be determined depending on the choice of SK0 and Go. These 
solutions were first discovered by Sedov (1944) and later compared with experimental 
data by Korneyev & Sedov (1976). The particular case for which Go = 3 so that fis 
Gaussian - which formally corresponds to the final period of decay - was considered 
in detail by Bernard (1985). We will briefly examine (22) later to establish the 
consistency of the present results with those of previous studies. However, our 
analyses will be based on a fixed point analysis and direct numerical integration of 
(19) and (20). This will allow us to consider small departures from a self-preserving 
state as will be demonstrated later. 
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3. Fixed-point analysis and numerical results 
In  order to carry out a fixed point analysis of (19) and (20), we will combine these 

equations into a single transport equation for the turbulence Reynolds number R,. 
Since 

6 
2KK K2 

R -  t - T r - 2  
it follows that 

1K 7 K 
t -  v 32/15 v 15 v 

SKo R:-+- Go-. 
2K 7 R 

(23) 

If the transformed dimensionless time r - defined by the relation dr = ( e / K )  dt - is 
introduced into (24), we obtain the equation 

The fixed points of (25) are obtained by setting dR,/dr = 0 which yields the equation 

7 
Rtm (&Go - 2 - - 

32/ 15 

where ( )m denotes the equilibrium value in the limit as 7 -+ 00. Equation (26) has the 
solutions 

for &Go < 2 ,  and 
Rtm = 0 (27) 

(28) 
&G0-2 

Rtm = ( 78K0/32 /  15) 

for &Go > 2 .  It is a simple matter to show that the fixed points (27) and (28) are stable 
nodes that  attract all initial conditions KO and It is also evident from (28) that  in 
order to  have an equilibrium high-Reynolds-number isotropic flow field under self- 
preserving conditions it is necessary that Go - Rf,. (By a high-Reynolds-number 
isotropic turbulence we mean the case where R, 9 1 ; for a low-Reynolds-number 
isotropic turbulence, R, = O ( l ) . )  

By a direct substitution of the fixed point Rtm = 0 into (20), it can be seen that this 
fixed point is associated with asymptotic solutions of the differential equations 

K =  - 6 ,  (29) 

It is a simple matter to show that (29) and (30) yield an exact asymptotic solution 
for K and E of the form 

K N t-", - t-"-l (31) 

where a = l/(&Go- I )  2 1. An exact solution can also be obtained for R, as a 
function of the transformed time 7 .  This solution is given by 

T C* exp ($7*7) 
Rt = Rto [C*-  (7/32/ 15) 8,0Rfo{l  -exp (iC*7)) 
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for non-zero values of C* = &,Go - 2, and by 

for C* = 0. Since it can easily be shown that 

65 1 

(33) 

i t  follows from (33) that for &Go = 2 (and Rto 4 l) ,  we will have R, x 0 only when 
T 4 1 ; this corresponds to the limit of vanishingly small K as a result of (34). From 
(32), the same conclusion can be drawn when &Go is in its physically realizable range 
of less than 2 (i.e. for 1.4 < &Go < 2). It is thus clear that the fixed point R, = 0 can 
only be achieved in the limit as K + 0, and t + 00. As we will soon see, thrs implies 
physically that an asymptotic power law decay where K - t-" (with a > 1) is only 
formally consistent with the Jinal period of decay - a fact that will be borne out in 
subsequent computations. 

During the final period of decay there is considerable evidence (Batchelor & 
Townsend 1 9 4 8 ~ )  indicating thatfig) = exp ( -h2) (i.e. thatfis a Gaussian) in which 
case (10) implies that Go = 3 and, consequently, that a = i. The same result is also 
reached by assuming constancy of the Loitsianskii integral 

2 JOm r4f(r, t )  dr = constant (35) 

during decay, which appears to be an acceptable assumption for the final period. In 
particular, from (12) it follows that (35) is equivalent to (cf. Hinze 1975) 

?A5 JOm g4f"(g) dg = constant 

so that (11) and (36) imply that 

Ki - = constant. 
€2 

(37) 

When (37) is combined with (31) it  follows that a = 5/2 -the celebrated Batchelor 
(1948) result. 

