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A high resolution grid-free vortex filament scheme is applied to the prediction and simulation of
coflowing round jets with a view to acquiring a new perspective on their physics and establishing
the validity of the numerical technique. Vortex loop removal at inertial range scales provides a
nondiffusive model of local dissipation that remains compatible with the presence of backscatter.
Consistency with the Kolmogorov �5/3 inertial range spectrum is used to estimate the effective
dissipation rate and subsequently the local and global Reynolds numbers associated with the
turbulent vortex field. New insights into the accuracy of the scheme are presented including
dependencies on numerical parameters. Comparisons of the computed statistics and structural
features of the coflowing jet versus experiments show the method to provide an accurate rendering
of the flow. Some consideration is also given to the dispersion of a scalar contaminant in the jet and
its comparison to data. © 2009 American Institute of Physics. �DOI: 10.1063/1.3081559�

I. INTRODUCTION

Complex phenomena associated with turbulent jets, such
as sound generation1–3 and the dispersion of continuous or
discrete contaminants,4–6 are often tied to the presence of
nonsteady turbulent vortical structures. Thus, the successful
simulation of jet flows including complex physics requires
numerical methodologies that offer a physically accurate rep-
resentation of the continuously changing vortical aspects of
the turbulent jet field. Under these circumstances, large eddy
simulation �LES� represents a favored direction to take by
virtue of its practicality and reduced role for modeling.

A number of grid-based LES formulations have been
applied to the prediction of turbulent jet flows. Among these,
Olsson and Fuchs7 applied a dynamic model in studying the
near field of a circular jet noting the effects of grid reso-
lution, modeling parameters, and Reynolds number. Webb
and Mansour8 considered a forced round jet at relatively low
Reynolds number using a dynamic model and found that the
turbulence scales agreed with experiments. A simulation of
compressible subsonic jets by Zhao et al.9 with several vari-
ants of the dynamic model also included prediction of far
field sound radiation. Borg et al.10 used LES without an ex-
plicit subgrid model to simulate the entry region of a circular
jet and included a concentration field so as to predict mass
fluxes. Debonis and Scott2 used a compressible form of the
Smagorinsky model to simulate a high Reynolds number jet,
with some success in matching the correct physics. The ef-
fectiveness of different subgrid models in computing com-
pressible jet flows was examined by Bogey and Bailly3,11

who noted the influence of the subgrid models in effectively
lowering the Reynolds number.

As in numerous other flows where LES has been ap-
plied, many of the properties of jets observed in the afore-
mentioned studies are sensitive to the particular form of the
adopted subgrid models, as well as parameter choices and
grid resolution. These effects are in part symptomatic of the

persistent problem of crafting subgrid models that can accu-
rately regulate the subtle physics governing local variations
in the two-way flow of energy between the resolved and
unresolved scales. Any oversimplification of the energy flux
creates an opening for the appearance of numerical diffusion
that can eliminate vortical flow features that are of central
importance to the physics. For phenomena such as sound
generation and particle dispersion that depend precisely on
the vortices, a degree of uncertainty is injected into the nu-
merical predictions and the accuracy can be compromised.

Vortex methods,12 in which the computational elements
are freely convecting vortices, have minimal exposure to nu-
merical diffusion and thus, in principle, an increased likeli-
hood of predicting the natural motion of vortical structures.
Grid-free schemes relying on vortex filaments have been
used in a number of prior jet studies that focused on the
laminar and early transitional regimes. Among these, Chung
and Troutt4 considered particle dispersion in an axisymmetric
jet in which the computational elements were vortex rings,
while Agui and Hesselink13 used a single layer of vortex
rings with streamwise periodicity to model the evolution of
the vortex transition including the appearance of streamwise
vorticity. Similarly, Martin and Meiburg14,15 used a vortex
filament scheme with periodic boundary conditions to simu-
late the effect of perturbations on the vortical makeup of jets.
In more recent times, Marzouk and Ghoniem16 used a variant
of the vortex filament method to study the vortex structure of
a transitioning transverse jet including the initial breakdown
of the flow into turbulence.

The adaptation of vortex methods to the direct numerical
simulation �DNS� of turbulence in which all flow scales in-
cluding small viscous dissipative eddies are resolved requires
a formidable computational effort as well as a means for the
accurate representation of viscous forces over a Lagrangian
field of vortex elements. Some success in fulfilling the latter
requirement in the context of a simulation of decaying iso-
tropic turbulence has been achieved by periodically redistrib-
uting vortex particles.17 Alternatively, a traditional mesh can
be introduced to aid in vorticity redistribution and in thea�Electronic mail: bernard@umd.edu.

PHYSICS OF FLUIDS 21, 025107 �2009�

1070-6631/2009/21�2�/025107/18/$25.00 © 2009 American Institute of Physics21, 025107-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3081559
http://dx.doi.org/10.1063/1.3081559


evaluation of the viscous and stretching terms. Such hybrid
schemes have been used to study isotropic turbulence18 and
in reproducing qualitative features of viscous vortex flows in
free space.19

For turbulent flows of some complexity, such as the
round jets of interest in this study, the most practical imple-
mentation of a vortex method is in the context of a LES and
not a DNS. In this regard it has been proposed20 to base a
LES on the hybrid vortex particle method by appending a
traditional diffusive subgrid model. However, in a LES the
direct treatment of viscous forces acting below the threshold
of resolved scales is not necessary so that alternatives to
vortex particle methods, such as the vortex filament scheme
used here, may be considered.

The success of a vortex method in simulating turbulent
jets in the context of a LES depends primarily on how the
fundamental representation of energy transfer to and from
“subgrid” scales is handled. For a vortex filament scheme, in
which the computational elements are short, straight, vortex
tubes linked end to end forming filaments, it has been
suggested21,22 and previous work verified23,24 that the exci-
sion of vortex loops naturally forming from highly stretched
vortex filaments provides an elegant and effective means of
accounting for the subgrid energy transfer process. In fact,
removal of loops as they form provides local dissipation—
since loops contribute primarily to the local velocity field—
that would ordinarily be occurring at much smaller scales by
the action of viscosity. At the same time, unlike diffusive
subgrid models, loop removal does not inhibit local back-
scatter where vortices congregate forming larger scale struc-
tures. Computations have shown23,24 that the use of loop re-
moval is sufficient to limit growth in the number of vortex
elements to practical limits and that the simulated turbulent
field remains fully consistent with many fundamental prop-
erties of turbulence.

The present work considers the capabilities of the fila-
ment scheme in simulating coflowing turbulent round jets
with an interest in providing a new perspective on their phys-
ics. For example, the vortex simulations prove useful in elu-
cidating such aspects of the jet flow as the connection be-
tween coflow, the potential core, and vortical structures. In
recognition of the relative novelty of the filament scheme as
applied to turbulent flow, some attention is also directed at
providing further understanding of the numerical properties
of the filament scheme, such as the importance of numerical
parameters, and in more precisely characterizing the Rey-
nolds numbers associated with the turbulent field of vortices.
Finally, calculations including passive tracer particles are
performed that provide for additional comparisons with ex-
periments and allow for a fresh look to be taken at differ-
ences between the development of the velocity and scalar
fields.

II. THE VORTEX FILAMENT SCHEME

In the vortex filament scheme, straight vortex tubes
strung end to end forming filaments are the principal com-
putational element. The ith tube of N total is represented by
its end points xi

1 and xi
2 and a circulation, say, �i, that it

shares in common with other tubes on the same filament. The
circulation is assigned to each filament at its inception—
usually at a boundary—and remains fixed for all time con-
sistent with Kelvin’s theorem and the relegation of viscous
effects to small, invisible scales.

