Recovery of Object Oriented Features from C++
Binaries

Kyungjin Yoo
School of Electrical and Computer Engineering
University Of Maryland
College Park, Maryland 20742, USA
Email: athleta@umd.edu

Abstract—Reverse engineering is the process of examining and
probing a program to determine the original design. Over the
past ten years researchers have produced a number of capa-
bilities to explore, manipulate, analyze, summarize, hyperlink,
synthesize, componentize, and visualize software artifacts. Many
reverse engineering tools focus on non-object-oriented software
binaries with the goal of transferring discovered information into
the software engineers trying to reengineer or reuse it.

In this paper, we present a method that recovers object-
oriented features from stripped C++ binaries. We discover RTTI
information, class hierarchies, member functions of classes, and
member variables of classes. The information obtained can be
used for reengineering legacy software, and for understanding
the architecture of software systems.

Our method works for stripped binaries, i.e., without symbolic
or relocation information. Most deployed binaries are stripped.
We compare our method with the same binaries with symbolic
information to measure the accuracy of our techniques. In this
manner we find our methods are able to identify 80% of virtual
functions, 100% of the classes, 78% of member functions, and
55% of member variables from stripped binaries, compared to
the total number of those artifacts in symbolic information in
equivalent non-stripped binaries.

I. INTRODUCTION

Reverse engineering is the process of discovering the tech-
nological principles of a device, object, or system through
analysis of its structure, function, and operation [1]. Reverse
engineering of binary executable code has been proved useful
in many ways. It is performed to port a system to a newer
platform, to unbundle monolithic systems into components and
reuse the components individually, and to understand binary
code for untrusted code and for malware. Such cyber-security
applications are becoming the most common use of reverse
engineering, leading to a rapid rise in its use in industry and
government.

Understanding the disassembly of C++ object oriented code
is needed due to the widespread use of C++ in many modern
applications. Reverse engineering such binary code is com-
monplace today, especially for untrusted code and malware.
Agencies as diverse as anti-virus companies, security consul-
tants, code forensics consultants, law-enforcement agencies
and national security agencies routinely try to understand
binary code. Specific use cases of reverse engineering of
binary code include (i) understanding vulnerabilities in third-
party binary code; (ii) examining suspicious code to under-

Rajeev Barua
School of Electrical and Computer Engineering
University Of Maryland
College Park, Maryland 20742, USA
Email: barua@umd.edu

stand what it is doing; (iii) recovering a maintainable and
modifiable source-level program or intermediate representation
from binary code [2l]; especially legacy code whose source
code has been lost; and (iv) analyzing third-party binaries
and adding security checks in them to protect them against
malicious attacks. All of these tasks further key goals of
software engineering in producing, maintaining, and updating
high-quality and secure software with the least effort. In
all of these cases, understanding the structure of the code
is greatly aided by knowledge of the C++-specific features
of code (such as class, methods, and inheritance.) However,
until recently, engineering techniques have primarily aimed
to recover assembly code or low-level, non-object oriented
language abstractions from binary code.

In this paper, we discuss methods that allow the partial
recovery of the C++-specific language constructs from bi-
nary code. Compared to the C programming language, C++
introduces several new concepts, presenting new challenges
for decompilation. These challenges include reconstruction of
classes and class hierarchies, virtual and non-virtual member
functions, calls to virtual functions, exception raising and
handling statements. We developed a technique to discover
Run-Time Type Information (RTTI), class hierarchies, virtual
function tables, member functions and member variables.

It is important to note that most of the use cases for
reverse engineering can still be employed with partial recovery
of artifacts. Most of those use cases (such as discovering
vulnerabilities in C++ code, understanding untrusted code,
or recovering pseudocode from binaries) will still work in a
best-effort fashion even when not all C++ artifacts are found.
Even for the use case of recovering functional source code or
intermediate representation from a binary, partial recovery is
still useful since when C++ features are not discovered, most
existing binary rewriters such as SecondWrite [2], [3] still
generate low-level but correct code without C++ artifacts.

II. BACKGROUND

A. Objected Oriented Features of C++

Compared to the C language, C++ introduces several new
concepts, including inheritance and class hierarchies, polymor-
phic types, virtual functions, and exception handling.

Inheritance is a feature of an object-oriented language that
allows classes or objects to be defined as extensions or
specializations of other classes or objects. Polymorphism is
when some code or operations or objects behave differently
in different contexts, enabling an object or reference to take
different forms at different instances. For example, a pointer
to a derived class is type-compatible with a pointer to its base
class. A function or method is called virtual if its behavior can
be overridden within an inheriting class by a function with the
same signature. Exception handling constructs to handle the
occurrence of exceptions, which are special conditions that
change the normal flow of program execution. C++ supports
the use of language constructs specific to exception handling
to separate error handling and reporting code from ordinary
code.

C++ binaries, including stripped binaries, contain additional
information in the form of RTTI. RTTI is a mechanism that
allows the type of an object to be determined during program
execution. RTTI is part of the C++ language specification and
RTTI is attached to the virtual function table [4] [5)]. Therefore,
a lot of information can be extracted from RTTI and virtual
function tables.

B. Reverse Engineering of Object Oriented Binaries

Code discovery and generation from object oriented binaries
is not trivial. For example, a virtual method call is imple-
mented as an entire sequence of machine instructions that
computes the destination of the call depending on the run-
time type of an object pointer. Understanding and recovery of
this type of code is challenging.

For quality C++ decompilation, the following features
should be recovered.

o Virtual functions

o Classes, Class hierarchies, inheritance relations between
classes

o Constructors and destructors

o Types of pointers to polymorphic classes

o Virtual and non-virtual member functions

« Layout and types of class members

o Calls to virtual functions

« Exception raising and handling statements

III. DETAILED BACKGROUND ON CLASS INHERITANCE,
VIRTUAL FUNCTIONS AND RTTI

To understand our method, we first review the concepts of
class inheritance and virtual methods.