Now we will show that the non-zero fixed point (28) is consistent with high- 
Reynolds-number isotropic turbulence. The substitution of the fixed point (28) into 
(19) and (20) yields the differential equations 

K =  -6, (38) 

(39) 
€2 8 = - 2 -  
K '  

which have the asymptotic solution 

K - t-' 
€ - t -2  

(name, a t-' power law decay for the turbulent kinetic energy). From (32), it  is clear 
that this non-zero fixed point is approached rapidly for sufficiently large Go. More 
precisely, for Go = O( lo), a t-l asymptotic decay law will be established within a few 
eddy turnover times - a feature that will be demonstrated in later computations. 
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Since i t  can be shown that (see Batchelor & Townsend 1948 b) 

it follows that G is a ratio of turbulent to  dissipative timescales. It is a simple matter 
to prove that (see Hinze 1975) - 

aw, awi 
V-- 

ax, ax, 
- (43) 
wk wk 

where E ( K , ~ )  is the energy spectrum and K is the wavenumber. For complete self- 
preservation, E ( K ,  t )  scales with the Taylor microscale, from which it follows that 

vsp K ~ E ( K ,  t )  d K  - s," K ~ E ( K  t )  d K  ' 

and, hence, that  G - constant (45) 
as shown earlier. However, (43) is a correlation dominated by the high wavenumbers 
(i.e. small scales) and it would therefore seem more reasonable that E ( K , ~ )  should 
scale with the Kolmogorov lengthscale I, = v'/e'. If this is the case, then 

and (47) 

Equations (45) and (47) appear to  be contradictory; however, they are not, since in 
a K - t-' power law decay 

Furthermore, R, = constant resolves the imbalance between the two terms on the 
right-hand side of the dissipation ratel equation (20) since the first term (i.e. the 
vortex stretching) is initially of O(R:) while the second term (i.e. the viscous 
destruction) is of O( 1). This leads us to  the following physical interpretation : a K  - t-' 
power law decay is the asymptotic state toward which a self-preserving isotropic 
turbulence is driven at high Reynolds numbers in order to resolve the fundamental 
imbalance between vortex stretching and viscous diffusion. I n  the process of resolving this 
imbalance, compatibility with Kolmogorov scaling is achieved for the small-scale 
correlations. Since this consistency with Kolmogorov scaling - which, on physical 
grounds should be satisfied at high Reynolds numbers - is achieved when LG 15 0 - 
Rf, which is greater than 2, it is clear that the non-zero fixed point (28) is the 
physically consistent asymptotic solution for high-Reynolds-number self-preserving 
flows. 

We will now examine numerical solutions of (19) and (20) for complete self- 
preservation. With the exception of the recent work of Bernard (1985), we have not 
seen detailed numerical results published on the decay of K and 8 in complete self- 
preserving isotropic turbulence. An examination of these results will amplify the 

R, = constant. (48) 



lo-' - 

t* t* 

- 

to-' - 

K* 
- 

lo-' - 

1 on 1 op 
t* 

FIQURE 1.  Decay of turbulent kinetic energy in complete self-preserving isotropic turbulence for 
initial turbulence Reynolds numbers Rtn = 1000, 5000 and 10000: (a) CE, = 1.92, ( b )  C6, = 5, and (c) 

1 o - ~  
lo-' 

c., = 8. 

points discussed in this section and will shed some interesting new light on how 
the self-preservation assumption compares with experiments. In figures 1 (a)-1 ( c ) ,  
the decay of the turbulent kinetic energy is shown for three initial turbulence 
Reynolds numbers (Rto = 1000,5000 and 10000) and three different initial conditions 
for G (i.e. Ce, = 1.92, 5.0, and 8.0 where Ce, = &Go). For these calculations, as well as 
the ones to follow, K* = K / K o ,  t* = eot/Ko and the skewness 

SK0 = 0.5, (49) 
which is in close proximity to the values obtained from physical experiments in this 
range of Reynolds numbers. From these figures it is clear that the self-preserving 
solution has an initial transient where the kinetic energy is fairly flat; then the 
kinetic energy begins to asymptote from above to a power law decay as evidenced by 
a straight line on these logarithmic plots. Two conclusions can be drawn from these 
results. First, for Ce, 5 2 and Rto % 1, the kinetic energy does not asymptote to a t-" 
power law decay until after an extremely large number of eddy turnover times by 
which time the turbulence has decayed to a tiny fraction of its initial intensity. 
Second, for Ce, sufficiently larger than 2, the kinetic energy asymptotes tlo a t-' power 
law decay within a few eddy turnover times ; however unless Ce, - RZo, consistent 
with Kolmogorov scaling, the turbulence intensity will drop precipitously before this 
asymptotic state is achieved. 