The time evolution of the flow is accounted for by con-
vecting the vortex tubes via their end points. Besides advec-
tion, such a scheme identically models vortex stretching and
reorientation. Calculations with a first-order Euler scheme as
well as fourth-order Runge–Kutta scheme have been imple-
mented, with the necessity of using the latter most plainly
evident for applications containing solid boundaries where
the heightened accuracy is beneficial in resolving the dy-
namically important motions leading to vortex creation near
walls. In the present case such considerations are of lesser
importance and the less costly Euler scheme is used for the
results shown here.

The vortex filaments follow material fluid elements and
thus have a net tendency to stretch. To maintain the accuracy
of the discretization, an upper bound, say, h, is placed on the
tube lengths si��si� where si=xi

2−xi
1 is the axial vector along

a tube. Tubes for which si�h are subdivided into segments
of equal length. Where the flow is turbulent vortex stretching
leads to the creation of prodigious numbers of tubes. Follow-
ing Chorin21,22 vortex loops are removed as they form. The
tighter the tolerance in defining a “loop,” the less often loops
are identified and the larger the number of tubes there are in
calculations that have reached equilibrium. The criterion for
identifying loops that is used here is based on twice the
length of the tubes that are in close proximity to each other.
Changes to the loop removal criterion affect the equilibrium
number of tubes in a calculation but do not appear to have
noticeable effect on such statistics as the mean flow.

The velocity field, U�x , t�, at a point x in the flow do-
main at time t is determined from the cumulative contribu-
tions from the vortex tubes together with a potential flow,
Up�x , t�, needed to enforce nonpenetration at solid bound-
aries. Consequently,

U�x,t� = Up�x,t� −
1

4�
�
i=1

N
ri � si

�ri�3
�i���ri�/�� , �1�

where ri=x−xi and xi= �xi
1+xi

2� /2. The ith term in the sum
in Eq. �1� represents a simple midpoint rule approximation to
the velocity associated with an individual tube as given by
the Biot–Savart integral. The smoothing function12

���ri�/�� = 1 − �1 − 3
2 ��ri�/��3�e−��ri�/��3

�2�

is used to desingularize the approximation to the simple
Biot–Savart integral and thus prevent unphysical interactions
between vortices that are close to being coincident. The mag-
nitude of the numerical parameter � affects how high up
along the singularity in the Biot–Savart function the velocity
field is allowed to go before being smoothed to zero. In fact,
the effect of � is confined to the region �ri��2.34� since �
is essentially unity beyond this point. The approximate ve-
locity field produced by each individual tube is very accurate
outside of its own near field. The use of � compensates for
the fact that information about the vorticity within a tube is
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limited to just the locations of the end points and the amount
of circulation, so that the precise form of the detailed, local
velocity field cannot be reconstructed. In this aspect the
scheme is similar to a LES in the sense that subgrid motions
are unknowable. Since h is associated with the magnitude of
the velocity induced by individual vortices according to the
approximation in Eq. �1�, as it diminishes so too does the
extent of the near field where local interactions are prone to
error, and the overall discretization becomes more accurate.
This aspect of the approximation is likely to have had some
role in the observation24 that the use of relatively long tubes
can lead to overprediction of the Reynolds stresses. An inter-
esting aspect of this is that once h is set below a threshold the
vortex filaments become smooth curves as against a se-
quence of straight lines with discrete angular changes be-
tween the elements. The Reynolds stresses in this case ap-
pear to become independent of h and very close to
experimental trends. This suggests that errors produced by
sudden changes in orientation between adjacent straight
tubes may also have something to do with the potential to
overpredict the Reynolds stresses. Diminishing h lowers the
angles and the errors that go with them.

A more controlled view of the errors produced by h may
be seen by applying Eq. �1� to the evaluation of the velocity
field corresponding to an infinitely long vortex filament. In
particular, consider a vortex filament situated along the z axis
whose associated velocity field is independent of z and has
nonzero components U and V in the x and y directions, re-
spectively. Subdividing the filament into tubes of equal
length and applying Eq. �1� mimics the way in which the
velocity is evaluated in the current scheme. Figure 1 shows
the U component of velocity computed this way along a line
parallel to the z axis at the fixed position x=0, y=0.0125 for
three different values of h. It may be noticed that U is equal
to the exact constant value �i.e., independent of z� when the
filament is subdivided into short tubes with h=0.005. For
large h=0.25 there is a noticeable oscillation of the com-
puted velocity that coincides with the relative positions that
the evaluation points have with respect to the locations of the

tubes. For tubes with h=0.0125, which equals the distance
between the line where the velocity is computed and the
filament, the velocity is computed to be nearly constant with
just a small oscillation. This establishes the general rule that
Eq. �1� is accurate at points further than h from the filaments.
Consequently, in any computation for which nearby tubes
remain separated by a distance greater than the maximum
tube length, the discretization errors associated with Eq. �1�
will not be significant. However, neighboring tubes within a
distance shorter than the tube length are likely to be affected
by errors similar to those in Fig. 1. It may be imagined that
this kind of error is exacerbated by sudden changes in orien-
tation of adjacent tubes on the same filament.

Since the magnitude of h is a major factor determining
the number of tubes in a calculation and hence its expense,
there is a necessary trade-off between accuracy and effi-
ciency in the present simulations very much the way there is
in grid-based methods. Fortunately, it appears from this and
previous studies that even if it is not practical to work with
the optimal h in all cases, nonetheless the statistics and flow
properties are well predicted. This suggests that the inci-
dence of very close encounters between vortex tubes for
which the local errors may be large are not burdensome
in reproducing the correct physics with the filament
methodology.

III. NUMERICAL PROBLEM

The flow considered here consists of a round jet with
coflow entering an infinite volume at the origin as shown in
Fig. 2. It is assumed that length and velocities are scaled by
the jet diameter D and inlet centerline velocity UCL, respec-
tively. Consistent with this, the incoming stream is taken to
be of the form

U�r� = �1 + Uc�/2 − �1 − Uc�/2 tanh��r − 	1�/�2	2�� , �3�

where Uc�1 is the velocity of the coflow and parameters
	1�0 and 	2�0 together determine the location and steep-
ness of the velocity profile at the orifice edge—in this case
r=1 /2. Equation �3� mimics the conditions in a high Rey-
nolds number flow where the potential core occupies most of
the inlet and U�r� drops monotonically from 1 to Uc in a thin
boundary layer of thickness 
0 at the edge of the jet. In the
present study, the parameter choices 	1=0.495 and 	2=0.001
are chosen which may be seen to imply that the scale 
0 is
roughly equal to 0.01.
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FIG. 1. Evaluation of U velocity component induced on the line x=0, y
=0.0125 by a filament lying on the z axis: —, h=0.005; ¯, h=0.0125; - - -,
h=0.025.
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FIG. 2. Geometry of jet simulation.
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U�r� forms the basis for determining the circulation of
circular filaments �i.e., rings� that enter the flow domain at
each time step �t. The boundary layer region at the edge of
the orifice, here between 0.5−
0�r�0.5, is subdivided into
N concentric rings through each of which a new filament
enters the flow at each time step. The subdivisions of this
region are demarcated by points ri, i=0,1 , . . . ,N, with r0

=0.5−
0, U�r0�=1 and rN=0.5, U�rN�=Uc. The circulation
of the ith filament is �i= �U�ri+1�2−U�ri�2��t /2. The points
ri are determined with a view toward achieving approxi-
mately equal circulation for all filaments. The larger N is the
lower the circulation of any one tube and the discretization
accuracy is improved. On the other hand, the more rings
used in accommodating the incoming flow, the greater the
numerical expense. Experience suggests that five layers
achieve a reasonable balance between the two counterpoised
tendencies.