Inheritance is a concept of object oriented program that
allows an abstract data type to be extended by another one.
Two different types of inheritances are defined: single inheri-
tance and multiple inheritance. With single inheritance, a class
inherits from only one single super class, whereas multiple
inheritance allows several super classes to be inherited from.
Moreover, for multiple inheritance, either replicated multiple
inheritance or shared multiple inheritance can be specified, as
will be explained later in this section.

obj (D view) obj (D view)
- o - _
3
””””” 8
B A ettt
obj (B view) = B
SeeEe———— , p==m-ed 8
B - A g
A D e LEEEEEE ®
i 8
N c
,,,,,,,, C g I
A viable, fo-----d § -
1T A viable , viable
-r-=- B A
1 2 3

Fig. 1. Memory layout of objects of different types

Figure 1 illustrates different possibilities of arranging ob-
jects in memory. Objects with a type that is defined using
single inheritance are just a sequence of the instances of all
super classes. For example, instances of a class B are laid
out according to Figure 1.1, if class B is defined in C++ as
follows:

class A {...};
class B: public A {...};

Figure 1.2 illustrates the memory layout of an object of type
D, where D is defined using replicated multiple inheritance:

class A {...};
class B: public A {...};
class C: public A {...};

class D: public B, public C {...};

For every class and super class that is used to define class
D, instances are created that together compose an object of
type D. For replicated multiple inheritance, the instances of
B and C each contain their own instance of class A. On the
other hand, shared multiple inheritance is specified using the
C++ keyword virtual:

class A {...};

class B: public virtual A {...};
class C: public virtual A {...};
class D: public B, public C {...};

Instances of class B and class C share the same instance of
class A. With an object of type D, this sharing is implemented
as a pointer to the common A instance in Figure 1.3.

Method overloading is another concept in object oriented
programs. For example, if a class B specifies a method with
the same name as a method foo() in a super class A, then a
call to foo() depends on the compile-time type of the object
pointer:

Bx b = new B();
b—foo (); /x This is a method defined
in class B x/

((Ax) b)—foo (); /« This 1is
defined in class

another method
B %/

Sometimes it is necessary to call the method B::foo(), no
matter of what compile-time type the object pointer is. This is

done by specifying foo() as a virtual method, and the compiler
generates code that looks up the correct method when the
method is invoked at run-time. This special piece of lookup
code is called a method dispatcher. If a class defines virtual
methods, then instances of that class and instances of all
subclasses contain a pointer to a virtual table for this particular
class. This table holds the addresses of the correct virtual
methods for the class and delta values that are used to correct
the first parameter of the method call. This first parameter
is implicitly added by the compiler and is a reference to the
object that the method is invoked on. In the example above
assuming that foo() is declared to be virtual, the object pointer
b is cast to type Ax, but the virtual method B::foo() is called
without a typecast and this expects a pointer to an object of
type B rather than type A. Therefore, the pointer has to be
corrected by adding a delta value, that corrects the object
pointer from Ax to Bx. This is all done by declaring foo()
a virtual function.

Virtual method invocations on objects follow the same pat-
tern, but they slightly differ in their implementation depending
on the compile-time type of the object pointer and the object
model used by the compiler. Generally speaking, a virtual
method call has the following steps:

1) If the method call is performed on a type cast object
pointer, then the correct sub-object (object of a sub class)
is obtained first, i.e. the view to the object is modified,

2) given the correct view to an object, the address of the
virtual table is fetched from the object, and

3) given the virtual table, the address of the virtual method
is fetched from the table, as well as the delta value to
correct the view to the object for the call.

RTTI contains all necessary information to recover all the
above features and is placed in the binaries. RTTI in the
binaries has sections for each class, and each section contains
the virtual function table pointer, base class pointer, pointers
to all subclasses, and the mangled name for the corresponding
class. These are defined in the standard Application Binary
Interface (ABI) for the platform in question. The ABI defines a
binary interface between an executable program and a specific
execution environment for which it is intended. The Linux
Generic C++ ABI (also often called Itanium C++ ABI [4],
since it was initially developed for the Itanium processor
architecture), is the standard binary interface specification that
was developed jointly by CodeSourcery, Compaq, EDG, HP,
IBM, Intel, Red Hat and SGI. The following compilers comply
with the Generic C++ ABI: GCC (from version 3.x upwards);
Clang and llvm-gcc; Linux versions of Intel and HP compilers,
and compilers from ARM. Almost all Linux-based compilers
use Itanium ABI. For Windows systems, the Microsoft Visual
Studio compiler (MSVC) compiler uses its own ABI which
has been adopted by other Windows compilers, but these two
ABIs only differ in a way that our methods can be adapted.

The Generic C++ ABI defines the following:

o Layout of both built-in and user-defined types and
compiler-generated data structures in memory and pecu-

liarities of handling them:

— Layout of virtual function tables.

— State of the virtual function tables during the object
creation process.

— Peculiarities of memory allocation for an array using
operator new().

— Initialization of guard variables, which control the
initialization of function-level static variables and
static class members.

— Layout of structures used to implement RTTL

— Special aspects of the RTTI implementation, for
example, dynamic_cast(T)(v) algorithm.

e Details of how virtual and non-virtual functions are
called, and the behavior of constructors and destructors.
o Behavior at the linking stage:

— Name mangling (i.e., encoding) of external names
(external means being visible outside the object file
where they occur.)

— Vague linkage rules. In some cases, some entities can
be defined in several object files; however, in the
final program, only one copy should be preserved.
For example, it can happen with out-of-line functions
(inline functions which the compiler has decided not
to inline), virtual function tables, typeinfo informa-
tion, and instantiated template classes.

— Details of the unwind table layout. Unwind tables
are used for unwinding the stack during the process
of exception handling.

The MSVC C++ ABI is similar to the above in content.

IV. ASSUMPTIONS OF OUR METHOD

Like any scheme that relies on static analysis of binary
code, we have some assumptions. Two classes of assumptions
are identified: those because of the underlying use of a static
disassembler, and those because of our method. We discuss
each in turn.

The first set of limitations are common to all static binary
analysis tools. It is well known that existing static disassem-
blers on which they rely, such as the cutting-edge one we
use [6]], all have limitations. First, they do not handle self-
modifying code. However, existing methods such as [[7] could
be integrated to statically detect the presence of run-time
code generation and prevent rewriting. Second, most static
disassemblers do not handle binaries containing obfuscated
control flow [6].