To further illustrate these points, the computed turbulent kinetic energy is 
compared with its corresponding asymptotic power law decay for increasing values 
of C., in figures 2 (a)-2 (c) which are for initial turbulence Reynolds numbers of 1000, 
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K' - 
lo-;oo 10' 1 OP 

t* 

K' 

4 - 
'o-;oo 10' 10' 

t' 

I* 

FIGURE 2. Decay of turbulent kinetic energy for a variety of initial conditions on G (C,* = &Go) : -, 
self-preserving solution; - -  -, asymptotic solution K - t-" where a = (C,,- l)-l for C., < 2 and a = 1 
for Cc, 2 2. (a) Rto = 1000, ( b )  R,o = 10000 and (c) RLo = 100000. 

FIGURE 3. Time of initial conditions 

10000 and 100000, respectively. It is clear from these figures that for Ce, < 2, the 
turbulent kinetic energy does not reach its asymptotic power law decay even after 
100 eddy turnover times! However, for C., sufficiently larger than 2, the turbulent 
kinetic energy asymptotes to  a t-' power law decay within a few eddy turnover times. 
This can be seen even more vividly in figure 3 where a* = d (logK*)/d (log t * )  is 
plotted as a function of logt* for Rto = 1000. If there is an asymptotic power law 
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K *  

(4 

- 
0 1 2 3 4  

t* 

2.0 

1.6 

1.2 

€* 

0.8 

0.4 

c 

0 1 2 3 4 5  
1* 

FIGURE 4. Decay of self-preserving isotropic turbulence for Ce, = 1.83 and R, = 100 (-), 200 
(--) and 400 (- - -) : (a) turbulent kinetic energy, and ( b )  turbulent dissipation rate. 

1 .o 

0.8 

0.6 

K* 

0.4 

0.2 

0 1 2 3 4 5 
t* 

FIGURE 5. Self-preserving isotropic turbulence at low turbulence Reynolds numbers (C,* = 1.4): 
- R = 1; --, R = 0.25; ---, equation (31). ’ t o  10 

decay, this derivative will asymptote to the exponent of the decay law. It is clear 
that for Ce, = 7, an exponent of 1 is approached quickly; however, for Ce, = 1.83 and 
1.92 (initial conditions which ultimately yield a power law decay with an exponent 
of approximately 1.2 and 1.1, respectively) an asymptotic state is not achieved even 
after 100 eddy turnover times. Furthermore, for Ce! < 2 and for large initial 
turbulence Reynolds numbers Rto 9 1, there is a precipitous drop in the turbulent 
kinetic energy before a power law decay is achieved ; this is due to the early transient 
when vortex stretching causes a considerable rise in the dissipation (see figures 
4a4b). 

Since the self-preserving solutions for Cc2 < 2 only asymptote to a power law decay 
in the limit as K + 0 and t + co, it is reasonable to associate them exclusively with the 
final period of decay. Experiments tend to indicate that the final period of decay is 
entered for R, < 1 wherein the exponent of the decay is approximately 2.5 (cf. Hinze 
1975). As noted earlier, this decay law is obtained asymptotically for self-preserving 
isotropic turbulence if Cc, = 1.4 - a result obtained by invoking Loitsianskii’s 
invariant. In figure 5,  the decay of the turbulent kinetic energy when C,, = 1.4 is 
shown for the initial turbulence Reynolds numbers Rto = 0.25 and 1.0. It is clear from 
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0 1 2 3 4 5 
t* 

FIGURE 6. Decay of turbulent kinetic energy in self-preserving isotropic turbulence for 
C = 1.4: -, R = 200; --, R = 500; ---, Rtn = 1000. 

€2 tn tn  

these results that for Rto < 1 the solutions begin to asymptote to the power law decay 
(31) with an exponent a = 2.5. Since Ce, must equal 1.4 during the final period of 
decay - and, since Ce, is a constant for self-preserving isotropic turbulence - i t  
follows that the entire decay process from high-Reynolds-number initial conditions to the 
jinal period of decay cannot be described within the framework of complete self- 
preservation. This conclusion results from the fact that the only consistent self- 
preserving solution a t  high initial Reynolds numbers yields a K - t-’ power law 
decay wherein R, asymptotes to a constant - a  state of affairs that precludes the 
description of the later stages of decay. Furthermore, the value of Ce, = 1.4, which 
describes the final period of decay, yields unphysical results for the early stages of a 
high Reynolds number isotropic turbulence (i.e. it predicts an early time transient 
where there is a precipitous drop in the turbulent kinetic energy; see figure 6). In 
order to describe the entire decay process of a high-Reynolds-number isotropic 
turbulence, G as well as S ,  must vary with time - a possibility that is precluded by 
the assumption of complete self-preservation which renders them constant. 