Each of the circular filaments that enter the flow domain
is originally defined as the sides of a polygon inscribed in the
unit circle. Typically 20 subdivisions of the circle are made
and since for most calculations reported here h=0.04, the
straight segments immediately subdivide into several vortex
tubes as the computations begin. Each of the sides of the
inscribed polygon are taken to be a “filament” insofar as the
book keeping in the code is concerned even though the sum
total of these form one complete physical closed filament.
The motivation for this procedure has to do with the need to
remove filaments when they travel sufficiently far down-
stream, as will be discussed below.

A potential flow, as included in Eq. �1� must be intro-
duced to maintain the imposed velocity profile at the en-
trance nozzle. In essence, the use of the Biot–Savart law in
computing velocities makes it necessary to account for the
effects of vorticity lying outside the computational domain.
For simplicity, the potential flow introduced here is consis-
tent with that produced by a semi-infinite unit diameter vor-
tex tube with unit interior velocity lying upstream of x=0. In
practical terms it is most efficient to compute this velocity
contribution by replacing the vortex cylinder with a unit di-
ameter potential disk placed at the origin with source
strengths chosen in such a way as to be consistent with the
imposition of the desired U�r� at the inlet. In other words, the
flow from the potential disk together with that from the rings
near the orifice exit combine to produce the desired inlet
velocity distribution.

In this formulation there is no inclusion of a forcing to
stimulate the jet to transition to turbulence, as is often nec-
essary in grid-based schemes. In a vortex filament method,
the tubes are sensitive to small perturbations intrinsic to the
discretization and transition without prompting. To some ex-
tent the rate and amplitude of the vortex instability may be
curtailed by the use of greater numbers of weaker, shorter
vortices that ameliorate the coarseness of the discretization,
but in the absence of a viscous diffusion model to smooth
perturbations, the occurrence of transition is to be expected.
It should be noted that, as will be touched upon later, because
of the energy dissipation associated with the use of loop
removal at inertial range scales, there is an implied presence

of viscous dissipation with an associated Reynolds number,
even if the latter is not given explicitly.

For the computational problem to be practical it is nec-
essary to impose a means for limiting the downstream extent
of the vortex elements used in representing the jet. By re-
moving vortices at a fixed distance, however, the flow that is
inside the computational domain upstream of this point will
be affected. Compensation for lost vorticity in this case is
made difficult by the fact that the jet velocity decays with
distance, so that it not easy to create a simple model of the
missing vorticity field. In fact, the least intrusive strategy
appears to do nothing and accept the fact that some distortion
in the flow properties exists in the region nearest the end
plane of the calculation. By monitoring the flow statistics it
is possible to trace the induced errors upstream to reveal that
part of the solution domain that is affected by the boundary.
A similar kind of error was observed in the mixing layer
flow24 where it proved to not be a far reaching effect. In the
present case, the effect of the downstream removal of vortic-
ity is felt approximately two jet diameters upstream.

Vortex filaments are removed at a downstream boundary
by either of two different approaches. In the first they are
removed after all of the component tubes pass a given point,
and, in the second, filaments are deleted if any one of their
tubes passes a given point. For similar sized computations
the former method has an exit plane upstream of that of the
latter. On the other hand, the first method has the advantage
that the set of vortices in the computational domain is com-
plete. The efficiency with which either of the boundary con-
ditions works depends on how long the removed filaments
are in the streamwise direction. In the first case, the longer
the filaments are, the more vortex tubes they possess and the
greater the burden in un-needed computation beyond the exit
plane. For the second boundary condition, there may be a
significant part of the computational domain with only a par-
tial population of vortices.

For the jet calculation, the physical vortex rings that en-
ter the flow tend to become very elongated and contain many
thousands of tubes by the time they exit the flow domain.
The rings are subdivided into numerical filaments as previ-
ously discussed so as to reduce the effective lengths of the
filaments that are deleted. The penalty for removing parts of
the physical vortex rings is that the filaments remaining in
the calculation contain free ends for which loop removal be-
comes ineffective. In fact test computations have demon-
strated that the presence of too many loose ends—such as
would happen if every tube passing a point was removed
from the computation—can lead to unbounded growth in the
number of tubes due to the failure of loop removal. The
approach adopted here is a compromise between the two
extremes: it permits some tolerance of filaments having free
ends so as to reap the advantage of reducing the streamwise
extent of the departing filaments, but it does not include so
many as to hamper the effectiveness of loop removal.

It may be noted that a separate issue in having free ends
is that at each of these points the zero divergence condition
of the vorticity field is violated. This presumably produces
additional local errors besides those associated with the
Biot–Savart evaluation and the perturbations produced by
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loop removal. While it is possible to modify the effective
vorticity at the free ends so that zero divergence is
maintained,12 the potential benefit of such an alteration does
not appear to be sufficient to warrant the greater numerical
expense entailed in its implementation.

The presence of a significant positive jet coflow means
that the number of vortices appearing in a calculation can be
expected to reach equilibrium since the support of the vor-
ticity field is finite in this case. In addition, the higher the
coflow, the smaller the residence time of tubes in the flow
domain and the longer the computational domain can be
made for the same number of tubes. The calculations here
include coflows Uc=1 /10, 1/5, 1/4, 1/3, and 1/2 or, in terms
of the parameter ��1−Uc� /Uc representing the ratio of the
initial velocity excess to the coflow speed, the cases consid-
ered have =9, 4, 3, 2, and 1. Both of these means of char-
acterizing the simulations will be used in the sequel. The
higher the value of , the closer the coflowing jet is to a
traditional round jet. The streamwise extent of the simula-
tions varies from L=5.25 for Uc=1 /10 to L=15.8 for
Uc=1 /2. For most runs h=0.04, �t=0.04, and contain up to
13�106 vortices at equilibrium. A limited simulation was
also made for the 1/3 coflow case with h=0.015 and 20�106

vortices at equilibrium.
The simulations were performed primarily on an HP Al-

pha EV7 parallel supercomputer at the Pittsburgh Supercom-
puting Center. The most time consuming aspect of the algo-
rithm is the evaluation of velocities at the locations of the N
vortices via Eq. �1�. The nominal O�N2� cost of this step is
reduced to O�N� via a parallel implementation of the adap-
tive fast-multipole method,25 thus creating the opportunity to
use large numbers of vortices. Mean statistics for the jet
simulations are taken from velocity records accumulated
over a nondimensional time interval of 20–40 encompassing
500–1000 time steps. For a case with approximately 12�106

vortices at equilibrium and using 16 processors, the compu-
tations require between 2.5 and 5 days for execution. Such
timings compare favorably to numerical costs reported for
grid-based LES simulations �e.g., Refs. 2 and 9�.

Depending on the coflow, from 1�106 to 3�106 addi-
tional vortex tubes are needed to resolve each additional jet
diameter downstream in the fully turbulent region of the jet.
For typical computer systems, this represents a significant
obstacle in extending the calculations to very long distances.
A practical consequence for the present study is that the
cases with the lowest coflows and hence shortest computa-
tional domains may show a comparatively greater influence
of the downstream boundary than the other simulations.

It is interesting to note that the computation of jet flows
scaled on orifice diameter is a substantially more ambitious
calculation than a planar shear layer scaled to unit width. In
fact, the jet inlet has a shear layer of length � that is more
than three times longer than that of the plane shear layer.
Unless unusually large computer resources are available, this
means that a choice has to be made between choosing large L
or small h. In this study, h is taken to be in a range that is
larger than it would be if dictated solely by a desire to elimi-
nate discretization errors. By this step it has been possible to
calculate the jets well into the turbulent region.