A second set of assumptions arise because of our method.
First, we assume that RTTI information is present in all
the stripped input binaries that we analyze. Without RTTI
in the binaries, the application is not able to use those
features. Those binaries without RTTI information and without
using object-oriented features need not be considered because
they do not use object-oriented features and hence there are
no C++ features of interest to recover. However, exception
handling discovery does not rely on RTTI information; thus
RTTI information is not needed to recover exception handling

features. Second, we assume that all the stripped input binaries
that we analyze follow a standard C++ ABI. All Linux-based
compilers use Itanium ABI [4] and MSVC uses their own ABI,
but these two ABIs only differ in their layout of information
in the RTTI table and exception handling table. Thus we can
handle both of them by handling the table layout in a slight
different way but our method overall still remains the same.
Even though our methods are compiler dependent, they are
minimally so, in that they rely only on long-lived compiler
standards such as C++ ABIs which must always be followed
for proper execution of C++ binaries. Unlike other methods
such as [8], our method does not rely on pattern matching
with assembly code, which is not robust and can break even
with different compiler flags used and different versions of the
same compiler. Instead our method relies on finding order- and
instruction-independent behavior in binary code, by analyzing
fundamental compiler theoretic behavior such as dataflow
relationships, to deduce the presence of C++ constructs.

V. METHOD

Our method searches for C++ features, and acts when it
finds them. If the binary was not from C++, then none of the
features will be found. We discover objected oriented features
of a C++ program from its input binary in these steps:

1) We statically recover the code of virtual method calls,
and recover RTTI layout by discovering the virtual
function table.

2) We recover constructor dispatchers
compiler-independent heuristic patterns.

3) Member functions and member variables are discovered
and associated with classes found earlier.

4) Exception handling is discovered separately from all
others above.

by matching

Each of the above steps is discussed in more detail in the
four subsections A-D below, one section for each step:

A. Virtual Function Call and RTTI Discovery

In our work, we are interested in recovering a virtual method
invocation from an instruction sequence that may or may not
implement a method dispatcher. We do not identify possible
destination addresses with this technique, as they can only be
determined at run-time when a method is invoked on an actual
object. However, an indication about the layout of objects and
virtual tables is obtained from our analysis. Our goal is to
discover virtual function calls and RTTI information.

Consider the following example C++ source code fol-
lowed by possible equivalent binary and compiler intermediate
representation (IR) codes. The IR code is assumed to be
automatically generated by the binary rewriter.

C + + source code:
obj—foo();

Assembly code:
call BB (0x488228):
00010898 r[9]:=m[r[l6]+8]
0001089c r[8]:=m[r[9]+8]

000108a0 r[10]:=m[r[9]1+12]

000108a4 r[8]:=r[8] + r[l6]

000108a8 CALL r[1l0]
Pseudocode for assembly code:

1: load [object_reg + #vtableOffset],
table_reg

2: load [table_reg + #deltaOffset],
delta_reg

3: load [table_reg + f#selectorOffset],

method_reg
4: add object_reg,
5: call method_reg

delta_reg, object_reg

The assembly code and its pseudocode shows the five-
instruction code sequence that a C++ compiler typically
generates for a virtual function call. The first instruction
loads the receiver object’s virtual function table pointer into
a register, and the subsequent two instructions index into
the virtual function table to load the target address and the
receiver pointer adjustment (delta) for multiple inheritance.
The fourth instruction adjusts the receiver address to allow
accurate instance variable access in multiple inherited classes.
Finally, the fifth instruction invokes the target function with
an indirect function call.

Our technique for discovering virtual method invocations
works as follows and will be illustrated as needed with the
example above. Given an arbitrary basic block that ends on
a computed call instruction, backward slicing [9] is applied
to the basic block. Thus, those instructions that compute the
target of the call instruction are extracted into a slice. Given
this slice, copy propagation combined with simplification
generates the call expression. Copy propagation starts with
the call expression of the CALL instruction at the end of
the slice (r[10] in the example above). It then replaces all
occurring locations (only r[10] in the example) with those
expressions that are assigned to the locations in the previous
assignment instruction (here r[10] is replaced by m[r[9] +
12]). The resulting intermediate expression is then simplified,
and the process is repeated until the beginning of the slice is
reached. The simplification of expressions is trivial — constant
folding is applied and the expressions are rearranged in such a
way that constants go to the right hand side of operations, and
locations to the left hand side. Furthermore, every expression
is matched against a small set of common idioms. With the
same technique, an expression for the first parameter is derived
from the basic block.

Using slicing techniques, copy propagation and simplifica-
tion, a call expression and a first-parameter expression can be
derived from a basic block. These two expressions must match
a particular pattern and meet certain conditions in order to be
recognized as a virtual method call.

The compile-time type of an object pointer and the object
model dictate the instruction sequence of the dispatcher code.
Even though the output of different compilers on different
platforms was analyzed, we found similarities that led to the
derivation of three sets of normal forms. These normal forms

are dependent on the nature of virtual function accesses in
C++, and are not compiler specific.

The first set contains three normal forms that describe the
retrieval of the correct virtual table from a given object pointer:

(1) vtbl<—obj + vtoffset The object pointer is not cast,
and the address of the virtual table is fetched from a
fixed offset from object. For example a simple call like
obj—foo() creates this form of dispatcher code.

(2) vtbl<—obj + view + vtoffset For a cast object pointer
the view constant is added to the object pointer first to
modify the view to the object according to the cast. Then
the address of the virtual function table is fetched. In
Figure 1 this is illustrated by casting the object pointer
to A* in the first and the second picture. A method
call ((A*) obj)—foo() for Figure 1.1 or ((A*)((C*)
obj))—foo() for Figure 1.2 relate to this normal form.
The cast to C* and then to A* are merged into one single
view constant, since the compiler is able to determine
both view values at compile time.

(3) vtbl<*(obj + view) + vtoffset This normal form relates
to an object whose type definition makes use of shared
multiple inheritance and where the cast of the object
pointer happens to be a cast to a shared instance. Again,
before the address of the virtual table is fetched from the
object the view to the object needs to be modified. The
view to the shared instance is obtained by dereferencing
the pointer. Figure 1.3 depicts the additional indirection
to the shared instance and ((A*)((B*) obj))—foo() serves
as an illustration.