4. Comparisons with alternative theoretical analyses and experiments 
The results derived in the previous section are consistent with those of Batchelor 

(1948) for low turbulence Reynolds numbers ; however, our high-Reynolds-number 
asymptotic solution yields K - t-’ whereas in Batchelor’s solution K - t-y. The 
reason for this difference is simple : as alluded to earlier, Batchelor also found the K - 
t-’ solution but dismissed it as a viable result since Loitsianskii’s integral was not a 
dynamic invariant therein. Interestingly enough, an earlier experimental study by 
Batchelor & Townsend (1947) yielded results that were far more suggestive of a 
K - t-l rather than a K - t-” power law decay. Despite the fact that Batchelor (1948) 
states that the K - t-y decay law is a complete self-preserving solution, in reality it 
is only a partial self-preserving solution since it corresponds to the inviscid 
Karmin-Howarth equation (see Hinze 1975). It is our view that since the K - t-l 

asymptotic decay law is a formal solution to the full KarmBn-Howarth equation, it 
should not be casually dismissed unless it is in incontrovertible contradiction of 
experiments or other exact theoretical results. 

10 
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As mentioned earlier, Dryden (1943) postulated a K - t-' power law decay based 
on a direct analysis of the Kcirman-Howarth equation. He observed - as is evident 
from (22) - that the Kcirman-Howarth equation will allow for self-similar solutions 
if 

R, = constant, (50) 

which yields K - t-' as a direct consequence of (6). However, there are other 
temporally varying solutions to (22) ; complete self-preservation only requires that 
R, asymptote to a constant. Sedov (1944) studied solutions of (22) obtained by 
applying the separability constraint 

which renders R, = R,(t), consistent with (19) and (20). Solutions to (51) and (52) 
have not been studied in great depth subsequent to Sedov (1944) who showed that 
Aq) = M ( 5 / 2 y ,  5/2, -yy2/2)  where M is the confluent hypergeometric function and 
y = ;Go-%. Batchelor (1948) expressed concern over the fact that this solution leads 
to  a unique determination of both fand  f ; however, although he suspected that the 
Sedov solution was unphysical, he stated that he was 'not able to find any definite 
anomalies'. In  the limit as R,+O it  is clear that  (51) is a direct consequence of the 
Karman-Howarth equation. Consequently, it is not surprising that the Sedov 
solution for the final period of decay yields physically interesting solutions as 
recently demonstrated by Bernard (1985). However, it  will now be shown definitively 
that the Sedov solution yields unphysical results at high turbulence Reynolds 
numbers. In  figure 7, the results of a numerical solution of (51) for fa re  shown for 
a variety of values of Go ranging from 3 to 60. For Go = 3 it can be shown analytically 
that f= exp ( -k2), yielding an energy spectrum of the form 

i 

E*(K*) = A K * 4 e X p  ( - ;K* ' ) ,  
(27K)T 

(53) 

where K* = KA and E* = E/gA .  Equation (53) is obtained from the identity 

(54) 
1 "  

E*(K*)  = ;Io f ly)  ( K * T ~ ~ ~ ~ K * ~ ] - K * ~ v ~ c o s K * ~ ] ) ~ ~  

(cf. Batchelor 1953). This result -which has E*(K*) - K * ~  at low wavenumbers and 
has E*(K*) decaying exponentially a t  high wavenumbers - is consistent with 
established results on the final period of decay (cf. Hinze 1975). However, for 
sufficiently large Go, it is a simple matter to show from (51) that 

kr) - r - 5 ' y  (55)  

for 7 B 1. This explains why fir) is so slow to asymptote to zero when Go > 10 in 
figure 7. In  fact for 

it follows from (54) and (55) that E*(K*) becomes singular. From (28) it can then be 
concluded that the Sedov solution will yield a singular energy spectrum when 

Rtm > 0. 

WO>2 
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FIGURE 7 .  Sedov solution for the two-point double longitudinal velocity correlation: (a) Go = 3, 
( b )  Go = 6 ,  ( c )  Go = 20, and ( d )  Go = 60. 

It is thus clear that the Sedov solution yields untenable results, at high Reynolds 
numbers, for the double and triple two-point longitudinal velocity correlations. 

