Two dimensional solutions of Laplace's equations in Cartesian coordinates are easy to come by. Let \(z = x + iy \) be a complex number, and \(f(z) \) any complex analytic function of \(z \). Examples of analytic functions are: \(z^n, \sin z, e^z \ldots \) The complex function \(f \) will have a real part \(f_R(x, y) \) and an imaginary part \(f_I(x, y) \) each of which depend on \(x \) and \(y \). Both \(f_R \) and \(f_I \) can be regarded as the real functions of \(x \) and \(y \) as well as the real and imaginary parts of the complex function \(f = f_R + i f_I \).

Show that \(f_R \) and \(f_I \) are both solutions of Laplace's Equation. Along the way you must first show the following (Cauchy-Riemann) equations,

\[
\frac{\partial f_R}{\partial x} = \frac{\partial f_I}{\partial y}, \quad \frac{\partial f_I}{\partial x} = -\frac{\partial f_R}{\partial y}.
\]

Take \(f(z) \) to be \(\arcsin(z) \). Make contour plots of the potential corresponding to the real part of \(f \). What problem is this the potential for?

2.B Point charges \(q_1 \) and \(q_2 \) are located at the points \((x_1, 0, 0)\) and \((0, y_2, 0)\) respectively. A perfectly conducting sphere of radius \(a < |x_1|, |y_2| \) is located at the origin. The sphere is held at a potential of \(V \) volts. Find a) the potential outside the sphere, b) the total charge on the sphere, and c) the force on the sphere.

2.C A line charge \(\rho_L \) is located parallel to and above a conducting plane (the \(y-z \) plane) passing through the point \((x = d, y = 0)\).

i. Obtain an expression for the potential as a function of \(x \) and \(y \).
ii. Make contour plots of lines of constant potential in the \(x-y \) plane.
iii. Show that the potential has a constant value \(V \) on a cylindrical surface with axis passing through the point \(x = x_c \) and \(y = 0 \) and radius \(r_c \) where \(r_c = d / \sinh \Gamma \) and \(x_c = d \coth \Gamma \) and \(\Gamma = 2\pi \epsilon_0 V / \rho_L \).
iv. Use the result of C to determine the capacitance per unit length of a parallel conductor transmission line, where the line has two cylindrical conductors of radius \(r_c \), and centers separated by \(s \).