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The spatially developing, unforced, turbulent mixing layer is simulated via a grid-free vortex method. Vortex
filaments composed of straight tubes are used as the computational element with new vortex tubes produced as the
filaments stretch. A loop removal algorithm serves as a de facto subgrid model limiting growth in the number of
elements to practical levels. The computations are high resolution and well resolve the mixing layer from its unforced
inception as a laminar flow through transition to a self-similar turbulent state. Mean velocity statistics including
growth rate and Reynolds stresses agree well with experimental values. The vortical composition of the transition
region is found to develop in one or another of the modes that have been documented in previous experiments and
computations: roller/rib vortices, the chain-link fence structure in a diamond shaped pattern, and somewhat oblique
roller/rib configuration with partial pairing. Evidently, small perturbative effects that are intrinsic to the numerical
scheme influence which transitional mode appears locally in the simulations. The computations offer a clear view of
the downstream dissolution of the identifiable structure into turbulence in the late transition and the salient aspects of

the process are noted.

Nomenclature

maximum vortex tube length

downstream boundary

similarity length scale

number of vortex tubes

boundary layer Reynolds number

axial vector along the ith vortex tube

inlet velocity

potential velocity

velocities at top and bottom of shear layer
streamwise, vertical, and spanwise coordinates
center of ith vortex tube

: beginning and end of ith vortex tube
circulation of ith vortex tube

vertical offset of downstream vortex sheet
similarity variable

momentum thickness

smoothing parameter

smoothing function
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HE high Reynolds number spatially developing mixing layer
formed at the juncture of two parallel streams of unequal
velocity is of intrinsic interest both as a fundamental example of
shear induced turbulence as well as an important component of many
complex, engineering flows. Building on earlier studies, physical
experiments such as those of Lasheras et al. [1], Lasheras and Choi
[2], Bell and Mehta [3], Leboeuf and Mehta [4], and Slessor et al. [5],
as well as numerical work by Rogers and Moser [6,7], Comte et al.
[8,9], Collis et al. [10], and Ansari [11], among others, have yielded
considerable understanding of the mixing layer physics including its
vortical makeup during transition and the statistical properties of the
downstream fully turbulent, self-similar flow.
A backdrop to much of what is known about the mixing layer is the
understanding that it is sensitive to inlet conditions such as
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turbulence levels and imposed forcings that affect both the way in
which the transitional vortex system develops as well as flow
statistics measured in the self-similar region. Several modes of vortex
behavior have been observed in the transition region: a system of
spanwise roller and streamwise rib vortices associated with the
Kelvin—Helmholtz instability [1,2,4,6], a lattice structure reminis-
cent of a chain-link fence that is associated with spanwise
asymmetrical perturbations [10,12], and what may be described as a
three-dimensional variant of the roller/rib forms with partial pairing
and branching of vortices that may follow from turbulent inlet
conditions [8,9,13]. Regardless of the transition, the self-similar
turbulent shear layer is characterized by linear growth of the
momentum thickness and collapsing velocity statistics though
growth rates and Reynolds stress amplitudes are well known to vary
from one experiment to another [14]. Evidently, the downstream
persistence of at least some aspects of the inlet conditions, as
reflected in particular characteristics of the vortices in the transition
region, has a bearing on the properties of the self-similar flow [5,15].

Further understanding of the mixing layer is perhaps most required
in regards to the circumstances surrounding its entire spatial
development from inlet through transition to self-similar turbulent
flow. For example, it is not entirely clear when or in what way to
expect the appearance of different transition modes within a given
mixing layer, nor their relationship to the downstream turbulent flow.
Insights along these lines are likely to be most readily obtained from
the special capabilities of numerical schemes in supplying detailed
information about flow structure and statistics. To shed light on these
issues requires a numerical simulation capable of providing a more
complete view of the spatial mixing layer than has yet been achieved.
In this work it will be seen that a useful tool for simulating the
spatially growing mixing layer lies in a grid-free vortex filament
method incorporating an implicit “subgrid” model in the form of a
loop removal algorithm [16].

Many of the benefits of simulation that have been realized to date,
such as detailed reconstructions of the vortex dynamics in the
transition region and insights into the connection between inlet
conditions and the downstream self-similar flow, have been obtained
from the closely related transient mixing layer. To some extent this
reflects the numerical advantages that accrue from the opportunity to
invoke streamwise periodicity. Studies of the transient flow overlook
features unique to the spatially developing case such as the
simultaneous presence of the various flow stages that naturally feed
back to the inlet and the bending of the mixing layer toward the slow
side [17-19]. Direct treatment of the spatially growing case also


http://dx.doi.org/10.2514/1.34205

1726 BERNARD

eliminates the potential for ambiguity arising from the selection of an
appropriate convection velocity for use with Taylor’s hypothesis
20.21].

Numerical simulations of the spatially developing mixing layer
have also been made, though such computations have generally been
of limited scope and purpose. For example, Druzhinin and
Elghobashi [22] calculated a mixing layer at relatively low Reynolds
number with the primary interest of looking at the dynamics of
embedded bubbles. Special forcing at the inlet was used to create
streamwise vortices and the computed flow did not extend far enough
in the streamwise direction to have a clear-cut self-similar region. At
a somewhat higher Reynolds number Tenaud et al. [23] performed a
large eddy simulation of a mixing layer with inlet velocity consisting
of random noise superimposed on the mean flow exiting from a
splitter plate. After adjustment of the subgrid model and amplitude of
the inlet perturbations, the predicted growth rate was brought in line
with physical experiments. A self-similar region was observed with
properties that were in the range of experimental observations and
brief consideration was given to the vortical structure that might be
present.

The present work considers the numerical simulation of the
spatially developing, unforced, turbulent mixing layer via a grid-free
vortex method [16,24-26]. The Reynolds number is high and the
field of vortices used in representing the flow is found to transition
without forcing in response to whatever small perturbations may be
present in the course of computing velocities used in determining the
motion of the vortex system. Besides demonstrating the effective-
ness of this approach in simulating an important shear flow by
directly comparing computed results vs experiment, the intent is to
add to the current understanding of the properties of the spatially
developing mixing layer including the appearance of vortical modes
in transition and the onset of turbulence. In particular, in the absence
of purposeful forcing that would otherwise direct the solution toward
one transition mode or another, it will be seen that all three transition
modes seen in experiments can and do occur in the present calcu-
lations, thus affording an opportunity to gain some new insights into
the complete range of behavior possible in the spatially developing
mixing layer.