The major deficiency with the approaches of Dryden and Batchelor - as well as 
that of Sedov - lies in the use of the self-similar Karman-Howarth equation based on 
the assumptions (12) and (13), which does not allow for the treatment of small 
departures from a state of complete self-preservation. Such small departures can be 
characterized by the perturbations 

where [ ~ i ? s K ~ ~ / 8 ~ o  4 1, IlSG(l/G, < 1 and 6S, ( t ) ,  SG(t)-+O as t+  co. The substitution 
of (56) and (57) into (6) and (8) yields the governing equations for small departures 
from a state of self-preservation. If we denote by SK and de the departures from the 
self-preserving solutions K and B obtained from (19) and (20), it  follows that for the 
perturbations (56) and (57) we will have 

since (19) and (20) have fixed points that  are stable nodes (cf. Guckenheimer &, 
Holmes 1986). Consequently, (19) and (20) will yield an excellent approximation for 
isotropic decay when there are extremely small departures from a state of complete 
self-preservation. I n  contrast to  this nice behaviour, the Karman-Howarth equation 
becomes indeterminate when subjected to  infinitesimal perturbations from a self- 
preserving state. Hence, i t  appears that the one-point equations (19) and (20) form 
a broader basis for the analysis of the energy decay of self-preserving isotropic decay 
than does (22). 

The general solution to the complete self-preserving isotropic decay equations (19) 
and (20) at  high Reynolds numbers is shown schematically in figure 8 (this is for the 
physically significant case where Rto > Rtm so that the turbulence Reynolds number 
decays). There is an early time transient (region AB) where the turbulent kinetic 
energy is flat ; it is eventually followed by the asymptotic region CD where K - tP1. 
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FIGURE 8. Schematic of the complete self-preserving solution for the decay of turbulent kinetic 

energy at high Reynolds numbers (R,, > Rt*). 
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FIGURE 9. Decay of the turbulence Reynolds number in complete self-preserving isotropic 
turbulence: R,, = 1O00, CE2 = 4.5. 

These two regions are connected by the overlap region BC. The initial transient AB 
evolves on the Kolmogorov timescale (v/e)' during which time there is a precipitous 
drop in the turbulence Reynolds number (see figure 9). On the other hand, the 
overlap region BC evolves on the turbulence timescale K / E ;  in this region the 
turbulence Reynolds number R, becomes close to R,,, approaching it asymptotically 
from above. As a direct consequence of the perturbation analysis discussed above, 
the overlap region BC can be set into strong approximate agreement with the 
asymptotic approach to a state of complete self-preservation. These results have a 
direct bearing on how the complete self-preserving solution compares with physical 
experiments, as we will soon see. 

It is widely believed that a K - t-' asymptotic decay law is in violation of 
experimental data for isotropic turbulence. These experimental data (see Uberoi 
1963; Kistler & Vrebalovich 1966; Comte-Bellot & Corrsin 1966, 1971; Warhaft & 
Lumley 1978 and Mohamed & La Rue 1990) have yielded power law decays with 
exponents varying from 1 to 1.4 with a mean of approximately 1.25. However, great 
caution must be exercised in using these data to dismiss the possibility of a K N t-' 
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FIGURE 10. Decay of turbulent kinetic energy : 0 ,  self-preserving solution ; -, K cc t-m. 
(a )  C6, = 4, ( b )  Cc, = 4.5, and (c) C., = 5.  

asymptotic power law decay a t  high Reynolds numbers since most of these data are 
for a limited number of eddy turnover times (typically for eot/K,, < 4). If the self- 
preserving solution is examined for this same limited number of eddy turnover times 
it follows that the resulting solution can be fitted to an excellent degree of 
approximation by a power law decay with exponents in the range of 1 to 1.4 
depending on the initial conditions; the lower the Reynolds number, the longer the 
solution takes to  reach an asymptotic state and the larger the exponent is during the 
early stages of decay (see figure 10a+). Consequently, if one examined in isolation 
the self-preserving solutions for the first few eddy turnover times (with the short 
early time transient omitted), one could erroneously conclude that there was an 
asymptotic power law decay with an exponent in the range of 1 to 1.4 depending on 
the initial conditions ; in reality, all of these solutions are asymptoting to a t-' power 
law decay. The solutions shown in figure 10 (a-c) correspond to  the overlap region BC 
shown in figure 8 and, hence, can be associated with the asymptotic approach to a 
state of complete self-preservation. An argument has been raised recently by Walker 
& Corrsin (1985) and Walker (1986) that  the physical experiments may not go far 
enough to see a t-' power law decay. Unless the initial turbulence Reynolds number 
is extremely large, an asymptotic state may not be achieved in the first few eddy 
turnover times. In  this regard it is interesting to note that the only extremely high- 
Reynolds-number experiment (i.e. Kistler & Vrebalovich 1966) and large-eddy 
turnover time experiment (Walker 1986) did measure a K - t-l asymptotic power 
law decay. Consequently, existing experiments cannot rule out the possibility of a 
K - t-l asymptotic power law decay at high Reynolds numbers and do not warrant 
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FIGURE 11.  Time evolution of the Taylor microscale Reynolds number in isotropic decay (Go x 9.5, 
SK0 x 0.4 and RAo x 37) : -, complete self-preserving solution ; 0,  experiments of Batchelor & 
Townsend (1947). 