IV. VELOCITY STATISTICS

The coflowing jet has been well studied in physical ex-
periments and many flow statistics are available with which
to assess the quality of the vortex filament simulations. Of
particular interest is seeing if the method can capture trends
that arise from changes in the coflow since these point to-
ward the effectiveness of the approach in responding to
subtle physical differences that are not readily modeled.

To set the stage for making comparisons it is helpful to
first consider fundamental quantities categorizing jets such as
the momentum excess,

J � 2��
0

�

�U − Uc�Urdr

= 2��
0

�

�Ū − Uc�Ūrdr + 2��
0

�

u2rdr , �4�

where u2 is the streamwise Reynolds stress, and the mass
flux

M � 2��
0

�

�Ū − Uc�rdr , �5�

that may be calculated at each fixed streamwise location.
Integration of the momentum equation on planes normal to
the axial direction suggests that, barring any significant vis-
cous effect or change in mean pressure, J is constant inde-
pendent of x. In this case, the momentum radius, ��	J /Uc,
is useful in a number of contexts for characterizing the jet
behavior independent of conditions specific to a particular
case. According to the second equality of Eq. �4�, J may be
decomposed into the sum of a part depending on the mean
velocity and a contribution from the streamwise Reynolds
stress. Figure 3 shows an evaluation of Eq. �4� including the
two terms in its decomposition for the cases with Uc=1 /5
and 1/3. In both plots in the figure the approximate constancy
of J is evident with the small variability most likely an arti-
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FIG. 3. Streamwise decomposition of J. —, J; - - -, contribution from Ū;
- · -, contribution from u2. �a� Uc=1 /5; �b� Uc=1 /3.
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fact of the limited averaging and possibly the influence of the
downstream boundary condition.

According to the figure, from initially laminar conditions
in which the momentum excess is entirely contained within
the mean field, the contribution from the Reynolds stress
grows finally accounting for a significant share of the total
momentum excess. The growth of the Reynolds stress con-
tribution reflects the transition to turbulence in the jet—a
central part of which is the gradual diminishment of the
laminar potential core with streamwise distance, as will be
observed in detail below. Some tendency toward an equilib-
rium in the division of J between the mean field and the
Reynolds stress terms appears to be occurring for the 1/3
coflow. In both cases the streamwise extent is not long
enough to see what the final trends will be. Between the two
cases it appears that for the smaller coflow the Reynolds
stress grows to account for a majority of the velocity excess.
The results shown in Fig. 3 fit in with similar analyses of the
other coflows. Until such time as substantially longer jets are
computed it is not possible to reach stronger conclusions
about the asymptotic behavior of the momentum excess or to
perhaps make comparisons with experiments.

The mass flux, shown in Fig. 4, rises initially and, in
accordance with the finite and relatively modest length of the
computational domains, reaches a maximum and subse-
quently falls. The simulations with the smallest coflows see
the greatest rise in mass flux indicating the presence of stron-
ger transitional vortices that cause greater entrainment of
fluid into the jet. At the same time, since these are the short-
est of the simulations, they are seen to undergo a relatively
rapid decrease in mass flux as the effects of the truncation of
the vorticity field are felt. Liepmann and Gharib26 made a
careful study of the normalized entrainment d�M /M0� /dx,
where M0�M�0�, in the near field of a round jet without
coflow. Assuming that near the orifice the results for M in
Fig. 4 are untainted by downstream effects, then it is inter-
esting to examine the consistency between the observed en-
trainment in a round jet and the trend in the present data as it
changes with the coflow.

According to Fig. 4, M is linear near x=2 for each of the
coflows considered, so that it is possible to get an unambigu-
ous estimate of the slope by least-squares fitting a straight
line in each case. A cursory examination of the observed
dependence of the predicted entrainment on Uc suggests that
it is exponential which motivates the semilog plot of entrain-
ment versus Uc given in Fig. 5. Included in the figure is a
value for the round jet26 which is seen to be fully consistent
with the behavior seen in the simulations. Whether or not the
result shown in this figure is amenable to explanation in
terms of the dynamics of the near field vortices remains to be
seen.

A representative example of the simulated mean velocity
field across the jet is shown in Fig. 6 corresponding to the
1/3 coflow solution at x=8.75. The computed, normalized

mean velocity, Ūn�x ,r���Ū�x ,r�−Uc� /�U�x�, where

�U�x�� Ū�x ,0�−Uc, is compared to experimental values27

as well as the Gaussian form e−�r / 
�2
. Here, the length scale 
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FIG. 4. Streamwise variation of M for different values of Uc: �, 1/10;
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is determined as the value of r when Ūn=e−1. There appears
to be little doubt that the computed mean velocity is consis-
tent with a Gaussian profile, a result which holds equally
well at any of the streamwise positions in this and the other
coflows where the flow is fully turbulent.

A more general definition of the jet width,28 that is not
specific to a Gaussian profile, may be defined via

� �	�
0

�

�Ū − Uc�r2dr
�
0

�

�Ū − Uc�dr . �6�

In the case that Ū is Gaussian, a calculation shows that

�/
 = 1/	2. �7�

Nickels and Perry28 fitted their measured values of Ūn for
=2, 10, and 20 to the empirical function

e−0.677�m
2 +0.364�m

3 −0.121�m
4

, �8�

where �m�r /�, showing excellent agreement and collapse
of the data. Figure 7 compares the same computed profile
shown in Fig. 6 with Eq. �8�. The agreement in this case is
not quite as good as with the Gaussian in Fig. 6, suggesting
that at least for the present study, a Gaussian is the more
likely behavior of the mean velocity field. The reason for the
discrepancy between experiments is not apparently known.

Regardless of the details of the mean velocity distribu-
tions, the predicted scales for the simulated jets show a sub-
stantial agreement with both sets of experiments as is indi-
cated in Fig. 8 for 
 and Fig. 9 for �. In particular, it is seen
that the computed values merge smoothly into the physical
measurements after the transitional region. The data used in
the comparison for the scale 
 include some measurements
of Chu et al.27 and a sampling of results from many different
experiments assembled by Davidson and Wang.29 The data in
this case undergo a transition from slope 1 at small x /� to
slope 1/3 at large values. The results from the simulations
appear to be largely compatible with this nonlinear trend.

Since the velocity profiles at the orifice are not Gaussian,
it is interesting to see at what point Gaussianity is achieved.
Some idea of where this occurs is furnished by Fig. 10 con-
taining a plot of the streamwise variation of the ratio � /
 for
the different coflows. Despite some obvious noise in the
data, part of which is presumably due to the downstream
boundary condition, there seems to be a clear trend toward
the Gaussian value of 1 /	2 at locations in the turbulent field
immediately after the end of the potential core region.

Accurate prediction of the length of the potential core
region in a traditional round jet represents a significant chal-
lenge for LES techniques.2 The additional influence that a
coflow may have on this length makes the problem that
much more difficult. A quantitative indication of the core
region for any particular jet may be deduced from plots of
the velocity excess defined as �U /Uc since this is constant
through the core region before subsequently dropping there-
after. Results for the velocity excess for the present compu-
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Nickels and Perry �Ref. 28� fitted to data with �J=2, 10, and 20 at x=30.
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tations are plotted in Fig. 11 together with an agglomeration
of experimental measurements from Chu et al.27 and Nickels
and Perry.28 With the exception of a small under prediction
for the smaller coflows the extent of the core region is well
accounted for. While the effect of the downstream boundary
may have some influence on the discrepancies in this figure,
they also may reflect differences in the upstream boundary
conditions between the simulations and experiments as well
as the strong perturbative effect of the vortex tube represen-
tation that leads to a relative rapid transition. Both of these
kinds of influences have been seen previously in DNS jet
simulations by Boersma et al.30 In all cases the decay of
centerline velocity immediately after the potential core is
seen to be consistent with experiments both in slope and in
the fact that it collapses to a single curve.