Vortex methods are attractive for studying the mixing layer and
turbulent flows in general because they can accommodate high
Reynolds number flow without concern for unwanted diffusion that
may smooth regions of high shear. This advantage prompted early
studies such as that of Ashurst and Meiburg [27] who modeled the
transient mixing layer via a vortex filament method. Some insights
into the formation of rib vortices and their connection to roller
vortices were achieved despite coarse resolution in which single
layers of filaments were used to represent the flow from the top and
bottom of a splitter plate. Inoue [28] performed similar computations
of the spatially growing mixing layer with a single layer of vortices.
Somewhat better resolution was achieved by Knio and Ghoniem [29]
in an application of the transport element method for a transient
mixing layer. They examined the physics of the transition with five
layers of vortices and introduced some degree of self-adaptivity by
allowing for the creation of new vortices where called for in the
calculation.

The development of schemes such as the fast multipole method
[30] (FMM) and its practical implementation for vortex methods [31]
has created the opportunity to perform substantially larger vortex
method simulations than previously possible. In essence, the FMM
reduces the nominal O(N?) cost of evaluating velocities due to the
mutual interactions of N vortices through the Biot—Savart law to a
more manageable O(N) operation. High resolution studies of such
flows as the two-dimensional cylinder wake [32] and three-
dimensional sphere wake [33], among others, have illustrated the
benefits of the vortex method for simulating high Reynolds number
laminar flows. Depending on the particular formulation of the vortex
scheme, the further extension of such methods to turbulent flows
requires careful evaluation of vortex stretching effects to prevent
instability or difficulties such as runaway growth in the number of
new vortex elements. In the first approach toward simulating three-
dimensional turbulence with a vortex method, Cottet et al. [34]

adopted a hybrid method in which vortex stretching was evaluated
with the help of a mesh. Flow in a periodic box was simulated and
shown to compare favorably with similar calculations using a
spectral scheme.

The present study considers the simulation of the turbulent mixing
layer via vortex filaments composed of straight tubes. The removal of
vortex loops as they form provides an effective means of
accommodating the physics of vortex stretching [16] within a grid-
free context. A parallel implementation of the FMM is employed that
enables practical computation with as many as 7 million vortex
elements representing a gain of 2 orders of magnitude over previous
vortex method applications to the mixing layer flow. It will be seen
that this resolution is sufficient to encompass a significant mixing
layer from the inlet through to a substantial self-similar region.

Sections I and III discuss in turn the numerical method and how it
may be applied to the mixing layer. Section IV gives a consideration
of statistical results, their comparison to experiments and how and to
what extent they are sensitive to values of numerical parameters such
as vortex length and domain length. Section V contains a discussion
of the structural features of the simulated mixing layer followed by
the conclusions.

II. Computational Method
A. Vortex Tubes

In this study, the evolving three-dimensional vorticity field is
represented through the collective behavior of convecting and
interacting vortical elements in the form of short, straight, vortex
tubes joined end to end forming filaments. The ith vortex tube of N
total is described via its circulation T'; and endpoints, say, x; and x?.
With the imposition of periodicity in the spanwise direction, it will be
seen later that the filaments in effect extend to infinity so that
violation of the divergence-free condition of the vorticity field isnot a
factor in these computations.

The dynamics of the vorticity field is modeled by convecting the
endpoints of each tube via a simple Euler scheme and invoking
Kelvin’s theorem to justify preserving the circulation as a reasonable
approximation in high Reynolds number flow. The elongation,
rotation, and translation of the tubes via their endpoints provide an
approximation to the stretching, reorientation, and convection effects
in the equations of motion. The dominance of the vortex stretching
process in turbulent flow causes vortex tubes to preferentially
elongate in time. Consequently, to maintain the accuracy of the
discretization the vortices are divided in half when they exceed a
length, say #, that is assigned for each simulation. The importance of
h in controlling the smoothness of the filaments as they fold and bend
in the turbulent field will be shown in Sec. IV. In effect, /2 has arole in
the grid-free calculation somewhat analogous to the mesh size
appearing in grid-based methods.

Vortex stretching under turbulent flow conditions produces new
vortex tubes at an extraordinarily fast rate so that unless special
measures are taken to control the number of tubes the calculations
will grow beyond practicality in a very short time. Chorin [35,36]
observed that vortex stretching in the presence of bounded energy
means that the filaments must preferentially fold, possibly forming
loops because it is only in this way that a net far-field velocity can be
prevented. The vortex loops can be associated with a local energy
that would, if the numerical scheme permitted it, cascade to scales in
the dissipation range to be then eliminated through the action of
viscosity. Following a suggestion of Chorin [35,36], excision of
vortex loops from the calculation as they form may function as a
reasonable model of energy dissipation at the inertial range, thus
saving a potentially costly calculation of the dynamics of the small
scale motions. In effect, loop removal is tantamount to a de facto
subgrid scale model, and so that by its inclusion the numerical
scheme can be considered to have the characteristics of a large eddy
simulation.

For loop removal to be a useful tool in turbulent flow simulation, it
is necessary that it be sufficiently effective to prevent unbounded
growth in the number of vortex elements. Moreover, it must do so in
such a way that the physics of the resolved scales is left undisturbed.
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These issues have been examined in a previous study of a turbulent
puff of fluid created by pulsing a planar slot jet [16]. The results
clearly establish the effectiveness of loop removal in limiting growth
in the number of tubes without adverse effect on the turbulence
simulation. In fact, whether or not loop removal was activated, the
turbulence field was found to maintain a Kolmogorov —5/3 inertial
range spectrum as well as structure functions, correlation functions,
and isotropic flow properties consistent with experiments and theory.
The loop removal algorithm is adopted in the present study, and, as
will be seen below, it is found to also perform effectively in limiting
the growth in the number of tubes while not appearing to have a
detrimental effect on the resolved scales.

B. Velocity Computation

A central aspect of the numerical algorithm is the calculation of the
velocity field associated with a given distribution of vortex tube
elements. In principle, this entails a summation over the individual
contributions of the N vortices according to the Biot—Savart law in
combination with a potential flow, U, (x, ), used to satisfy inflow
and outflow boundary conditions. The result is

1 N

U =Uy(x 0 = ) S Tl /o) ()

Ir,|?

i=1
where r; = x — x;, X; = (x} + x?)/2, and s; = x? — x! is an axial
vector along the ith tube. In keeping with the common practice of
desingularizing the Biot—Savart law [37], the smoothing function

¢(|ri|/0) =1- (1 - %(|r,-|/0)3)g*(|r,\/0)3 (2)

with o as a smoothing parameter, appears in the velocity formula.
The effect of ¢ is confined to the region |r;| < 2.340 because ¢ is
essentially unity beyond this point. In practice, very small values of
o, on the order of 107*, are used so that the main point of the
smoothing is to prevent the occurrence of exceptionally large
velocities in the unlikely event that the end points of two tubes are in
virtually the same spot. Test calculations were performed in which
velocity profiles and statistics were computed for a fixed vortex field
and differing o values to gauge the effect of this parameter. It was
found that for 0 < 2 x 1073 any changes to velocity were less than
0.01%. For o as high as 0.064, a less than 1% variation in the mean
statistics was observed.