the dismissal of the complete self-preserving solution discussed herein. Furthermore, 
Rosen (1981) recently derived a t-' asymptotic power law decay based on alternative 
ideas from statistical mechanics. 

Some comments are in order concerning how the complete self-preserving solution 
compares quantitatively with existing experimental data for the first few eddy 
turnover times. This corresponds to the overlap region of the self-preserving solution 
which can be fitted with an approximate power law decay with exponents in the 
range of 1 .&l.4. Here, the larger exponents correspond to smaller initial turbulence 
Reynolds numbers Rto whereas exponents close to one correspond to large values of 
RtO. Consequently, in the overlap region -which is of a duration as long as that in 
most of the physical experiments - an approximate K - t-' power law decay occurs 
in the limit of infinite Reynolds numbers (i.e. as Rto+ m). This result is completely 
consistent with the results of Ling & Wan (1972) and Barenblatt & Gavrilov (1974) 
as well as with earlier speculations by Lin (1948) who linked K - t-' with the infinite- 
Reynolds-number limit. A t  lower turbulence Reynolds numbers (i.e. Rto < lOOO), 
larger decay exponents in the range of 1.25-1.4 are obtained numerically as shown in 
figure 10. This is generally compatible with the most recent experiments of Mohamed 
& La Rue (1990) for 100 < R, < 250 who found a decay exponent of 1.3 which they 
claimed was independent of the initial conditions provided that there was a proper 
choice of the virtual origin. Unfortunately, detailed quantitative comparisons with 
experiments for the ener y decay are not possible owing to the difficulty in 
measuring G. Since G OC f K~E(K,  t )  d K ,  measurements are required at  very high 
wavenumbers in order to reliably determine G ;  none of the existing experiments 
measure E(K,  t )  at sufficiently high wavenumbers (e.g. in the Comte-Bellot & Corrsin 
1971 experiment, K~B(K,O) is still an increasing function of K at the highest 
wavenumber measured). We will nonetheless make a direct comparison with the 
experiment of Batchelor & Townsend (1947) since they provided explicit estimates 
of G from their measurements. In figure 11, the time evolution of R, predicted by the 
complete self-preserving theory is compared with the measurements of Batchelor & 
Townsend (1947) for, RAo x 37, Go z 9.5 and SK0 x 0.4. It can be seen that the theory 
is well within the range of the experimental data. However, any conclusions drawn 
from this must be guarded owing to the age of these experiments and the uncertainty 
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in measuring G ~ a deficiency in all existing data that must be overcome before 
detailed quantitative comparisons between theory and experiments can be made 
reliably. 

Now, we will address the interesting controversy generated recently by George 
(1987, 1989, 1992). He claimed to find self-preserving solutions -with the Taylor 
microscale as the similarity lengthscale - which exist for all turbulence Reynolds 
numbers. These solutions were characterized by an asymptotic power law decay 
where the exponent is determined by the initial conditions. George arrived at  this 
alternative self-preserving solution by relaxing the classical similarity constraint 
(13). He argued that the normalization of the two-point triple velocity correlation 

T(r,  t )  = uyx,  t )  u(x-t  r ,  t )  (58) 

by (2); to form k(r ,  t )  is arbitrary since its one-point contraction T(0, t )  = 2 is zero. 
(This stands in contrast to the formulation off(r, t )  which is obtained by normalizing 
the two-point double velocity correlation with its one-point contraction 2). 
Consequently, George argued that constraint (13) should be replaced with the 
alternative constraint 

where w(t )  is a suitable weighting function. Then - from the definition of 8, in (9) and 
the Kirman-Howarth equation (22) - instead of the constraints 

