1. Show that if one assumes a distribution function of the form:

\[f(x,v,t) = \frac{n}{(2\pi T/m)^{3/2}} \exp \left[-\frac{m(v-u)^2}{2T} \right], \]

where \(n, T, \) and \(u \) are functions of \(x \) and \(t \), then the first three moments of the Vlasov equation reproduce the equations governing an ideal fluid. Interpret the equation of state.

2. Show that

\[f(x,v,t) = n(x,t)\delta(v-u(x,t)), \]

where \(\delta(v-u(x,t)) \) is a three dimensional delta function satisfies the Vlasov equation. What are the conditions on \(n(x,t) \) and \(u(x,t) \)? Interpret this in light of your result for problem #1. You may need to use the identity

\[g(x) \frac{d}{dx} \delta(x-x_0) = g(x_0) \frac{d}{dx} \delta(x-x_0) - \delta(x-x_0) \frac{dg(x_0)}{dx_0}. \]

3. Show that \(f = f(v_z,v_x^2,v_y^2,X,Y) \) is a steady solution of the Vlasov equation in a uniform magnetic field \(B(x) = B\hat{z} \). Here \(X = x + v_y/\Omega, \) and \(Y = y - v_x/\Omega \) where \(\Omega = qB/mc \). Interpret \(X \) and \(Y \) in terms of the motion of individual particles.

4. A cylindrically symmetric plasma \((r, \theta, z)\) has a distribution function given by:

\[f(x,v,t) = \frac{n}{(2\pi T/m)^{3/2}} \exp \left[-\frac{H - \lambda P_{\theta}}{T} \right], \]

where \(H \) is the energy and \(P_{\theta} \) is the canonical angular momentum, \(P_{\theta} = r(mv_{\theta} + qA_{\theta}/c) \). The quantities \(n, \lambda, \) and \(T \) are constants. Let the vector potential \(A_{\theta}(r) \) produce a uniform magnetic field. Find expressions for the density and rotation rate as a function of \(r \).