Evaluation of the velocity at the locations of all vortex tubes via
Eq. (1) is an example of an N-body problem and as such requires
considerable care in its solution so that the overall method is rendered
practical. In fact, a parallel implementation of the Greengard and
Rohklin [30] FMM is used that follows the detailed adaptive
algorithm set forth by Strickland and Baty [31]. In this, vortices in
neighboring boxes contribute to each others’ motion via the exact
formulas, whereas vortices in more distant boxes are linked via the
multipole approximation. The use of smoothing as in Eq. (2) prevents
growing the FMM oct tree to its optimal depth containing
approximately 100 vortices per box. To prevent loss of efficiency the
local FMM evaluation is carried out in this case via a “middleman”
scheme based on 3-D linear interpolation from the exact velocities at
the corner nodes of the local boxes (and their refinements, if
necessary). Because the velocity variation is smooth, the procedure is
very accurate.

The FMM as implemented reduces the nominal O(N?) cost of
evaluating vortex interactions to a far more efficient O(N). Timings
for the evaluation of the sum in Eq. (1) with 16 and 32 parallel
processors on a HP Alphaserver ES45 supercomputer are shown in
Fig. 1 where in both cases the scaling is linear with N. As will be
discussed next, included in these timings is the evaluation of
contributions from four image planes of vortices arrayed to either
side of the computed mixing layer. Thus, the time needed in
evaluating the velocities at the positions of 7 million vortices, which
is on the order of 700 s, actually includes the combined effect of
63 million vortices. The timings in the figure are such that complete
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Fig. 1 Cost per time step of velocity evaluation vs number of vortices: +,
16 processors; x, 32 processors.

simulations of a mixing layer requiring on the order of 1000 iterations
can be achieved in a matter of a few days.

III. Computational Problem

The computational domain used in the simulation of the mixing
layer is illustrated in Fig. 2. In this, lengths are scaled by the spanwise
period of the flow domain so that the transverse coordinate satisfies
—0.5 < z £ 0.5. The inlet plane is at x = 0, the downstream end is at
x =L, and y is the vertical coordinate. At the inlet a streamwise
velocity profile, U;,(y), is maintained that determines the general
scale and dimension of the downstream developing mixing layer. In
particular, the momentum thickness [defined in Eq. (7)] at the inlet,
0y, that is associated with U, (y) allows the computational domain to
be placed into context with the flowfields studied in physical
experiments such as that of Bell and Mehta [3] and others where self-
similar behavior is seen. By this measure the streamwise extent of the
computational domain ranges up to approximately 2000 6,, while the
spanwise extent is approximately 1000 6,, dimensions that are
comparable to physical experiments.

Vortex tubes moving beyond L are eliminated as they cross. As
indicated above, periodic images of the computational domain to
either side are included as part of the velocity field computation. In
principle, an infinite number of images should be used, but as this is
not practical just a finite number are included. Test computations
comparing the flow resulting from 4 vs 32 images to either side show
atbesta 0.1% effect on the asymptotic streamwise velocity above the
mixing layer. It is also the case that the use of four images creates a
very slight symmetry about the centerline in the velocity field that all
but vanishes with 32 images. Neither of these tendencies affect the
quantitative results below, though spanwise flow symmetry will be

vortex sheet

:
% \ vortex sheet

Fig. 2 Schematic of the computed mixing layer. The shaded region,
which is of unit width after scaling, is the computational domain. For
most computations, four periodic images to each side are used in
computing velocities.
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seen to have some subtle influences in what occurs in the transition
from the laminar inlet field.

Complete specification of the velocity field requires also taking
into account the vorticity residing in the regions immediately
upstream and downstream of the computational domain. A
convenient means of representing such influences is via semi-infinite
vortex sheets placed before and after the computational section. The
upstream sheet is set to provide a potential flow felt in the
computational domain that is consistent with a velocity U, = 1 in the
top layer and velocity U,, in the bottom layer. In general it is assumed
here that U, = 0.6 matching the experiments of Bell and Mehta [3],
though some test calculations have been performed with other
values. The vortex sheet placed downstream of the mixing layer (i.e.,
beyond x = L) recovers the influence of vorticity that has exited the
computational domain. Although this is a somewhat gross way of
taking into account the truncation of the mixing layer, the method
adopted here, or some other equivalent technique, is a necessary part
of vortex method computations depending on use of the Biot—Savart
law.

The imposition of a vortex sheet as a simplified model of the
downstream vorticity is felt in several ways, none of which turns out
to be of great consequence for the computations. Most obviously, the
abrupt change in the vorticity distribution at the downstream end
alters the statistics of the turbulent field in a zone abutting x = L. In
fact, computations show that such effects are not extensive. To give a
concrete example, with L = 2, the effect of the boundary can be seen
in some statistics no further upstream than x = 1.6. For the
dimensionless units of this study, it will be seen that there still
remains a sizable self-similar turbulent flow region that for all intents
and purposes is unaffected by the downstream modeling.

Naturally occurring mixing layers have a tendency to displace
toward the slower moving fluid, so that placement of the downstream
sheet at y =0 is not fully consistent with the position of the
downstream extension of the mixing layer that it is designed to
replace. For computations in which the downstream sheet is placed at
y = 0 it was found that, just before x = L, the mixing layer has a
tendency to turn back up toward y =0. Though the statistical
consequences of this are barely noticeable, in the interest of
consistency the downstream vortex sheet was displaced a small
distance below y = 0 so as to more closely align with the missing
downstream vortex layers. Preliminary calculations suggested that a
small offset of the sheet to y = —e, where ¢ = 0.01 is required, and
this value was then used in all computations including those
discussed here.