R, = constant, S ,  = constant (60) 

which render a t-' power law decay, we get the constraints 

R, S, = constant, R, wK-g = constant (61) 

which allow for the possibility of an alternative decay law within the general 
framework of self-preservation. From (61) it follows that 

and that 

which shows, incidentally, that w canno! be chosen arbitrarily. Since the 
proportionality constant in (62) must be SKoRiO - and since G still remains a constant 
Go during the decay - this alternative self-preservation leads to the decay equations 

K = -8, (64) 

instead of (19) and (20). Equations (64) and (65) yield the closed-form solution for the 
energy decay 

where 
/3 = ( -Go--  7 7 

15 32/15 

This is indeed a power law decay with an exponent that depends on the initial 
conditions as claimed by George (1987, 1989, 1992). 
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Several observations can be made about this alternative self-preserving solution of 
George (1987, 1989, 1992). The asymptotic relation for S ,  in (62) cannot hold for long 
times since, if the skewness is to be finite a t  moderate R,, according to  (62) it must 
vanish in the limit as R, goes to infinity - an unacceptable physical result that  would 
imply vanishing transfer in the limit of infinite Reynolds numbers. Hence, (62) can 
only hold for a few eddy turnover times until the skewness peaks: a result which is 
in general agreement with experiments as shown recently by George (1992) (also see 
Van Atta & Antonia 1980). After S ,  peaks it can either remain constant for a 
considerable period of time or it can begin to decrease gradually. If the former occurs, 
then the George solution will constitute an asymptotic solution for the approach to 
a state of complete self-preservation where 

S,  = SKo+6S, ( t ) ,  G = Go. 

Since 

it follows that 6 S K ( t )  x $YKo6Bt ( t ) /Bto for SR,/Rto < 1. Hence, it is now not surprising 
that the George solution yields a power law decay with an exponent that depends on 
thc initial conditions-the same results obtained for the overlap region of the 
complete self-preserving solution illustrated in figure 10. By relaxing the classical 
self-similar constraint for the two-point triple velocity correlation, the George (1987) 
solution bears some resemblance to the self-preserving solutions of the second-kind 
discussed by Barenblatt (1979). It appears to be a physically consistent candidate for 
the asymptotic approach to  a state of complete self-preservation. 

Finally, a few comments are in order concerning the implications of these results 
for turbulence modelling. In the commonly used turbulence models, the dissipation 
rate equation is modelled as 

(68) 
E 2  & =  -c - 

ezK 

for isotropic decay, where Ct2 is a constant (cf. Launder & Spalding 1974; Speziale 
1991). Equation (68) is derived by invoking Kolmogorov scaling for G which requires 
that 1 

where C, and C ,  are constants; an equilibrium hypothesis is then made wherein 
C ,  = (4 1513) S ,  so that the leading-order part of the destruction of dissipation term 
annihilates the vortex stretching term in (8) yielding (68). In  contrast to (68), the 
complete self-preserving solution has a dissipation rate transport equation of the 
general mathematical form 

G = C,R:+C2,  (69) 

where C., and C., are constants. Equation (70) can also be derived based on 
Kolmogorov scaling (69) when departures from equilibrium are allowed wherein 
C, 4 (d15 /3 )SK.  The addition of the unbalanced vortex stretching term in (70) 
allows for a better treatment of departures from equilibrium in several ways. First, 
as shown earlier in figure 10 (a+), the self-preservation model allows the description 
of the initial stages of isotropic decay where the exponent of the decay law can vary 
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FIGURE 12. Time evolution of the enstrophy at high turbulence Reynolds numbers: (a) complete 
self-preserving solution (Cc2 = 2 )  and ( b )  schematic from Lesieur (1990) based on EDQNM. 

mildly with the initial conditions - a feature observed in physical experiments. On 
the other hand, the more commonly used model (68) predicts a universal decay law 
where K - l-1’(cc2-1) for all Rto and all t > 0. Second, the self-preserving solution can 
accommodate the limit of zero viscosity, In this limit, it is a simple matter to  show 
that (20) predicts a finite-time enstrophy blow-up a t  the critical time 