When the virtual table is obtained from an object, the
address of the virtual method is fetched from the table as well
as the delta value to correct the view to the object for the call
site. The second set contains two normal forms to obtain the
address of the virtual method from the virtual table:

(4) vimth<vtbl + offset The address of the target method can
be obtained from the virtual table from a fixed offset.
This form is used under single inheritance.

(5) vmth<vtbl + row + offset In this case the correct row
in the table is selected first, and then the address of the
virtual method is retrieved from their assigned columns.
This form is used under multiple inheritance.

To compute the value of the first parameter (the this pointer)
that is implicitly passed to any method call, we found two
possible normal forms for the third set:

(6) this<obj This passes the modified view to an object as a
first parameter. The destination address of the call that is
stored in the virtual table is not the address of the virtual
method, but trampoline code, that corrects the view to
the object for the virtual method and then jumps to the
actual method address.

(7) this<obj + f(obj) Here, the first parameter is corrected
by adding the appropriate delta value from the virtual
table to the object pointer. The function f takes an object
pointer and obtains the correct delta value from the
virtual table using a combination of the normal forms

mentioned above.

The call expression and the first-parameter expression that
are derived from a basic block must meet all of the following
conditions in order to be matched as a virtual method call:

o The call expression must match normal forms to retrieve
the virtual table from an object, and to obtain the correct
method address from the virtual table,

o the first-parameter expression must match either one of
the normal forms for the first parameter, and

« for both call and the first-parameter expressions obj must
be stored at the same location.

Thus, a computed call basic block is identified as the
implementation of a virtual method call dispatcher, if there
exist two expressions (obtained using slicing, copy propagation
and simplification) that match a valid combination of the
normal forms mentioned above, and if those two expressions
use the same location for their respective object pointer.

We illustrate this technique by analysing the IR represen-
tation of the basic block shown earlier in this section. The
basic block consists of several assignment instructions and the
CALL instruction at the end of the basic block. The destination
address of the CALL can be found at run-time in register r[10],
and the only parameter location in variable r[8].

The slice that computes the target address of the call in
r[10] is

r(9]
r[10]

c=m[r[l6]+8]
c=m[r[9]+12]

and the slice for the first parameter is

r[(9]:=m[r[16]+8]
r[(8]:=m[r[9]+8]
r(8]:=r[8]+r[lo6]

Copy propagation and simplification is applied to both slices
— to call slice to create the call expression, and to the first-
parameter slice to create the first-parameter expression. The
output of our tool that implements our technique follows:

call m[m[r[1l6]+8]+12]
m{m[r[16]+8]+8]+r[16]

Both expressions are now matched against the different
normal forms. The call expression matches the normal form
(1) to retrieve the address of the virtual table from the object
(vtbl = m[r[16]+8]), and normal form (4) to obtain the address
of the target method from the virtual table (m[vtbl+12]). In
this example, the first-parameter expression matches normal
form (7): r[16]+f(r[16]) and f obtains the virtual table from
the object and sign-extends the delta value from 16 to 32 bits.
Finally, both expressions use register r[16] that holds the object
pointer at run-time.

Since all of our criteria for a virtual method dispatcher are
met by the given basic block, the CALL instruction at the end
of the basic block is virtual function call.

The problem of identification of virtual functions can be
reduced to the problem of locating the RTTI table which

contains virtual function tables. A pointer to the RTTI table of
a class always precedes its virtual function table. Therefore,
finding virtual function calls helps locate the virtual function
table in the RTTI table. As we described above, we are able
to retrieve the virtual function table using the three normal
forms (1) to (3) above that describe the retrieval of the correct
virtual table from a given object pointer.

Our methods are able to identify 80% of virtual functions.
It is not identified 100% because our method cannot find the
case where the virtual function is only called from within the
same class as the one the virtual function itself is declared in.
This case is not recognized since here the call is not through
the virtual function table, which we use for recognition of
virtual function calls. We recognize the more common case
when a virtual function is called from outside its own class at
least once in the program, in which case it is called via the
virtual function table, and is therefore recognized.

All (100%) of the classes can be recovered as well as their
names. The class hierarchy is reconstructed by utilizing RTTI.
For each polymorphic class, an RTTI structure containing
information about its parents is emitted by the compiler. The
complete polymorphic class hierarchy can then be recon-
structed by examining all RTTT structures found earlier. The
layout of RTTI structures is defined by the ABI [4] that is
used by the C++ compiler. RTTI structures can be parsed, thus
yielding the complete polymorphic class hierarchy exactly as
it was in the source C++ program even from stripped binaries.
Thus the accuracy of recovered classes is 100%. Since RTTI
structures contain mangled class names, class names can also
be recovered.

B. Discovery of Classes

In order to detect classes, we first need to detect their
constructors and destructors. Constructors and destructors are
detected by checking the operations they perform. A construc-
tor of a class performs the following sequence of operations:
it first calls constructors of direct base classes; second it calls
constructors of data members; third it initializes vtable (virtual
function table) pointer field(s); and fourth it performs user-
specified initialization code in the body of the constructor.
Conversely, a destructor deinitializes the object in the exact
reverse order to how it was initialized: it first initializes virtual
function table pointer and performs user-specified destruction
code in the body of the destructor; second it calls destructors
of data members; third it calls destructors of direct bases.

Example of Constructor and Destructor:
004010AD lea ecx, [ebptvar_8]
004010B0O call sub_401000

/+xconstructor=*/

mov edx, [ebp+var_8]

push edx

call sub_4010EA

add esp, 8

lea ecx, [ebptvar_8]

call sub_4010200

/+destructor*/

004010B5
004010B8
004010B9
004010BE
004010C3
004010C6

Now that we have detected constructors and destructors, we
can identify their classes by examining how objects of these
classes are created in the binary code. This can provide us
with hints on identifying them from the disassembly. Here are
three types of objects that C++ creates.

1) Global Object. Global objects, as the name implies,
are objects declared as global variables. Memory spaces
for these objects are allocated at compile-time and are
placed in the data segment of the binary. The constructor
for global objects is implicitly called before main(),
during C++ startup, and the destructor is called at the
program exit.

To identify a possible global object, we first recognize the
register containing the this pointer, which in the example above
is ecx since it contains a pointer to a global variable. Then
we look for a function called with the this pointer discovered
above as an argument. To locate the constructor and destructor,
we have to examine cross-references to this global variable.
We look for locations where this variable is passed as the first
argument to a function call, since the this pointer is always
passed as the first argument to constructors. If this call lies
between the path from program entry point and main(), it is
the constructor.