V. REYNOLDS STRESSES

It has been observed,28 particularly insofar as amplitudes
are concerned, that there is considerable variability from one
experiment to another in the normalized Reynolds stresses
such as q�u2 / ��U�2. Evidently, it is necessary to mimic the
details of a specific facility �e.g., upstream turbulence levels,
nozzle design� in order make precise comparisons between
numerical predictions of Reynolds stresses and data from
physical experiments. For the present study there also tends
to be a significant discrepancy between the downstream lo-
cations in the self-similar region where the Reynolds stresses
are often measured in experiments and the points further up-
stream where they are computed in this study. Other factors
that inhibit direct comparison between experiment and com-
putation are differences in Reynolds number and possibly the
use of vortex discretizations with h larger than optimal.
Nonetheless, by focusing on some of the more general prop-
erties of the Reynolds stresses it is possible to gain some
sense of the intrinsic physicality with which they are ac-
counted for by the vortex simulation.

The Reynolds stress amplitude measured in Ref. 28 has
q�0.08 which is in the low end of observations and approxi-
mately half the amplitude of the present simulations. Useful
comparisons can be made in this case by scaling by the local
maxima as shown in Fig. 12 where separate plots are given
of the streamwise, radial, and azimuthal normal Reynolds
stress components as well as the shear component. To obtain
smoother results, the numerical curves represent averages
over values taken between 3.7�x /��4.9. The radial scaling
uses � averaged over the same interval and it is seen that the
computations match the trends closely. The most significant
difference here lies in the greater isotropy of the computa-
tions in which, unlike the experiments, v2 and w2 are almost
identical. For this reason the calculated w2 appears to be
slightly higher than the trend in the data. The heightened
isotropy of the computations is likely to be a by-product of
the use of a relatively large h.

Nickels and Perry28 showed that �uv� / �uv�max has a ten-
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dency to spread wider near the origin where �U is relatively
large than it does far downstream where the velocity deficit
is small. A similar trend is found to occur here as shown in
Fig. 13 where the computed normalized shear stress for the
1/5 coflow is seen to be spread wider than that for the 1/3
coflow. It should be noted that in this figure the plotting
depends on the predicted value of � that may to some extent,
particularly for the 1/5 coflow case, be influenced by prox-
imity to the downstream boundary.

A different look at the normal streamwise Reynolds
stress is given in Fig. 14 for data from Antonia and Bilger31

that has considerably larger amplitude than that in Ref. 28. In
fact, the computed stresses in this case are similar to the
experiments in regards to both magnitude and other qualita-
tive features. The length scale 
h used in Fig. 14 is the true
velocity half-width defined by the requirement that

Ūn�x ,
h�=1 /2. Shown in the figure is the computed Rey-

nolds stress distribution for Uc=1 /3 at position x /�=3.2 in
the vicinity of the end of the potential core and at x /�=3.9
near the downstream boundary. In both cases and most mark-
edly in the first position, the Reynolds stress has a local
minimum on the jet axis. This is qualitatively similar to the
experimental measurements that are taken at the same value
of  but very much more jet diameters downstream. The
numerical results are seen to be spread slightly further than
the data, an effect that could be tied to differences in 
h

among a number of other factors.

VI. VORTICITY FIELD

The population of vortex filaments that comprise the
simulated jets provides a direct view of the underlying vor-
tical structure of the flow field that is helpful in understand-
ing its development through transition to a turbulent state. It
is most useful to consider views of the vortex tubes selected
according to their having an end point within narrow slices
of the flow volume. For example, vortices with end point
xi

1= �xi
1 ,yi

1 ,zi
1� satisfying the condition �zi

1��0.01 provide a
view of the jet structure on the x-y plane through the central
axis. Figure 15 shows these collections of vortices for the
three coflows 1/4, 1/3, and 1/2. From this perspective the
vortical shear layers leaving from the orifice are plainly vis-
ible as they frame the potential jet core at the center.

The shear layers progress through a transition that is
very similar if not equivalent to that of a planar shear layer.
Vortical structures, essentially ringlike roller vortices with
connecting streamwise rib vortices, form, grow, and merge
out of the incipient shear layers and represent the primary
mechanism by which the potential core of the jet gradually
erodes giving way to a fully turbulent state.26,32 As in experi-
mental visualizations in round jets33 a noticeable asymmetry
develops to the vortex structure on either side of the jet.
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FIG. 13. Shear component of Reynolds stress. �, like a small-excess jet
�Ref. 28�; �, like a free jet �Ref. 28�. Computations: —, Uc=1 /3;
- - -, Uc=1 /5.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r/δh

√
u

2
/
∆

U

FIG. 14. rms streamwise velocity scaled by velocity excess. Symbols: data
from Antonia and Bilger �Ref. 31� at several locations in jet with =2.
Computations with =2: - - -, x /�=3.2; —, x /�=3.9.

FIG. 15. Vortex elements intersecting within 0.01 of the x-y plane.
�a� Uc=1 /4; �b� Uc=1 /3; �c� Uc=1 /2.

025107-9 Vortex filament simulation Phys. Fluids 21, 025107 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



Exactly how far downstream the core region persists for a
given coflow is tied to the properties of the vortical struc-
tures produced in the shearing. For the 1/4 coflow shown
here and the smaller coflows that were studied, the potential
core extends to somewhat beyond six diameters downstream
and fits in with the core lengths in a range up to approxi-
mately 6 seen in the classical round jet with no coflow.27 For
the higher coflows, it is clear from the figure that there is a
significant increase in the length of the coflow region.

The initial development of the jet shear layers immedi-
ately downstream of the orifice follows a sequence of events
that is controlled somewhat by the discrete representation of
the flow in terms of filaments and tubes. In particular, as
observed in the planar mixing layer study,24 the initial per-
turbations of the filaments are constrained to occur at the
junctions between straight tubes. In the present case, this
tendency is heightened by the systematic arrangement of the
tubes in the vortex rings that enter the computational do-
main. In particular, the polygonal structure to the rings con-
tains discontinuous changes in tube orientation that act as
perturbations to the axial symmetry, in addition to whatever
biases are contained in Eq. �1�. The footprint of the polygo-
nal structure is for the most part not evident beyond one
diameter from the orifice where the shear layer thickens as
seen in Fig. 15. Beyond this point the azimuthal distribution
of rib vortices, for example, does not show any connection to
the artificial structure imposed at the inlet.

Figure 15 is useful for seeing how the length of the core
region determined by the growth of the shear layers is con-
nected to differences in the vortical transition corresponding
to different coflows. Clearly, for the relatively low coflow of
1/4, the growth rate of the turbulent vortices is much faster
than the high coflow Uc=1 /2 case with the result that the
potential core is closed much earlier. It may also be seen that
the relatively weaker vortices in the latter case undergo sub-
stantially more vortex mergers than the lower coflow. For
example, a visual inspection of Fig. 15 suggests no more
than five pairings for the 1/4 coflow and at least ten for the
1/2 coflow.

A closer look at the three-dimensional �3D� structure of
the transition is provided by Figs. 16 and 17 showing a view
from the top and bottom, respectively, of the vortex filaments
contained in the top and bottom halves of the streamwise
region 2�x�4 for the Uc=1 /3 jet. For clarity, only every
third filament is displayed in these figures. These images
may be directly correlated with the structure seen in the cen-
ter illustration of Fig. 15. In particular, the sequence of braid,
roller, braid, and roller events in the lower shear layer cen-
tered at the points x=2.4, 2.75, 3.1, and 3.5, respectively, is
reproduced magnified in Fig. 17. Matching these up with the
view in Fig. 16 establishes that the turbulent roller vortices
are more or less ringlike and contain streamwise rib vortices
of an equivalent scale. At the location visualized here the
large roller and rib vortices are the direct result of the vortex
merger process in the growing shear layers. The roller vortex
at 2.75 in Fig. 17 gives a good indication of how roller
vortices are perturbed by the wrapping around them of
streamwise rib vortices.