62/15 
t, =-, 

7 S K 0  wo 

where wt  is the initial enstrophy. In figure 12 ( a ) ,  the time evolution of the enstrophy 
corresponding to  the complete self-preserving solution is shown for a variety of 
increasing Rto; i t  is clear that  an enstrophy crisis is predicted for Rto + 1 which 
eventually leads to a finite-time enstrophy blow-up in the limit as v --f 0. These results 
are in excellent qualitative agreement with results obtained from EDQNM as 
illustrated in figure 12 ( b )  taken from Lesieur (1990). While the issue of a finite-time 
enstrophy blow-up is still being debated by the turbulence community (cf. Pumir & 
Siggia 1990), one thing is clear: the enstrophy grows dramatically when v = 0. In 
contrast to  the results shown in figure 12 (a ,  b ) ,  the commonly used dissipation rate 
model (68) erroneously predicts that  the enstrophy is conserved in the inviscid limit, 
i.e. that 

w 2  = constant, (72) 

when v = 0. It thus appears that  the complete self-preserving solution allows a better 
treatment of non-equilibrium isotropic turbulence that could be of future use in the 
development of improved turbulence models. 

5. Conclusions 
The energy decay for complete self-preserving isotropic turbulence has been re- 

examined from a basic theoretical and computational standpoint. Several interesting 
conclusions can be drawn from these results: 

( i )  The nonlinear differential equations for the energy decay have two fixed points 
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that are stable nodes : Rtm = 0 and Rtm = (&Go - 2)2/Si0.  The former fixed point is 
only achieved in the limit as t + 00 and hence is associated with the final period of 
decay. Consistent with the Batchelor (1948) result, a K - t-i power law decay is 
obtained when Loitsianskii's invariant or the Gaussianity of As) is invoked. 

(ii) The non-zero fixed point Rtm = ~ ( & G o - 2 ) 2 / S ~ ,  is approached within a few 
eddy turnover times and gives rise to a K - t-' asymptotic power law decay. It is the 
high-Reynolds-number asymptotic solution for a complete self-preserving isotropic 
turbulence. This solution appears to have been prematurely dismissed by Batchelor 
(1948) purely on the grounds that Loitsianskii's integral was not an invariant - a 
constraint which was later found to be violated in isotropic turbulence when R,, $- 1 .  

(iii) The structure of the high-Reynolds-number self-preserving solution during the 
first few eddy turnover times was examined in detail. By a perturbation analysis, it 
was argued that these solutions can serve as an approximation for the asymptotic 
approach to a state of complete self-preservation. It was found that, depending on 
the initial conditions, the early time solutions could be fitted with a power law decay 
which has an exponent varying from 1 .O to 1.4 - a range of values that is compatible 
with existing experimental data. Consequently, existing experiments cannot rule out 
the possibility of a complete self-preserving solution with aK - t-' asymptotic power 
law decay at high Reynolds numbers-a conclusion consistent with the recent 
experiments of Walker (1986). 

(iv) The alternative self-preserving solution of George (1987, 1992) does yield a 
power law decay with an exponent that depends on the initial conditions; it is a 
physically consistent solution for the approach to a state of complete self- 
preservation that can be valid for several eddy turnover times until the skewness 
peaks. 

(v) Since the assumption of complete self-preservation requires that G be constant 
- and since for high-Reynolds-number isotropic turbulence &G > 2, whereas for low- 
Reynolds-number isotropic turbulence &G < 2 - it is clear that the entire process of 
isotropic decay from high-Reynolds-number initial conditions to the final period of 
decay cannot be described by the theory. 

Within the framework of self-preservation, the physical origin of a K - t-' power 
law decay becomes clear : it is the asymptotic state toward whjch a high-Reynolds- 
number isotropic turbulence is driven in order to resolve an O(R:) imbalance between 
vortex stretching and viscous diffusion. The resolution of, this imbalance also yields 
compatibility with Kolmogorov scaling wherein G - Ri. Results were presented 
which indicate that the complete self-preserving solution yields a better description 
of non-equilibrium isotropic turbulence than the commonly used turbulence models. 
It is also interesting to note that when the self-preserving assumption is extended to 
homogeneous shear flow, a production-equals-dissipation equilibrium can occur ~ 

preceded by a transient where K and E grow exponentially - as recently shown by 
Bernard & Speziale (1992). It thus appears that the theory of self-preservation in 
homogeneous turbulence has many interesting features that have not yet been fully 
understood and are worthy of further study. 

The authors are indebted to Dr P. A. Durbin (CTR, Stanford University), Dr N. 
Fitzmaurice (Case Western Reserve University), and Dr W. K. George (SUNY 
Buffalo) for some helpful discussions. The National Aeronautics and Space 
Administration provided support to the first author (C. G. S.) under NASA Contract 
No. NAS1-18605 while he was in residence at the Institute for Computer Applications 
in Science and Engineering (ICASE). 
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