With the downstream velocity shift included, the total potential
velocity field U,(x) = (U,(x),V,(x)) originating from the
upstream and downstream vortex sheets is given by

U,=0.5(U,+U,)+0.5(U,— U,)([sgn(y)/2 — arctan(x/y) /7]

+sgn(y + £)/2 — arctan((L — x)/(y + £)) /) )
U, —-U, x4+ y?
Y= 1"g((L T O+ 8)2) @

This velocity distribution is used everywhere except in a thin region
0 < x < 0.01 where the inlet velocity field is enforced so as to insure
that the singularity in Eq. (4) at x = 0, y = 0 has no effect on nearby
vortices. The smoothness of the velocity field near the inlet was not
affected by this alteration.

At the start of the calculation the computational region is covered
by vortex filaments filling up several parallel layers at different y
locations that align with the incoming vorticity field. The filaments
on each layer are subdivided into a fixed number of tubes whose
circulations are determined by the position the layer has with respect
to the inlet velocity. The number of layers equals the number of y
positions where new vortex filaments enter the flow at each time step.

The inlet velocity field is taken to be a continuous function ranging
from U, for all points y < y, < 0to U, forall pointsy > y, > 0. The
region between y, and y, is subdivided into K layers according to a
monotonically increasing set of points y;,, i=1,...,K + 1, with

y1 =Y, and yg,; =y,. The incoming tubes are centered at the
midpoints (y; + y,41)/2, i=1,...,K as are the vortex sheets
spanning the flow domain at the onset of the computation. The initial
vortex sheets are subdivided into M filaments of circulation
LU, —U)/M,whereU; = U;,(y;),i=1,.... K+ 1,U, =U,,
and Uy, = U,. Thecirculation of the new filament entering the flow
domain at the ith layer during the time interval dr is
I, = (U}, — U})di)2.

Regardless of the choice of Uy (y) or the locations of the
intermediary points, the total amount of circulation entering the
computational domain in each time step is fixed for given parameters
U,, U,, and dt. The number of layers and how the inlet velocity is
divided between them determines how the circulation is distributed.
If one layer is used, as for example would be the case if the inlet
velocity was taken to be a step function, then the circulation of each
tube is significantly higher than if multiple layers associated with a
smooth velocity distribution are employed. Even with multiple
layers, the fineness of the discretization is affected by how the
subdivision is made: for example, if both weak and strong vortices
are introduced, then resolution will generally be determined by the
strong vortices. Selecting values for y, that render I'; approximately
constant for all layers offers perhaps the best strategy for maintaining
accuracy of the simulation, a conclusion that is supported to some
extent by test calculations. The results presented below are obtained
from simulations incorporating an equal distribution of circulation
between the vortex layers.

The two choices for Uy (y) shown in Fig. 3 were used in
calculations. One is an inlet profile

_J U (=y/1)"7, =1, <y<0
Ui()_{Uf(y/l,)l%, L2y >0 ©)

that crudely approximates the velocity associated with boundary
layers produced on either side of a splitter plate. The length
parameters here are taken to be [, =0.027, [, =0.031 that
correspond to how thick the boundary layers would be if the
Reynolds number (based on streamwise length) on the top of the
splitter plate were R, = 500, 000 (see Schlichting [38]). Equation (5)
is of a similar type as that used by Tenaud et al. [23] and in very crude
fashion by Ashurst and Meiburg [27]. Because the vorticity shedding
off each surface has opposite signs, filaments of opposite rotation are
brought together in this model. The velocity defect at the inlet
disappears as the flow develops downstream.

The second profile in Fig. 3, which was used by Rogers and Moser
[7], corresponds to a narrow error function profile in which the
distance y, — y, = 0.01 is quite small. This may be taken as a model
of the inlet flow at alocation in a mixing layer beyond the point where
avelocity defect might exist. It is but one of many ways of replacing a

0.05 T

0.04 1

0.031 ]

0.02 / 1

0.01f 4 b

-0.01F N :
-0.02f \ :
-0.03F i

-0.04} :

-0.05 + L
0 0.5 1 1.5

U

Fig. 3 Inlet velocity fields: solid line, error function; dashed line,
boundary layer approximation given by Eq. (5).
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step function with a continuous distribution. A number of
computations were done using both of the functions displayed in
Fig. 3 after which it was observed that there were insufficient
differences between the two to warrant separate consideration of
both. Consequently, the error function approach is used for the
computations described in the present work because it provides
superior resolution compared to Eq. (3) for the same number of
vorticity layers.

For the calculations in this study the filaments are initially
subdivided into either 20 or 25 tubes across the span implying
nominal initial tube lengths of 0.05 and 0.04, respectively. The
values of & used in computations are generally much smaller than
these so that the tubes undergo one or more subdivisions at the very
start of the computations until they reach lengths consistent with /.
Calculations with as many as 10 layers of filaments have been
attempted, with most of the work reported here using eight levels.
Some test calculations were performed with just a few layers and
relatively large & and these, in keeping with observations of Knio and
Ghoniem [29] show a marked decline in the quality of the flow
statistics. It appears from the current work that having at least five
layers is a minimum requirement for attaining simulations that are
not unduly affected by coarse discretization. On the other hand, it is
not possible to point to substantial differences in the computations
performed using 8 or 10 layers, and so the smaller value is used here
in the interest of enhancing computational efficiency.

Many of the following results are taken from two particular
simulations: one with L =2.0, 7 =0.025 and the other with
L =1.5, h=0.005. As will become evident, the number of vortex
elements in a simulation increases either due to L increasing or h
decreasing. The calculations cited below with the smallest values of
h generally have L <2 because they are at or near the highest
practical resolution for the available computing resources: up to
7 million vortices.

IV. Self-Similarity

Self-similarity in the mixing layer is accompanied by a collapse of
the mean velocity profiles at different streamwise locations if plotted
in terms of the similarity variable

n=(—yo(x)/1(x) (6)

where at each fixed x, y,(x) is the location where the mean velocity
U = (U, + U,)/2 and I(x) is an appropriate length scale that varies
in the streamwise direction. In the self-similar region /(x) is expected
to be linear and proportional to the momentum thickness [3,39],

6(x) = / S -0 T - U U~ U dy (D)

Physical experiments, such as those of Bell and Mehta [3], supported
by classical self-similarity arguments assuming the validity of an
eddy viscosity model (for an account see [39]) show U to be well
described by the error function

U= (U, +Uy)/2+erf((U, — U,)/2 ®)
Substituting Eq. (8) into (7) yields

0

1 (e'9]
o a-ermran ©

and after numerically evaluating the right-hand side it is found that

g =0.399 (10)

Equation (8) may be used as it was by Bell and Mehta [3] to
determine /(x). In the current study, however, 6 is first computed
directly from its definition Eq. (7) and then Eq. (10) is used to
compute / for use in evaluating 7. This approach is made feasible by
the fact that, as will be seen below, Eq. (8) is satisfied to high
accuracy in the numerical simulations.