An end-on view of the vortices in the 1/3 jet at the four

specific streamwise locations referenced above are shown in
Fig. 18. It is interesting to note the difference in the thick-
nesses of the vortex layers between the left and right images
corresponding to the braids and rollers, respectively. This
dichotomy is similar to that seen in dye marker viewed in
braid and roller positions in a transitioning jet.26 The lobes
represent streamwise vortices and vortex pairs arrayed
around the jet perimeter. As in Figs. 16 and 17, the rib vor-
tices often extend between several of the images in Fig. 18.
As mentioned in regards to Fig. 17 the ribs are seen to have
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FIG. 16. Roller and rib vortices in the top half-plane viewed from above for
1/3 coflow jet in Fig. 15.
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a significant effect in distorting the circularity of the roller
vortex rings. The end result is to create the lobed appearance
of the vortices in the cross sections.

Figure 19 is a detail of a particularly well formed vortex
lobe that is composed from counter-rotating rib vortices. The
vortex elements in the figure intersect the thin volume within
x=3.5�0.025 �at a different time than in Fig. 18�. Also plot-
ted are velocity vectors showing the projected motion in the
plane. It is evident that the vortices induce a significant out-
flow as well as potential motion outside the support of the
vorticity itself34 that would lead to entrainment of the fluid
into the jet. The kind of motion in this figure is not unlike
that described in experiments26 and is a central facet of the
motion that produces the lateral spread of the jet. Figure 20
shows contours of the streamwise velocity together with the
planar velocity vectors that leave little doubt that the action
of the streamwise vortices is to both cause the lateral ejection

outward of high speed fluid that is initially located near the
axis of the jet as well as to entrain the slower moving coflow
toward the jet center.

After transition and the end of the potential core, Fig. 15
shows that the fully turbulent jets acquire structure encom-
passing the full jet width. This has the appearance of a sinu-
ous motion built up from agglomerations of the large vorti-
ces produced at the end of the vortex merger and growth.
Presumably this structure persists downstream some distance
before forming the kinds of structures that define the self-
similar region.

Another aspect of the jet structure is revealed by looking
at individual vortex filaments at different locations within the
jet. These are the physical filaments representing the union of
the numerical filaments forming complete vortex rings enter-
ing the computational domain. A 3D view of filaments be-
ginning at the orifice for the 1/5 coflow is given in Fig. 21
with corresponding images from an end-on perspective in
Fig. 22. For the filament near x=1 the azimuthal perturba-
tions going around the ring are seen to also have a significant
streamwise component that includes deformation both up-
stream and downstream corresponding to inward and out-
ward deviations from the nominal position. At this point the
imprint of the initial polygonal structure is reflected in the
number of distortions spread around the ring.

Beginning near x=2 and partially evident in the end-on
view in Fig. 22�c� the influence of the inlet structure has
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been supplanted by larger scale disturbances associated with
the growth of the rib vortices. Here there begins long exten-
sions in the streamwise direction, culminating in the fourth
and fifth images that are in the late stage of transition. The
filaments in this case wind through the transitional vortex
structure as seen in Figs. 16 and 17. The final vortex fila-
ment, containing thousands of individual tubes, is entirely in
the fully developed part of the jet. This covers a substantial
streamwise region as well as the entire jet cross section. It
may be assumed that loop removal has been felt in the elimi-
nation of finer scale windings of the vortex filaments in this
and the other filaments in Figs. 21 and 22.

VII. REYNOLDS NUMBER

As noted previously, the coflowing jet begins to transi-
tion to a turbulent state largely as the end result of perturba-
tions intrinsic to the discrete representation of the vorticity
field. In this there is no explicit use of a viscosity tied to a
Reynolds number. Moreover, while a Reynolds number may
be implicit in the incoming flow—since boundary layers
containing vorticity are put in place at the edge of the
orifice—it makes no explicit appearance in the simulation.
On the other hand, the simulation relies on loop removal to
supply what amounts to spatially intermittent energy dissipa-
tion and where there is dissipation there must be a viscosity
and hence local and global Reynolds numbers. The goal now
is to estimate the Reynolds numbers for the jet flow, both
because of their intrinsic interest but also to gain some in-
sight into how the choice of numerical parameters associated
with loop removal, primarily vortex length, affects these val-
ues. This should be useful in problems containing solid
boundaries where a Reynolds number is explicitly assigned
and where one would like it to be consistent with the Rey-
nolds number produced by the turbulent vortices.

A means of estimating Reynolds number follows from
several universal properties of homogeneous and isotropic
turbulence that are herein assumed to prevail locally in an

approximate sense in the jet flow. In particular, the one-
dimensional �1D� Kolmogorov inertial range spectrum,

E�k� = CK�2/3k−5/3, �9�

is assumed to apply, where k is the wave number and E�k� is
the energy spectrum density. A distillation of empirical re-
sults from a diverse group of experiments35 suggests that
0.53 is the best estimate for the Kolmogorov constant CK

with the qualification that the Reynolds number be suffi-
ciently large. For example, DNS of isotropic turbulence36

suggests that CK=0.60 may be more appropriate if R��100.
Here, the Reynolds number R�=	u2� /�; u2 is the stream-
wise normal Reynolds stress and � is the longitudinal Taylor
microscale. A preliminary calculation has shown that for ei-
ther choice of CK it turns out that R� is below 100 so that the
following discussion is predicated on the use of CK=0.60. In
any event, use of a different value of this parameter leads to
relatively small quantitative changes in the results without
affecting the overall conclusions.

To the extent that a �5/3 law of the form C1k−5/3 with
constant C1 is observed locally in the jet simulation, then the
dissipation rate can be estimated from

� = �C1/CK�3/2. �10�

In fact, consistency of the vortex simulation with Eq. �9� was
reported previously23 and is also found to be present in the
jet simulations considered here, so a determination of � can
be made as a first step toward acquiring a Reynolds number.

A further assumption may be made that the isotropic
identity

� =
15�u2

�2 �11�

has at least some approximate local validity in relating the
dissipation rate to � and u2. In this case, rearranging Eq. �11�
and applying the scaling used in the jet problem yields

Re =
UCLD

�
=

15u2

�2�
, �12�

and a further calculation gives

R� =
u��

�
= u��Re, �13�

where u��	u2. In this way, an approximate determination of
Reynolds numbers can be achieved.

For the purposes of the present study, the Reynolds num-
ber associated with the Uc=1 /5 simulation at x=6.25 and the
1/3 coflow simulation at x=8.25 are considered. These are
representative of the results for simulations at the other
coflows. To provide further contrast the simulation with 1/3
coflow is taken to have h=0.015 instead of the nominal
h=0.04 used in the 1/5 coflow calculation.

An estimate of � and the other quantities pertaining to
Eqs. �12� and �13� can be had from velocity data obtained on
compact regions of short streamwise extent. Appropriate to
the jet, whose mean field is axisymmetric, the velocity data
are computed on a cylindrical mesh whose appearance on a
cross plane is shown in Fig. 23. The mesh in the figure con-
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sists of 12 concentric circles of equally spaced points with
the outermost layer at r=0.5. Shown with it are the vortex
tubes in a thin slice 6.24�x�6.26 at one instant of time of
the 1/5 coflow jet. At this streamwise location, more than six
diameters from the origin, there is significant intermittency
as is evidenced by voids in the vortex field that penetrate to
within r=0.5 of the jet axis. The grid in the figure is limited
to a radius of 0.5 so as to avoid having to take intermittency
into account in the analysis: it is assumed that the flow is
continuously turbulent within the central core of the jet cov-
ered by the mesh out to r=0.5.