(2) Local Object. Local objects are objects that are declared
as local variables. The scope of these objects are from
the point of declaration until the block exit e.g. end of
function. Space the size of the object is allocated in the
stack. The constructor for local objects is called at the
point of object declaration, while the destructor is called
at the end of the scope.

A constructor for a local object can be identified if a
function is called with a this pointer as first argument that
points to an uninitialized stack variable. The destructor is the
last function called with this this pointer as first argument in
the same block where the constructor was called.

(3) Dynamically Allocated Object. These objects are dy-
namically created via the new operator. The new opera-
tor is actually converted into a call to the new() function,
followed by a call to the constructor, The new() function
takes the size of the object as parameter, allocates
memory of this size in the heap, then returns the address
of this buffer. The returned address is then passed to
the constructor as the this pointer. The destructor has
to be invoked explicitly via the delete operator. The
delete operator is converted into a call to the destructor,
followed by a call to free to deallocate the memory
allocated in the heap.

To identify constructors for objects that are dynamically

allocated, we look for the earliest call where the returned value
in the call to new() is the this pointer.

C. Class, Member Functions and Variables Recovery

When reconstructing non-virtual functions, it is often de-
sired to determine if a function at hand is a member function
and to find the class that it belongs to. The class that the

member function belongs to is then determined by the type
of the this parameter. In the Itanium ABI [4] that GCC
and all other Linux-based compilers use, member functions
are distinguishable from free-standing functions with the this
pointer passed as the first parameter. MSVC as well by default
uses the this call calling convention for member functions,
which passes this pointer in the ECX register. In this case
member functions can also be reliably distinguished.

Identifying class members is straight-forward. We can iden-
tify class member variables by looking for accesses to offsets
relative to the this parameter in the method in question. We can
also identify virtual function members by looking for indirect
calls to pointers located at offsets relative to this object’s
virtual function table. Non-virtual member functions can be
identified by checking if the this pointer is passed as a hidden
parameter to the function call. To make sure that this is indeed
a member function, we can check if the called function uses
ecx without first initializing it.

Our methods are able to identify 100% of the classes, 78%
of member functions, and 55% of member variables. There
are three main reasons why less than 100% member functions
and variables are detected. First, we cannot find 100% of the
virtual function calls, so our method failed to locate all the
virtual function tables. In such a case of failing to locate virtual
function tables, it cannot retrieve the member functions and
member variables belonging to the class. Second, another case
of incomplete detection is that it is not yet implemented to
detect the class from member functions and variables in C++
templates. Templates are a feature of the C++ programming
language that allow functions and classes to operate with
generic types. It is not able to associate the class with member
functions and member variables where they are combined out
of multiple classes as a template. Third, functions that are
inlined at all their call sites are not discovered, since they
effectively disappear as separate entities.

D. Exception handling discovery

Exception handling is a C++ concept designed to handle
the occurrence of exceptions, which are special conditions
that change the normal flow of program execution. Exception
handling is normally used for reporting and handling errors
that occur during program execution in a uniform way.

As with many language features, the C++ standard defines
the semantics of exception raising and handling, but leaves its
implementation up to compiler vendors. We have considered
two implementation schemes. In the first scheme, used by
MSVC, the compiler generates code that continuously updates
exception handling structures to reflect the current program
state. The structure that is updated is a new element that is
added to the stack frame layout. The structure element contains
the information on exception handlers that is available for the
function associated with that frame. If an exception is thrown,
this element is used by the run-time support library to locate
and execute the appropriate exception handler [10]].

The second scheme, used by GCC, employs a table-driven
approach and introduces no run-time overhead if exceptions

are not used. It involves the creation of statically allocated
tables that relate ranges of the program counter to the program
state. When an exception is thrown, the run-time system looks
up the current value of the program counter in these tables and
determines which handlers are to be checked [4].

Many algorithms for control flow analysis [[11] do not take
exception handling into account. As a result, catch blocks
are isolated into separate functions. This is why proper re-
construction of exception handling requires intervention on
several decompilation stages. It cannot be implemented as a
post-processing step that would fix the decompiled C code.
Exception handling, while a high-level concept, involves low-
level manipulations that do not translate well into C. For
example, non-trivial control flow of the exception handling
cannot be implemented in C without assembly.

In our method, exception handling structures are located
and parsed after construction of the control flow graph as will
be described later in this section, and additional edges of a
special kind are inserted into it. These edges connect catch
blocks with the functions they belong to, thus preventing them
from being isolated into separate functions. On the high-level
program generation, the presence of edges of this kind is used
to guide the reconstruction of actual catch blocks.

Due to the differences in exception handling implemen-
tations between compilers, there is no universal way of re-
constructing try blocks and throw statements. We describe
reconstruction for GCC-compiled programs.

Type table

pointer
Type table

Call site displacement type_info
= inside a function pointer
5
§ Call site length
% Address of the type_info
= landing pad 4pointer
© | _ |Action record /

offset /

Index into type |/
table

Offset to the next
action record

Action
record

Fig. 2. Structures used by GCC for exception handling

GCC for x86 and x64 architectures by default use Dwarf2
table-based unwinding mechanism for exception handling. In
Dwarf2 each function is associated with a set of call sites.
Call sites are code sections that can potentially throw an
exception, e.g. function calls or throw statements. Each call
site is associated with a landing pad which is a code block that
calls destructors and transfers execution to the corresponding
catch block. Information about call sites and landing pads is

statically allocated and is present in the low-level code.
For each call site a call site record is emitted by the compiler
(Figure 2). It contains:

« the call site displacement inside a function;

o the call site length;

o the address of the corresponding landing pad;
« the pointer to the list of action records.

Each action record contains an index of an element in the
table of type_info pointers. The list of action records describes
exception types that are handled by the landing pad. Details on
the format of this information and on how exception handling
is performed using it is described in Itanium ABI [4]] and
Linux Standard Base specification [12].

For quality reconstruction of exception handling, the fol-
lowing constructs must be recovered:

e catch blocks;
o try blocks;
e throw statements.