7+ RO

-8 . . . . . . . . )
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Fig. 4 Streamwise development of y,. Dotted line, L =2, h = 0.025;
dashed line, L = 1.8,h = 0.00625; dash-dotted line, L = 1.5,/ = 0.0125;
solid line, L = 1.5, h = 0.005.

For a given mixing layer simulation y,(x) may be determined by
interpolating between the values of U computed on a fine grid.
Results from several runs are shown in Fig. 4 where it may be
observed that the shift is somewhat sensitive to L at least insofar as
where the spatial shift begins to occur. The rate at which the mixing
layer moves to the slow side appears to be essentially the same for all
cases. It may also be noted that the quantitative shifts in the figure are
in alignment with the choice ¢ =0.01 used in displacing the
downstream vortex sheet as discussed above.

A. Growth Rate

Figure 5 shows 6(x) predicted by the current scheme for the
calculation with 4 = 0.025 and L = 2.0. The growth rate seen here is
highly linear and is typical of what is observed in many calculations
that were done with differing inlet conditions and parameter values.
The slope of I(x) determined from the fitted line depicted in the figure
and use of Eq. (10) is 0.0208 which is very much consistent with the
range 0.019 — 0.023 observed by Bell and Mehta [3] between
tripped and untripped upstream conditions and in other studies such
as that of Oster and Wygnanski [40].

A number of calculations were performed with the goal of
assessing the dependence of the mixing layer growth rate on
numerical parameters. This showed that the only significant effect
came from the domain length L, and this dependence vanished once
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0.016 |

 0.014
0.012 |

0.01

0.008 . . . . )
0.4 0.6 0.8 1 1.2 1.4
x
Fig. 5 Momentum thickness, §. Growth is linear in the self-similar
region. The fitted dashed line has a slope of 0.00829 corresponding to
dl/dx = 0.0208.
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Fig. 6 Dependence of d//dx on the length of the computational domain.
O, computations with U, =0.5; x, computations with U, = 0.6,
h = 0.025; +, computations with U, = 0.6, h < 0.025. Horizontal lines
indicate the range seen by Bell and Mehta [3].

L was large enough. An overview of these results is shown in Fig. 6
where it is seen that the growth rate d//dx for L > 2 is within the
experimental range as found by Bell and Mehta [3], while for smaller
L there appears to be a tendency for overprediction. The trend is
particularly evident if just the data with & = 0.025 are considered.
There is also some indication in the figure that the growth rate
decreases with & though this variation is much less than that of L.

Figure 6 also contains some results from calculations with
U, = 0.5. These display a substantially higher growth rate than the
U, = 0.6 calculation at the same (small) L values. In fact, the trend
and quantitative difference between the growth rates at the two U,
values is in accord with the differences measured in physical
experiments by Oster and Wygnanski [40].

The general conclusion may be reached that the use of relatively
large L is desirable as an antidote to the potentially adverse effects,
such as enhanced growth rate, that are attributable to the premature
truncation of the downstream turbulent flow domain and its
replacement with a simple semi-infinite vortex sheet. On the other
hand, as will become clear, the effect of small L appears to be
confined to just the growth rate of the mixing layer because neither
the appearance of a self-similar region nor its velocity statistics and
structural aspects show an obvious influence of this parameter.

As mentioned previously, the value of L does have a strong
influence on the number of vortical elements in the computation (and
hence its cost) simply because the turbulent flow region is larger and
can contain more elements. Depending on the circumstances, this
may or may not complicate the opportunity for choosing L large
enough to capture the correct growth rate. More on this point will
follow once the selection of /4 is considered, because this parameter
also has a strong influence on the number of tubes in a given
computation.

B. Velocity Statistics

Mean velocity profiles for the simulation with L = 1.5, 7 = 0.005
are shown in Fig. 7 for seven equally spaced locations between
0.9 < x < 1.2 in the turbulent self-similar region. The mean of the
velocity field is calculated by averaging at intervals of time Az = 0.1
from # = 10.4 to t = 18.1. The profiles are virtually indistinguish-
able from each other and in very close agreement with the error
function in Eq. (8). Predicted mean velocities taken from simulations
with other parameter values display similar results.

A representative view of the normal velocity V on a vertical cut
through the self-similar region is illustrated in Fig. 8. This is
qualitatively and quantitatively similar to the results of Druzhinin
and Elghobashi [22] and shows the entrainment of fluid from both
sides that accompanies the mixing layer growth as well as the
downward drift associated with the bending toward the slow speed
side. Further insight into the mixing layer growth is provided by
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Fig. 7 Self-similarity of the mean velocity field. Solid line, U at seven
locations 0.9 < x < 1.2 for a simulation with L =1.5, h = 0.005; O,
Eq. (8.

Fig. 8 V across the L = 1.5, h = 0.005 simulation at x = 0.95.

Fig. 9 in which the streamlines corresponding to the mean U, V fields
are shown. Note that the y coordinate has been greatly expanded in
the interest of clarity. The darker line extrapolates tothex = 0,y = 0
origin of the mixing layer, and thus represents to some
approximation the dividing line between flow entering the domain
from above and below the splitter plate. Figure 9 makes it clear that
straight streamlines accompany the linear growth in thickness. Some
idea of how the solution is contaminated near the downstream
boundary is revealed in the flattening of the streamlines beyond
x = 1.4. This supports the previous contention that the simple vortex
sheet representation of the missing downstream vorticity has a
limited upstream effect on the computed mixing layer.

The self-similarity of the normal and shear Reynolds stresses for
the same case as considered in Fig. 7 is shown in Fig. 10. Here, there
is also excellent collapse of the statistics albeit with some scatter that
likely reflects the need for greater averaging. The accuracy of the
predictions is indicated in Fig. 11 where a comparison is made
between an appropriate average of the curves in Fig. 10 and the
Reynolds stresses measured by Bell and Mehta [3]. The latter are
taken from a number of streamwise positions in the self-similar
region and show some variation. The present results, though slightly
higher than the range seen in the experiments, appear to be good
particularly because no attempt was made to duplicate the precise
inlet conditions in the experiment.
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Fig. 10 Reynolds stresses in self-similar region 0.9 < x < 1.2.
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Fig. 11 Reynolds stresses compared to data. Symbols are from
different streamwise locations in the experiment of Bell and Mehta [3].