The streamwise discretization of the grid in Fig. 23 con-
sists of 201 points extending a distance 0.2 fore and aft of the
plane x=6.25. A similar mesh centered on 8.25 is used for
the 1/3 coflow case. The spacing of points, �x=0.002, is
more than adequate to ensure a fine-grained representation of
the velocity traces. To obtain statistics at any fixed r, aver-
aging is performed over the data on fixed cylindrical shells
of grid points: 57 time steps separated by �t=0.4 represent-
ing an elapsed time of 22.4 is used for the 1/5 coflow data
and 35 time steps covering an elapsed time of 13.6 for the
1/3 coflow. Points further from the center in the mesh are
necessarily better averaged than those closer in. In view of
the minimal amount of data at r=0, averaging is not done at
this point.

Figure 24 gives representative views of the 1D stream-
wise energy spectrum at r=0.32 for the two coflows. These
apply equally well to any of the other radial positions in the
mesh. In this, the 1D spectrum is determined by averaging
based on a finite Fourier transform of the individual stream-
wise lines of data points in the grid. Included in the figure are
fitted lines obeying a k−5/3 power law that are determined by
averaging over the region where E�k�k5/3 is approximately
constant. Small parallel shifts to the fitted lines have no ef-

fect on the subsequent discussion other than small, immate-
rial, quantitative changes to the computed quantities.

The values of � determined by this technique as a func-
tion of radial position for the two simulations are shown in
Fig. 25, where they are seen to be essentially constant across
the core region of the jet. Also shown in Fig. 25 are estimates
of the rms streamwise velocity variance u� and Taylor mi-
croscale � determined from the same data sets. The latter is
computed by fitting a parabola at s=0 to the calculated two-
point longitudinal correlation function R11�x ,s�
�u�x�u�x+se1� /u2�x�. As in the case of �, the values of �
and u� are also nearly constant along the central part of the
jet.

Between the two cases considered here, the 1/3 coflow
has a smaller velocity variance, a larger �, and a significantly
smaller dissipation rate. Besides the somewhat obvious effect
of coflow in producing different levels of shearing, the dif-
ferences in Fig. 25 reflect the influence that numerical pa-
rameters, such as tube length, have on establishing the small-
est resolved scales in the simulation. Numerical parameters
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must affect how the 1D energy spectrum and the two-point
correlation functions are realized, a connection that has yet to
be established more fully. As one example of the subtleties
involved, it may be noted that � is smaller than h for the 1/5
coflow simulation yet larger than h in the case of the 1/3
coflow.

Figure 26 displays the results of using the quantities
whose values are shown in Fig. 25 to arrive at a determina-
tion of Re and R�. Consistent with the absence of significant
variation in the constituent fields, the local and global Rey-
nolds numbers are essentially unchanging over the jet core.
Of course, one must expect that Re, which may be interpreted
as the inverse of the viscosity, is constant everywhere in the
flow domain. An average of the Reynolds number values in
the figure suggests that the 1/5 coflow jet at x=6.25 is char-
acterized by R��60 and Re�6312 while the 1/3 coflow jet
at x=8.25 has R��79 and Re�7653. These are relatively
modest values that imply that loop removal is quite effective
in replacing what would nominally be a model of inviscid
Euler flow, with a model of turbulent flow at finite viscosity.
That the higher Reynolds number is associated with the
smaller tubes is to be expected since the degree to which the
small scales are resolved is the primary distinguishing fea-
ture between any two simulations that have been scaled simi-
larly in terms of UCL and D.

With the Reynolds number known it is straightforward to
evaluate the Kolmogorov length and time scales given, re-
spectively, by

� =
1

Re
3/4�1/4 �14�

and

� =
1

��Re�1/2 . �15�

These have average values across the jet core given by �
=0.0020 and �=0.026 for the 1/5 coflow and �=0.0022 and
�=0.038 for the 1/3 coflow. The values of � are significantly
smaller than the respective � values as well as the spatial

resolution implied by the length of the vortex tubes. � falls in
the range of the time step �t=0.04 used in marching the
simulations forward in time. In a general sense the computed
values of the scales are consistent with viewing the vortex
simulation with loop removal as a LES with dissipation
scales lying in the subgrid.

A plot of the compensated spectrum in which E�k� is
multiplied by k5/3 and normalized by Kolmogorov variables
is given in Fig. 27 for the same cases shown in Fig. 24.
Consistent with the choice of CK=0.60, the compensated
spectrum is approximately constant at this value. Moreover,
the extent of the constant region is greater for the simulation
with the larger of the two Reynolds numbers. A subtle aspect
of the figure, which also occurs at most of the r positions
where the spectrum is computed, is the presence of a small
bump or plateau in the curve just to the right of the flat,
inertial range region. Such a feature has been seen in a num-
ber of DNS simulations of homogeneous isotropic
turbulence.36–38 Finally, it can be construed from the figure
that the inertial range in the simulation is roughly in the
interval 0.1�k��0.2 for the 1/3 coflow, which is a slightly
higher range than in DNS of isotropic turbulence36 for which
the upper end is at 0.05.

For the inertial range scales, the structure function
S2�s�= �u�x+se1�−u�x��2 is expected to have s2/3 power law
behavior given by

S2�s� = CS�s��2/3, �16�

with CS a constant. In fact, Eq. �16� provides an alternative
means of estimating dissipation rate and consequently Rey-
nolds number. Thus, equating an empirical fit, say, C2s2/3, to
Eq. �16� gives the estimate

� = �C2/CS�3/2. �17�

The Reynolds numbers that have been discerned for the
simulations may be regarded as not being high enough for
the flow to have a fully isotropic inertial range. In this case,
according to DNS simulations,36 CS is likely to be substan-
tially smaller than its isotropic value, CS=4.02 CK=2.13. In
fact, the compatibility of the 1D energy spectra shown in Fig.
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27 with the structure functions computed from the same data
sets can be tested by evaluating CS from Eq. �17� for given �
and C2 and seeing how these compare to values at similar R�

studied in DNS.36 After determining C2 from the raw data for
S2�s�, the plot of compensated structure functions S2�s�
��s��−2/3 shown in Fig. 28 may be made. The horizontal
lines in the plot correspond to the particular value of CS

=1.43 for the 1/5 coflow at R�=60 and CS=1.58 for the 1/3
coflow at R�=79. The appearance of these results has con-
siderable qualitative agreement with the shear-free isotropic
flow,36 including the relative change between the two curves,
though the numerical values are displaced lower by approxi-
mately 0.24. Such discrepancies can be accounted for by the
many factors affecting the estimates, such as the sensitivity
to the � prediction. On the whole, it appears that the simu-
lated turbulence in the round jet can be said to have physical
characteristics similar to those in other numerical simulations
in a similar Reynolds number range.