Catch blocks are recovered as follows. Each catch block
is referenced from its corresponding landing pad, starts
with a call to _cxa_begin_catch and ends with a call to
_cxa_end_catch. Thus catch blocks can be reconstructed by
examining the landing pad and the locations it references.

To understand how try blocks are discovered, consider that
different destructors must be called when an exception is
thrown from different call sites. That is why the compiler
generates several landing pads for each 7ry block. However,
the part of the landing pad that performs the dispatch to the
catch block is shared by all landing pads for all call sites of
a single try block.

Try blocks are recovered as follows. First, call sites belong-
ing to the same try block can be identified by analyzing their
corresponding landing pads if two landing pads share the same
dispatch block, then their corresponding call sites belong to
the same try block. They are not dependent upon it. Extents
of the try block are reconstructed by uniting the extents of all
its corresponding call sites.

Exception raising in GCC is performed via a call to the
_cxa_throw function. To reconstruct throw statements, it is
sufficient to locate the calls to _cxa_throw and find the values
of its parameters.

VI. IMPLEMENTATION

Figure 3 presents an overview of SecondWrite [6], [3]; our
executable analysis and rewriting framework. The methods in
this paper have been implemented in SecondWrite. Second-
Write translates the input x86 binary code to the intermediate
format of the LLVM compiler [13]]. The disassembler along
with the binary reader translates every x86 instruction to
an equivalent LLVM instruction. A key challenge in binary
frameworks is discovering which portions of the code sec-
tion in an input executable are definitely code. Smithson
et. al. [6] proposed speculative disassembly, coupled with
binary characterization, to efficiently address this problem.
SecondWrite speculatively disassembles the unknown portions

EXISTING LLVM COMPILER

Output
binary

C
C++
Ada
Fortran —

LLVM IR LLVM IR Optimized

optimizations LLVM IR
e C back-end

LLVM
frontend

x86 back-end

| , Output
Ccode

EEEE

QUR NEW CODE

N

Original Binary reader
input T &

Binary-aware
LLVM IR

disassembler analysis &
optimizations

-
\ library | | xnL /

LLVM IR

binary

Fig. 3. SecondWrite Flow

of the code segments as if they were code. However, it also
retains the unchanged code segments in the IR to guarantee the
correctness of data references in case the disassembled region
was actually data.

SecondWrite employs binary characterization to limit such
unknown portions of code. It leverages the restriction that an
indirect control transfer instruction (CTI) requires an absolute
address operand, and that these address operands must appear
within the code and/or data segments. The binary segments
are scanned for values that lie within the range of the code
segment. The resulting values are guaranteed to contain, at
a minimum, all of the indirect CTI targets. Memory stack
analysis is done for every procedure to detect its correspond-
ing memory arguments as explained in [3]. The techniques
presented in [3]] along with [14] are used to split the physical
stack into individual abstract stack frames. Global and stack
regions appear as arrays of bytes in the IR.

Even though, our methods use SecondWrite framework for
decompiling and rewriting the stripped input binaries, they are
not dependent upon it. Our methods can be implemented in
any other binary rewriter or decompiler.

VII. RESULTS

We tested our work on stripped binaries compiled from
all six C++ benchmarks presented in SPEC CPU 2006 [15]]
and all five benchmarks in the OOCSB suite [16]. All sixteen
C++ programs from NEC lab [17] were used to test excep-
tion handling discovery since they were specifically written
to heavily use and text exception handling. These are all
benchmark programs that are available to compile and then
provide stripped binaries from those sets. We compiled the
programs to binaries using GCC which uses the Itanium ABI;
but binaries compiled by MSVC are left for future work.
However we know that MSVC binaries can be handled by
simply re-analyzing the RTTI layout, since MSVC uses a
different ABI which is also standardized just like the Itanium
ABI, but otherwise the method is the same.

The characteristics of the SPEC and OOCSB benchmarks
used in this study are listed in the tables I and II respectively.

We used NEC benchmarks, which are C++ programs with
exceptions [17]. This benchmark set contains 16 C++ pro-
grams that cover various aspects of the exception semantics
of C++. These small programs test usage of various C++

TABLE I
SUMMARY OF C++ PROGRAMS IN SPEC CPU 2006

Characteristics
Comments
The benchmark performs discrete
event simulation of a large Ethernet
network. The operation of the
Ethernet MAC, traffic generator etc.

are in C++
tt makes very ittle use of C++

feamrfﬁ
A good HPC benchmark but

somewhat simple

Uses Boost Tibraries and complex
template techniques. Best
representative of future C++

djrections
Not very high on usage of C++

features
It 1s representative of C++ the way

it is used currently. Has potential
single hot spot in the noise function.

Benchmark

Lines

471.omnetpp 47,910

473.astar 5,849

444 namd 5,322

447 .dealll 198,649

450.soplex 41,435

453.povray 155,170

TABLE I
OOCSB BENCHMARK

Characteristics

Comments
incremental dataflow constraint

solver
SueSoft’s IDL compiler (version

1.3) using the demonstration back
end which exercised the front end

but produces no translated output
IDL parser generating C++ stubs,

distributed as part of the Fresco
library (which is part of X11R6).
Although it performs a function
similar to IDL, the programs was
developed independently and is
structured differently

optimizing compiler for a hardware
description language developed at
the University of Guelth.

simple operating system simulator

Benchmark

Lines
1,400

deltablue

idl 25,900

iXx 11,900

Icom 16,200

richards 1,100

exception features in realistic scenarios, some of which are
close to some standard C++ collection class usage. In addition,
to cover C++ exception semantic features, these benchmarks
can also be used to check for certain exception-safety guar-
antees as defined by Stroustrup [18]]. The benchmarks range
in size from about 40 lines of C++ code to about 460 lines.
Each benchmark set contains a number of classes, and a main
function that drives the execution as a test harness, and may
contain user-defined exceptions.

A. Virtual Function Call and RTTI Discovery

For testing of class hierarchy reconstruction correctness,
the following automatic process is used. First, the program is
compiled, and the RTTI-aware class hierarchy reconstruction
algorithm is used to recover information about the polymor-
phic class hierarchy. This algorithm always provides correct
results. Our algorithm works for stripped binaries, i.e., those
without symbolic or relocation information. However, for
the sake of measurements only, compiler-generated debug
information is used to establish a correspondence between the
class hierarchies reconstructed from the program vs. that listed

in the debug information. The debug information contains
information about what C++ artifacts were found in the source
code after optimization. The two class hierarchies are then
compared. The test results are presented in Table III.