Aninvestigation of how the velocity statistics might depend on the
value of & showed the mean velocity to be unaffected while there was
a distinct effect on the magnitude of the Reynolds stresses, so long as
h was larger than a threshold. This pointis illustrated in Fig. 12 where
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Fig. 12 u? for different & values. Dotted line, & = 0.025; dash-dotted
line, A = 0.0125; O, h = 0.00625; solid line, 2 = 0.005; dashed line,
h = 0.003125; @, data at different streamwise locations from Bell and
Mehta [3] experiment.
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Fig. 13 Close-up view of vortex tubes: a), 2 = 0.005; b), 2 = 0.025.

it is seen that the accuracy of the streamwise Reynolds stress
significantly improves as h decreases from 0.025 to a value on the
order of 0.005. It is also evident that further reduction of & below
0.005 appears to be of little consequence. A likely explanation for
this result is contained in Fig. 13 where a comparison is made
between the visual appearance of vortex filaments in the simulation
with 4 = 0.025 vs the one with 4 = 0.005. The view is from above of
small equivalent parts of the mixing layers. In the former case there is
an angularity to the filaments that allows the individual straight tubes
to be easily discerned, while for the smaller 4 the angularity is for the
most part lost and the filaments appear to be smooth. This result
suggests that failure to provide sufficiently fine resolution of the
vortex filaments leads to overestimation of the Reynolds stress, at
least in the present context of mixing layer flow. Evidently, when 4 is
larger than a threshold the accuracy of the velocity approximation
built into Eq. (1) is jeopardized.

The streamwise dependence of the maximum of the normal
Reynolds stresses and minimum of the Reynolds shear stress for the
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simulation with L = 1.5, h = 0.005 are shown in Fig. 14. The self-
similar region in this case consists, at a minimum, of the domain
0.9 < x < 1.2 that was considered previously in Figs. 7 and 10. The
growth rate is linear throughout this region and, consistent with
expectations of self-similarity, it is evident that the extrema are
essentially constant here as well. Beyond x = 1.2 the influence of the
downstream boundary begins to be felt and may explain the rise in
the streamwise Reynolds stress maximum, though evidently, the
other three components are not affected in this way. The results in this
figure are typical of what occurs in the other simulations.

Another indication of the accuracy of the vortex scheme is

provided by the comparisons of the correlation —uv/ \/; \/v_2
between experiment and computation shown in Fig. 15. The terms in
the computed correlations represent averages over the appropriate
self-similar regions. Results for three values of / are given where it is
seen that all display excellent quantitative agreement with the data
including those curves obtained with the larger /. Evidently, the
amplitudes of the individual Reynolds stresses are not an issue in this
correlation because their influence factors out between the numerator
and denominator.
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Fig. 14 Streamwise variation of Reynolds stress extrema. Solid line, F;
dashed line, v2; dotted line, w?; dash-dotted line, zv.
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Fig. 15 —av/vu2vy2 Dotted line, L = 2, h = 0.025; dash-dotted line,
L = 1.5, h = 0.0125; solid line, L = 1.5, h = 0.005; @, data of Bell and
Mehta [3] at different streamwise locations.

V. Visualizations

The favorable predictions of the previous section suggest that the
present high resolution grid-free representation of turbulent flow in
terms of vortex filaments is likely to provide a realistic description of
the vortical structures at work in the unforced mixing layer. This then
provides an opportunity to examine the complete physics of the
developing mixing layer from inlet to the self-similar regime,
including the late transition into turbulent flow.

A. General Observations

The vortex filaments that are present in the computational domain
at the inception of the mixing layer calculations evolve in the manner
of a transient mixing layer while simultaneously convecting
gradually beyond the downstream boundary at x = L and hence out
of the numerical solution field. In their wake, vortex filaments enter at
the inlet boundary and develop over time into a complete spatially
growing mixing layer. Figure 16 is a typical view from above of the
mixing layer during the startup phase at = 1.2 of a calculation with
L =2, h =0.025. Approximately half of the original vortex field is
still present in the form of a transient mixing layer in the right half of
the image. To the left of this the spatial mixing layer is filling in
behind it. The transient layer contains well-defined spanwise roller
vortices with associated streamwise rib vortices that may be
distinguished from the more heterogeneous vortex pattern on the left-
hand side. Between the spatial and transient layers is a large turbulent
vortical region whose eventual passage beyond x = L signals the end
of the startup phase of the calculation. It may be remarked at this
point that this and subsequent figures suggest that the width of the
computational domain is more than adequate to not be a factor in
shaping the dynamics of the vortical field. Indeed, there are
numerous streamwise rib vortices across the span, with many of these
appearing to develop independent of each other.

It may be noticed in Fig. 16 that a number of the roller vortices in
the transient layer are in the act of merging. The rib vortices show
signs of being wrapped around the rollers where they intersect.
Moreover, the roller vortices have a tendency to be kinked where
they encounter ribs and this aspect continues unabated in the
presence of vortex merger. Many of the vortical structures in Fig. 16
are transitioning into turbulence, and as they grow and interact with
neighboring vortices turbulence fills the flow domain. The further
breakdown into a fully turbulent field is rapid and occurs before the
transient mixing layer has fully exited from the computational
domain. In many of its observed properties, the dynamics of the
transient layer closely follows the observations of prior direct
numerical simulations of the transient mixing layer such as that of
Rogers and Moser [7].

The vortical structure in the spatial field in Fig. 16 is noticeably
different in composition than the transient field it replaces. Later in
time, after the transient phase has passed, the vortical pattern visible
in the transition region persists in the same general form. In this,
strictly spanwise roller vortices are absent in favor of a pattern of
oblique roller-type vortices intersecting with riblike vortices. To

Fig. 16 Top view of mixing layer with L = 2, = 0.025 at¢ = 1.2. Th
flowfield is evenly divided at this time between a transient mixing layer on
the right and a developing spatial layer on the left.
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some extent this structure contains evidence of partial pairing and
branching of vortices reminiscent of the observations of Chandrsuda
etal. [13] and Comte et al. [8,9]. It may be also noticed in Fig. 16, and
more pronounced in figures to follow, that the mixing layer tends to
spread laterally as a natural consequence of turbulent diffusion. This
effect is only made visible in the figures because the vortices in
neighboring periodic images of the flow domain are not included in
the visualizations.