VIII. SCALAR FIELD

By adding passive tracer particles to the simulated jets,
the discussion can be broadened to include the mixing of a
contaminant laden jet with the environment. Either discrete
particles or concentration fields deduced from particle densi-
ties in fixed volumes can be considered. In the latter case,
turbulent diffusion of the scalar field is assumed to be suffi-
ciently dominant so that it is not necessary to include an
appropriate random walk to model molecular diffusion at a
finite Schmidt number. The results computed here are com-
pared to concentration fields determined in the experiments
of Chu et al.27

Particles are seeded into the developing jet at the orifice
from a unit disk of points similar in appearance to that shown
in Fig. 23. Thus, each tracer may be viewed as being at the
center of a small volume of fluid Vt=��t / �4Nt� that enters
the domain at each time step. Here, Nt is the number of
particles covering the inlet. Since the incoming fluid has unit
concentration, each tracer is assigned mass m=Vt. The con-

centration at subsequent times at the ith collection volume Vi

is estimated to be ci=NiVt /Vi where Ni is the number of
particles in Vi at a given time. The scalar field is computed
for the case of the 1/5 and 1/3 coflows. These have coarse
�Nt=225� and extremely fine �Nt=5041� representations in
terms of tracers, respectively. The latter allows for smoother
instantaneous predictions of concentration field, though, with
suitable time averaging, the mean statistics appear to be
equally well accounted for in both cases.

A view of the axisymmetric concentration field for the
two coflows is shown in Fig. 29. At Uc=1 /3, the average
includes 400 consecutive records covering an elapsed time of
16, while for the 1/5 coflow 27 fields are averaged covering
a time interval of 5.4. While further averaging might be de-
sirable, the figure makes clear the influence of the greater
shear in the 1/5 coflow case in increasing the spreading rate
of the scalar, besides the reduced length of the core region.
The pure conical shape of the core region in both cases is
apparent as well and has the same appearance as in
experiments.10

The maximum mean concentration field, located on the
centerline at every position forms the basis of the normalized

centerline dilution27 defined as 1 / �C̄�x ,0��. Here and
henceforth, to compensate for the reduced averaging at the
jet center, the centerline mean scalar is taken to be an appro-
priate weighted average of the mean scalar in the small re-
gion r�0.167 surrounding the central axis. Comparison of
the centerline dilution with data from a variety of experi-
ments as described by Chu et al.27 is given in Fig. 30. Simi-
lar to the results for the velocity excess in Fig. 11, the dilu-
tion of the scalar field with downstream distance is seen to
fall within a range that is consistent with the measured
values.

Similar to Figs. 6 and 7, Fig. 31 compares measured and
computed distributions of the normalized mean scalar field

C̄�x ,r� / C̄�x ,0� across the jet width. The radial distance is
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scaled in terms of the concentration width 
c, defined by the

condition that C̄�x ,
c� / C̄�x ,0�=1 /e. The computed curve,
which is typical of those in both of the scalar jet calculations,
shows behavior that is somewhat off from a Gaussian. In
particular, the lateral spread of the calculated concentration is
somewhat less than that in the experiments while the distri-
bution near the centerline compensates by being fuller than
the Gaussian. From this figure it appears that the computed
field is in a middle stage of transitioning from a top hat
profile at the inlet to what may very well become Gaussian
further downstream. While the experimental data here are at
substantially higher  values, in fact, close to 10, compared
to the simulation having =2, perhaps a more important
difference is that the experiments are at many more orifice
diameters downstream, thus providing greater distance for
Gaussianity to develop. This behavior is distinctly different
than the case of the mean velocity field that reaches Gaussi-
anity well within the extent of the current simulations as seen
previously.

As for the concentration width, Fig. 32 shows a plot of
the streamwise growth in 
c compared to experiment27 where
it seen to have a similar growth rate but significantly greater
magnitude. To some extent this reflects the non-Gaussianity
of the simulated field which has yet to achieve a form inde-
pendent of the inlet distribution. The contrast between this
behavior and that of the mean velocity field is highlighted in
Fig. 33 comparing the mean concentration and velocity pro-
files at the identical position x=8.75 in the 1/3 coflow jet.
These curves show that velocity and concentration have the
same extent of penetration into the ambient, coflowing fluid,
a fact that is evident from instantaneous visualizations of the
tracer particles and velocity contours. The significant differ-
ence between the mean fields is in the more uniform spread
of the concentration field over the jet than the velocity field.

It has been often noted6 that the scalar concentration
tends to be relatively well mixed over individual large eddies
that comprise the principal structure of the transitional and
early turbulent jet. This implies that only sufficiently far
downstream as the eddies break up into a finer scale turbu-
lent structure can a Gaussian distribution of mean scalar
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emerge. In contrast, the velocity field is determined every-
where as a summation over a distribution of turbulent vorti-
ces of varying strengths and orientations that evidently pro-
motes the early onset of Gaussianity.

These points are supported by Fig. 34 showing end-on
contour plots at x=8.75 in the 1/3 coflow jet of the velocity
and concentration fields. Images �a� and �c� to the left are of
the instantaneous normalized velocity, while �b� and �d� are
of the concentration field. The top images, �a� and �b�, con-
trast contours between 0.025 and 0.25 spaced at intervals of
0.025, while the lower two figures, �c� and �d�, contain con-
tours between 0.75 and 1, also at intervals of 0.025. Consid-
ering �a� and �b� at the smaller contour values, there is a
dramatic difference between the concentration field—that is
confined to the edge of the domain of tracer particles—and
the far more dispersed velocity field. A different situation
occurs with images �c� and �d� in Fig. 34 for the upper range
of contour levels. Here, the largest scalar contours are dis-
tributed over most of the cross section of the jet, while those
of the velocity are confined to the center. It was noted pre-
viously in reference to Fig. 15 that the turbulence regime
prior to the downstream boundary contains many large ed-
dies whose provenance is in the more organized upstream
structures. Evidently, the further downstream dissolution of
these into smaller scale eddies—within each of which the
scalar contaminant is presumably well mixed—is a require-
ment for the emergence of complete Gaussianity in the jet
scalar field.

IX. CONCLUSIONS

This paper has considered the simulation of the turbulent
coflowing jet via a grid-free vortex filament scheme incorpo-
rating loop removal as a de facto subgrid model. The coflow-
ing jet flows produced by the method were seen to have
length scales and velocity statistics that fit in well with a
number of physical experiments. The vortical make up of the
transition was fully consistent with experiments including a

major role for the development and growth of streamwise
vorticity. The special relationship of the latter to the lateral
spread of the jet through entrainment and the ejection of fluid
from the jet core was observed in detail. Through the use of
tracer particles the range of the study was expanded to in-
clude analysis of the spread of a scalar jet into an ambient
coflowing fluid. The rapid appearance of Gaussianity in the
mean velocity distribution was not matched by the mean
concentration field. The contrasting behaviors appear to re-
flect different underlying mechanisms in their dispersion,
with the concentration field depending on the complete dis-
solution of large eddies within which the scalar field is well
mixed.

A significant interest of this work, motivated in part by
the relatively new status of the vortex filament approach as a
LES scheme, was in exploring some of the dependencies of
the method on numerical parameters. A major part of this
was in establishing a connection between the Reynolds num-
ber and the use of loop removal with its implied dissipation
rate. For the Reynolds number range corresponding to the
simulations, the jet turbulence was observed to have statisti-
cal properties agreeing well with established results for tur-
bulence determined from DNS.

Finally, it may be concluded that the vortex filament
scheme achieves one of the primary goals of LES, namely, to
capture essential large scale features of the turbulence with-
out the necessity of resolving small viscous scales or care-
fully selecting a specific subgrid model and its parameters.
For the coflowing jet this was particularly evident in the
capability of the scheme in reproducing subtle aspects of the
physics such as the effect of coflow on the length of the
potential core. This encourages future studies that will utilize
the approach in modeling particle dispersion, sound genera-
tion, and other complex phenomena that depend on a robust
treatment of the underlying turbulent eddies. Future plans
also include advances in expanding the numerical efficiency
so that an order of magnitude increase in the number of
vortex elements is feasible. This will enable an expansion of
the jet simulations to encompass the entire spatial develop-
ment from the orifice through transition to the self-similar far
field.
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