Our methods are able to identify 80% of virtual functions.
This is not 100% because of reasons in section

TABLE III
DISCOVERY OF VIRTUAL FUNCTION CALLS

N From the source From the stripped binary
Dynamic Dynamic
Static number Static number of
number of number of
of virtual virtual function
. virtual virtual function
Sfunction call Junction cal call (percentage) call (percentage)
471.omnetpp 269 3,129 203 (75%) | 2,472 (79%)
473.astar 3 24 3 (100%)| 24 (100%)
444.namd 2 32 2 (100%) 32 (100%)
447.dealll 63 3,423 51 (81%) | 2,721 (79%)
450.soplex 332 4,328 264 (80%) | 3,543 (81%)
453.povray 65 2,314 52 (80%) | 1,820 (79%)
deltablue 16 4,250 11 (69%) | 3,010 (70%)
idl 516 1,756 448 (87%) | 1,530 (87%)
iXx 157 102 113 (72%) | 73 (72%)
Icom 321 1,103 216 (67%) | 729 (66%)
richards 7 3,290 5 (71%) | 2,350 (71%)
Average percentage of
artifacts recm.’ered 80%) (80%)
among those in debug
L information

B. Class, Member Functions and Member Variables

For testing the accuracy of the recovery of classes, member
functions and variables, the same benchmarks are used as in
part 1. Test results are presented in Table IV.

As Table IV shows, our methods are able to identify 100%
of the classes, 78% of member functions, and 55% of member
variables. The reasons why the detection of member functions
and variables is not 100% were described in section [V(C)}.

TABLE IV
DISCOVERY OF CLASSES, MEMBER FUNCTIONS, AND
MEMBER VARIABLES

From the stripped binary
From the source
Benchmark (and_percentage)
Member Member Member S fember
Class . Class .
Jfunctions variables functions variables

471.omnetpp 86 340 401 86 (100%) | 321 (84%)| 289 (65%)
473 astar 68 284 352 68 (100%) | 213 (74%)| 252 (66%)
444.namd 51 230 324 51 (100%) | 172 (72%)| 244 (68%)
447 dealll 703 1,838 2,836 703 (100%) | 1,672 (79%)| 1,919 (63%)
450.s0plex | 310 837 1,028 310 (100%) | 764 (75%)| 578 (52%)
453.povray | 155 638 753 155 (100%) | 578 (81%)| 383 (44%)
deltablue 11 64 73 1 (100%) | 57 (80%)| 39 (47%)

idl 148 732 836 148 (100%) | 671 (88%)| 452 (51%)

ixx 282 1,038 1,326 282 (100%) | 893 (M1%)| 719 (51%)

Icom 510 2,373 2,964 510 (100%) | 2,291 (82%)| 1,632 (52%)
richards 15 73 96 15 (100%) | 63 (73%)| 48 (43%)
Average percentage of
artifacts recovered

. (100%) (78%) (55%)

among those in debug
information

C. Exception Handling Discovery

Testing of the reconstruction of exception handling con-
structs was performed. Description of the tests is presented

in Table V. Columns Try, Catch and Throw show the number
of reconstructed try blocks, catch blocks and throw statements
respectively. Our test shows that in all these tests all exception
handling constructs present in the source file were recon-
structed correctly. No spurious constructs were recovered.

TABLE V
NECLAB: C++ PROGRAMS WITH EXCEPTIONS

Benchmark Try Catch | Throw Result
bintree-duplicate 1 1 1 Success
list-baditerator 1 1 1 Success
delegation-dtor-throw 1 1 10 Success
dlamonQ—shared— 2 8 10 Success

inheritance
recursive 3 4 4 Success
std-uncaught-dtor 1 1 10 Success
ctor-throw 2 4 3 Success
virtual-throw 2 5 5 Success
dynamic-cast 2 2 0 Success
io 1 1 1 Success
new-badalloc 2 2 0 Success
template 1 3 5 Success
nested-try-catch 3 4 2 Success
loop-break-continue 3 4 2 Success
nested-rethrow 3 5 4 Success
multiple-live 2 2 2 Success

VIII. RELATED WORK

Many pieces of research have performed decompilation
of C programs but they do not perform well for C++ pro-
grams. These C decompilation tools include Hex-Rays [19],
Boomerang [20] and REC Studio [21] and they showed good
results for C programs. However they have not attempted the
recovery of C++ artifacts.

Currently there exists no decompiler that is capable of
discovering all C++ artifacts. There is some support for C++
in the latest version of the Rec Studio [21]], which reconstructs
mangled names of functions and class inheritance hierarchy.
REC Studio is an interactive decompiler not an automatic one
process decompiler like ours. It reads a Windows, Linux, Mac
OS X or raw executable file, and attempts to produce a C-like
representation of the code and data used to build the executable
file. In contrast, our method discovers features they do not
discover, such as classes, virtual functions, member functions,
member variables and exception handling..

Skochinsky [8] has given a detailed description of RTTI
and exception handling structures used by MSVC, along with
implementation details of some C++ concepts like constructors
and destructors. He presents tools for reconstruction of poly-
morphic class hierarchies and exception handling statements
from the binary and representing in the assembly code. Unlike
our method, their method does not discover virtual functions,
member functions and member variables from C++ binaries.
Further, these tools are based on heuristic pattern matching
of assembly code. They are not robust since even when
using a certain compiler, different compiler flags and future
versions of the compiler can change the assembly code used,
thus breaking the heuristic. In contrast our methods are not
compiler dependent.

Sabanal and Yason [22] have proposed a technique for class
hierarchy reconstruction based on the analysis of vtables and
constructors that can be applied without relying on RTTI struc-
tures in the binary. Constructors are identified by searching
for operator new() calls followed by a function call. vtable
analysis is used for polymorphic class identification. Class
relationship inference is done via analysis of constructors.
They present several examples of successful class hierarchy
reconstruction. However, they do not detect member functions,
member variables, or exception handling statements. Moreover
several cases in which presented techniques may fail are not
considered. These cases include operator new() overloading,
constructor inlining and elimination of vtable references in
constructors due to optimizations. Our methods will not fail
under these scenarios. The presented techniques also heavily
rely on the use of MSVC-specific this call calling convention.
In contrast, our method does not rely on any compiler-specific
behavior other than the use of standard C++ ABIs, for which
practically speaking, there are only two, as was discussed in
section V.