Lest it be thought that the structure in Fig. 16 is in some sense
favored in the vortex method, Figs. 17 and 18 corresponding to
simulations with L =1.5, h =0.005 and L = 1.8, h =0.0125,
respectively, show that quite different transitional structures can and
do occur. Figure 17 also includes a corresponding side view of the
mixing layer so as to give some sense of the growth and proportions
that are involved in these computations. In both of the latter figures
and most extensively in Fig. 17, the central region of the flow is
dominated by the presence of merging spanwise roller vortices
interacting with streamwise rib vortices. To either side, and this is
most clearly established in Fig. 18, there appears the chain-link fence
type of vortex transition that has been seen in the experiments of
Nygaard and Glezer [12] and analyzed by Collis et al. [10]. It is
interesting to note that the roller/rib and chain-link regimes coexist

Fig. 17 Top (top) and side (bottom) view of fully developed mixing
layer with L = 1.5, h = 0.005 at ¢ = 18.

Fig. 18 Top view of mixing layer with L = 1.8, 2 = 0.0125 at ¢t = 5.8.

side by side in the same transitioning flow, albeit the lattice structure
begins further upstream than the roller vortex structure and
transitions into turbulence earlier. A closer look at the transitional
vortex systems in these figures will be given later. Here it suffices to
note that what appears to be three different modes of transitional
vortices are present in the simulations.

The transitional flows observed in these figures originate from
what is ostensibly the identical laminar inlet field. Evidently, the
vortex representation is subject to a number of influences that
provoke instabilities leading to different vortex arrangements in
transition. In view of the quasi symmetry about the central axes that is
quite visible in Figs. 17 and 18, itis likely that the symmetric velocity
bias created by the use of a relatively small number of periodic
extensions has a role to play in what sort of transition structure is
present. In particular, roller vortices are found along the central axis
of the mixing layer where the velocity is affected equally from the
spanwise images while the lattice structure develops near the sides
where there is an asymmetric contribution to velocity from the image
vortices. In fact, this explanation for the appearance of the lattice
structure coincides with the asymmetrical forcing used in obtaining
the lattice field in previous experiments [12] and computations [10].
In the present context it is interesting that the velocity asymmetry
leading to the chain-link structure is quite small, but evidently not
small enough to be overlooked as a perturbation to the vortex field.

One reason why the vortex method might be especially sensitive to
small disturbances that promote one or other of the transitional
modes is the absence of an explicit model for viscous diffusion. In
this case the implied Reynolds number of the simulation is high thus
aiding instability. The vortex filament representation also has the
property that the effects of small perturbations are initially channeled
to the junctures between straight vortex tubes. Small local variations
in the computed velocities at these locations begin the instability and
the process is self-sustaining. A further complication is the role of
upstream feedback in initiating instabilities in ever changing
patterns, particularly in the absence of purposeful forcing.

It may be expected that 4 has some role to play in promoting one
form of transition over another. For example, the transitional
structures appearing to the left side of Fig. 16 in the spatially
developing mixing layer, if equivalent to that observed by
Chandrsuda et al. [13], would be associated with turbulent initial
conditions. Previously it was seen that turbulence levels are higher
for larger 4 in this simulation so that the flow perhaps reacts more
nearly in this case as if the inlet flow were turbulent.

One way that h can affect transition is by influencing where it
initiates. To see this, note that & exerts control over the vortex
division process in the sense that those vortices whose lengths are
close to i are more likely to subdivide in the near future than those
that are much smaller than /. Subdivision is important because it
provides the filaments with the capability of responding to
perturbations along their lengths. Within the fully turbulent field
where vortices of many different lengths are present, it is probably
not of great consequence that some tubes are closer to subdivision
than others, but in the inlet region the opposite is true. In fact, here the
tubes share a common length in comparison to /& because new
filaments entering the domain are divided into tubes of equal length.
Thus the behavior of the entire local field of tubes is affected by how
close the vortex lengths are to subdivision. If / is incommensurate
with the width of the mixing layer, then the newly created tubes are
farther from subdivision than if their lengths were commensurate. In
the former case computations have a small but noticeable delay in the
start of the transition process compared to the latter case. Evidently,
tubes that are close to A at the beginning experience their first
subdivision more quickly than those that are not and the observed
location of transition is affected. By choosing & smaller, any
potential delay in the start of the transition process is reduced. For
very small / the effect should not be noticeable.

It may be concluded from this discussion that apart from the
appearance of the vortex lattice due to spanwise asymmetry in the
velocity field, identification of the exact perturbations that promote
the vortex scheme to develop into one mode of transition or another is
fraught with difficulty: the complexity of the nonlinear system is a
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hindrance to such analysis. The fact that the computed solutions do
fall into the modes observed in experiments and other computations
is an encouraging sign of the physicality of the simulations. It is
particularly interesting that the appearance of the various transition
modes does not depend on proactively forcing the mixing layer in
one substantial way or another: for example, by seeding the flow with
upstream turbulence or streamwise vortices. The results suggest that,
at least for the high Reynolds number implied in this work, the
triggers for the instabilities that grow into one response mode or the
other do not have to be large, and aspects of all the transition modes
might be present in unforced flows occurring in nature.

B. Vortex Structure

The graphical display of the field of computational elements in a
vortex method affords a view of vortical flow features that is free of
some of the ambiguities present in the interpretation of photographic
images from physical experiments or the plotting of 3-D isosurfaces
in grid-based simulation methods. This quality enabled the analysis
of the preceding section and now it is used to take a closer look at
some of the important dynamical aspects of the transition and
turbulent flow regions. A particularly clear view of the dichotomy
between the roller/rib vs lattice mode of transition is given in Fig. 19
that is a magnified view of the image in Fig. 18 wherein only the
vortices that entered the flow at one of the eight layers are shown. The
lattice structure is plainly revealed and seen to match the images
reported by Comte et al. [8,9] and Collis et al. [10]. Seemingly
unaffected by the vortex lattice is the adjacent roller and rib vortex
pattern. The contrast between the ways in which neighboring vortex
filaments interact in each of the two modes of transition is striking.

The view of the roller and rib vortices in Fig. 19 makes especially
clear the vortex merging and secondary instabilities leading to the
twisting vortex filaments. The three dimensionality of the vortex

Fig. 19 Close-up of one layer of vortices in the mixing layer with
L=18,h=0.0125ats=5.8.

Fig. 20 Close-up from top (top) and side (bottom) of one layer of
vortices from the mixing layer in Fig. 17.

dynamics in the transition is emphasized in Fig. 20 which is a closeup
from above and the side of the vortices in one layer taken from
Fig. 17. As observed by Bell and Mehta [3] the tendency to the
formation of streamwise vortices precedes the appearance of the first
roller. The side view of the vortices shows that even the earliest
perturbations are three dimensional wherein the filament is
accelerated where it bends up and decelerated where it bends down.
In many instances neighboring filaments distort in phase with each
other. Where they do not, filaments may overtake downstream
filaments and be overtaken by upstream filaments.

An interesting aspect of the visualization is to see what might be
learned about the late transition and how this might vary between the
several modes. Figures 21 and 22 are close-up views of the vortical
field in Figs. 17 and 18, respectively, while Fig. 23 contains side view
plots of vortex tubes taken from narrow slices through the mixing
layers. To the left side in Fig. 21 are the roller vortices developing
through a merger interlaced with growing rib vortices. Vortex
mergers are clearly visible in Fig. 23a in the vicinity of x = 0.47,
0.55, 0.58, 0.64, and 0.70 with obvious braid regions at x = 0.49,
0.53, and 0.61. The downstream end of Fig. 21 is at approximately
x = 0.8 and the braid region at x = 0.61 is clearly visible at the center
of the figure where large streamwise vortices connect an upstream
roller with merging downstream rollers. The comparable view in
Fig. 22 shows a precise diamond-shaped pattern of interlocking
vortices in the form of a chain-link fence. Not surprisingly, the
corresponding image in Fig. 23b gives a very different vortex profile
than is associated with the roller/ribs.

The view toward the right side in Figs. 21 and 22 as well as in
Fig. 23 shows the downstream evolution of the organized transitional
structures in the rib/roller and lattice modes. In Fig. 21 the roller
vortices continue to merge and grow in size as they interact with
increasingly large rib vortices. Some degree of spanwise
organization to the flow persists as the vortices acquire the more
and more chaotic appearance of a complex turbulent field of
interacting vortical structures. This scenario is reflected in the
changes in Fig. 23a between x = 0.6, where clearly defined roller/
braids are present, to x = 0.75 where there are still objects that have
the appearance of rollers albeit distorted, to points downstream of
x = 0.85 where roller vortices are no longer evident. In effect, the
rollers exert some influence as coherent structures inside the
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Fig. 21 Enlarged view of the vortex structure in Fig. 17.
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Fig. 23 Side view of vortices. a) Tubes for which —0.01 < z < 0.01 corresponding to Fig. 21; b) tubes for which —0.31 < z < —0.29 corresponding to

Fig. 22.

turbulent field, approximately the extent of two rollers, before they
are subsumed by the turbulent motion. Under different inlet
conditions, however, it is not difficult to imagine that stronger roller
vortices would persist further into the turbulent field, such as is the
case in the experiments of Brown and Roshko [41] or the forced
simulations of Rogers and Moser [7].

The late stage of the vortex lattice transition in Fig. 22 appears as a
natural extension of the preceding structure. In this, the individual
vortices have a tendency to grow larger and interact with neighboring
vortices until the chain-link pattern is indistinct and the entire field is
filled with vortices. Viewed from the side in Fig. 23b the growth in
the lattice structure is visible upstream of x = 0.6 followed by a rapid
dissolution into turbulence beyond this point. Consistent with
Figs. 18 and 19 the onset of turbulence in Fig. 23b is farther upstream
than in Fig. 23a. In both transition modes, the growing size and
complexity of the structures appears to be associated in part with
vortex filaments winding around the transitional vortices. Although
the final turbulent fields are replete with randomly interacting
structures, in the form of agglomerations of parallel filaments, these
are of a scale no larger than is achieved at the end of transition.

Some idea of the behavior of individual vortex filaments within the
mixing layer simulations is provided by Fig. 24 showing vortices at
different streamwise locations for the flow with L = 1.5, h = 0.005.
The filaments toward the downstream end of the image have
undoubtedly been simplified via the removal of vortex loops. Where
transition begins the instability of the vortical field is visible in the
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Fig. 24 Representative vortex filaments at different streamwise
positions in the mixing layer with L = 1.5, 2 = 0.005 at¢ = 18.

wiggling of the vortex filaments and their elongation consistent with
Fig. 20. The final transition to turbulence is reflected in the loss of
spanwise coherence to the filaments and their very rapid spread to
encompass a large region of the flow. The last filament in the figure is
fully within the self-similar turbulent zone, and its complexity
mirrors that of the overall turbulent field.

VI. Conclusions

A grid-free vortex filament method has been applied to the
simulation of the spatially developing, unforced, shear layer over a
domain sufficient to include a substantial self-similar region. Key
requirements for enabling these high resolution computations filled
with many millions of elements was an efficient implementation of
the FMM and the incorporation of loop removal to control growth in
the number of vortex elements produced by stretching. The growth
rate of the mixing layer showed some sensitivity to the length of the
computational domain, but once a threshold was passed, the scheme
reproduced experimental values. Similarly, the accuracy of Reynolds
stress predictions was enhanced by imposing a sufficiently small
upper bound to the length of the vortex tube elements: one that
provided for the smoothness of the vortex filaments. In all cases, the
mean velocity field in the self-similar flow regime was very well
predicted to be an error function.

Accompanying the favorable flow statistics was an underlying
transitional vortical structure that is largely familiar from previous
experimental and numerical studies. An interesting result, that may
be associated with the tacit high Reynolds number of the
simulations, was the subtlety with which small perturbations in the
implementation of the numerical scheme led to the appearance of
one or another of the vortical transition modes. Such behavior may
be regarded as consistent with the well-known sensitivity of mixing
layers to a wide range of stimuli. In the present case, a slight
spanwise bias to the velocity field appeared to be a definite factor in
influencing the transition to take on the chain-link fence
configuration, though determining the complete cause and effect
in this and the other cases is a formidable undertaking.

The simulations have given a detailed view of the behavior of the
vorticity field from the inlet to the turbulent self-similar region. The
onset of turbulence after the roller/rib vortex transition differed
somewhat from that following the lattice structure. The formation of
roller vortices was noted to occur a small distance downstream of the
position where the lattice transition initiates and the coherence
associated with large roller vortices at the end of transition persisted a
short way into the fully turbulent flow. For both transition regimes
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the breakdown of structures into turbulence follows their growth
aided by the winding of vortex filaments and an escalation of their
interactions with neighboring structures.

The present scheme may serve as a basis for studying many
additional aspects of the mixing layer such as predicting the behavior
of dispersed particles. Indeed, the special capability of the method in
representing vortical structure at a range of scales that underlies
turbulent mixing should be of considerable benefit in accurately
modeling particle laden flows.
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