Fokin [23] and Srinivasan [24] have both proposed methods
for automatic reconstruction of class hierarchies that do not
rely on RTTI information and perform well with aggressive
compiler optimizations. However, precision is lower than with
our method using RTTI, and their methods do not discover
member functions or member variables. They do not discover
exception handling blocks either.

In conclusion, we can see that our method has four main
advantages over related work: First, most related works are
focused primarily on class hierarchy recovery only. Only one
recovers exception handling statements, and none recovers
member functions, member variables or virtual functions. In
contrast, our method recovers all of the above C++ artifacts.
A second advantage of our method is that some related work
relies on non-robust pattern matching approaches for assembly
code, which may not work when compiler flags or versions are
changed. Our method relies only on well-known standard C++
ABIs which compilers must follow and thus is more robust.
Third, these advantages are shown in implemented results on
large C++ programs, some hundreds of thousands of lines
of code, whereas most related works are evaluated on much
smaller programs or are not evaluated at all.

IX. CONCLUSION

In this work, we show how a stripped binary program can
be analyzed to recover the source-code-level class hierarchy,
member functions, member variables and exception handling
features. This work can be used in variety of reverse engineer-
ing applications, both for analysis and rewriting. Our method
can discover 100% of classes and exception handling, but can’t
discover 100% some artifacts including member function and
member variables. This is due to some cases that we have not
implemented to identify them such as more code sequences
for virtual function calls and C++ templates. Future work may
increase the percentage of artifacts recovered.

[1]
[2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]
[10]

(11]
[12]

[13]
[14]

[15]
[16]

(17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

REFERENCES

E. Eilam and E. J. Chikofsky, Reversing: secrets of reverse engineering.
John Wiley and Sons, 2007.

K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable
variable and data type detection in a binary rewriter,” in PLDI '13
Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, 2013, pp. 51-60.

K. Anand, M. Smithson, K. EIWazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua, “A compiler-level intermediate representation based binary
analysis and rewriting system,” in the 8th ACM European Conference
on Computer Systems, 2013, pp. 295-308.

Itanium C++. [Online]. Available: http://mentorembedded.github.io/
cxx-abi/

L. D. Stroustrup B., “Run-time type identication for c++(revised).” in
Proc USENIX C++ Conference, August 1992.

M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua, “Static
binary rewrting without supplemental information : Overcoming the
tradeoff between coverage and correctness,” in the 20th Working Con-

ference on Reverse Engineering (WCRE), Koblenz, Germany, 2013.

X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Still: Exploit code detection
via static taint and initialization analyses,” in Computer Security Appli-
cations Conference (ACSAC), 2008, pp. 289-298.

Skochinsky. (2006) Reversing microsoft visual c++ part 2: Classes,
methods and RTTI. [Online]. Available: http://www.openrce.org/articles/
fullview/23

E.Tip, “A survey of program slicing techniques,” Journal of Program-
ming Languages, vol. 3, pp. 121-189, 1995.

V. Kochhar. (2002, April) How a C++ compiler implements exception
handling. [Online]. Available: http://www.codeproject.com/KB/cpp/
exceptionhandler.aspx

S.Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

Linux standard base core specification chapter 8. exception
frames. [Online]. Available: http://refspecs.linuxbase.org/LSB_3.1.0/
LSB-Core- generic/LSB-Core- generic/ehframechpt.html

The llvm compiler infrastructure. [Online]. Available: http://www.llvm.
org

G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in CC, 2004.

Spec. [Online]. Available: http://www.spec.org

A C++ benchmark suite. [Online]. Available: http://www.cs.ucsb.edu/
~urs/oocsb/

Nec laboratories america, inc. [Online]. Available: http://www.nec-labs.
com/research/system/systems_SAV-website/benchmarks.php

S. B., Exception safety: concepts and techniques. Springer Berlin
Heidelberg, 2001.

Hexrays. Idapro. [Online]. Available: http://www.hex-rays.com/idapro/
M. Emmerik and T. Waddington, “Using a decompiler for real-world
source recovery,” in Working Conference on Reverse Engineering, 2004.
G. Caprino. (2003) Rec - reverse engineering compiler. binaries free for
any use. [Online]. Available: http://www.backerstreet.com/rec/rec.htm
P. Sabanal and M. Yason, “Reversing C++,” Black Hat DC, 2007.

A. Fokin, K. Troshina, and A. Chernov, “Reconstruction of class
hierarchies for decompilation of C++ programs,” in /4th European
Conference on Software Mantenance and Reengineering, 2010, pp. 249—
252.

V. Srinivasan and T. Reps, “Software-architecture recovery from ma-
chine code,” Computer Sciences Department, University of Wisconsin,
Madison, WI, TR 1781, 2013.

http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/
http://www.openrce.org/articles/fullview/23
http://www.openrce.org/articles/fullview/23
http://www.codeproject.com/KB/cpp/exceptionhandler.aspx
http://www.codeproject.com/KB/cpp/exceptionhandler.aspx
http://refspecs.linuxbase.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
http://refspecs.linuxbase.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
http://www.llvm.org
http://www.llvm.org
http://www.spec.org
http://www.cs.ucsb.edu/~urs/oocsb/
http://www.cs.ucsb.edu/~urs/oocsb/
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.hex-rays.com/idapro/
http://www.backerstreet.com/rec/rec.htm

	Introduction
	Background
	Objected Oriented Features of C++
	Reverse Engineering of Object Oriented Binaries

	Detailed Background on Class Inheritance, Virtual Functions and RTTI
	Assumptions of Our Method
	Method
	Virtual Function Call and RTTI Discovery
	Discovery of Classes
	Class, Member Functions and Variables Recovery
	Exception handling discovery

	Implementation
	Results
	Virtual Function Call and RTTI Discovery
	Class, Member Functions and Member Variables
	Exception Handling Discovery

	Related Work
	Conclusion
	References

