Electrostatics with MATLAB

A MATLAB Computer Supplement
To ENEE 380
Spring Semester 1999
University of Maryland at College Park

Eric Dunn
Table of Contents

TABLE OF CONTENTS .. 2

INTRODUCTION .. 3

GETTING STARTED .. 4

VECTOR BASICS .. 7
 DECLARING A VECTOR ... 7
 VECTOR ALGEBRA .. 8
 ORTHOGONAL COORDINATE SYSTEMS .. 9
 FIELD ANALYSIS .. 10
 SAMPLE PROBLEMS .. 12

VECTOR CALCULUS .. 14
 GRADIENT .. 14
 DIVERGENCE ... 15
 CURL .. 17
 SCALAR LINE INTEGRAL .. 18
 VECTOR LINE INTEGRAL ... 19
 FLUX (SURFACE) INTEGRAL ... 20
 SAMPLE PROBLEMS .. 22

ELECTROSTATICS SIMULATORS ... 24
 DISCRETE ELECTROSTATICS PLOTTER .. 24
 LAPLACIAN SOLVER .. 25
 SAMPLE PROBLEMS .. 26

SOURCE CODES .. 27
 ANIMLAPLACE.M .. 27
 CURL.M .. 27
 DIVERGENCE.M .. 31
 ELECT.M .. 34
 FLUXINT.M .. 36
 GRAD.M .. 40
 LAPLACE.M .. 41
 LINEINTS.M .. 44
 LINEINTV.M .. 47
 SHOW.M .. 51
 START.M .. 51
 VALUE.M .. 52
Introduction

This course packet is intended to serve as a supplement to the introductory electrostatics course ENEE 380. It focuses on using MATLAB as a complement to analyzing electromagnetic problems and as a tool to help visualize multidimensional fields.

I emphasize the word supplement because the best way for a student to learn any new concept is not to rely on one text book or one software package, but to supplement whatever they are provided with by doing exploration and research on their own. In the case of MATLAB, the best way to learn how to apply it to electrostatic theory is to just sit down at the PC and play. Type "help command" to find reference on new commands and how to code them. Take concepts you learn in class and see if you can recreate them in MATLAB. Work through this packet of materials and invent your own problems and write your own software packages.

In my experience, this is the best way to learn and remember theory taught in class. Many of the concepts that students learn in ENEE 380 are not new to them. Most of the theories were introduced in a physics survey course and most of the mathematics were learned in a vector calculus course. The difficulty comes in combining these two areas.

When I took MATH 241 (vector calculus), the class had a Mathematica supplement. Working with this computer software package helped me and my classmates to better understand the concepts we were learning. This experience has served as my motivation for writing this course supplement.

This course packet assumes that the student has some understanding of MATLAB syntax and programming. If the student is familiar with C programming, then this will help them in understanding some of the source codes. If the student has never used MATLAB before, then there are numerous excellent introductory books available.

Source codes for all of the files are included in the Appendix of this packet. The student is encouraged to read through them and make modifications to improve the applications. To receive the actual files, contact your professor.

Lastly, I would like to say that I'm an electrical engineer, not a computer scientist. A lot of the codes I wrote are probably not written in the most efficient way. There are many parts where I coded "by force" to overcome the fact that MATLAB is a numerical analysis package and doesn't handle symbolic expressions like Mathematica. However, in doing so, it forced me to have a better understanding of the concepts.
Getting Started

The following files were compiled for MATLAB version 5.1 and are used in this course packet:

PROGRAM FILES

<table>
<thead>
<tr>
<th>M-File</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>animlaplace.m</td>
<td>700</td>
</tr>
<tr>
<td>curl.m</td>
<td>14,860</td>
</tr>
<tr>
<td>divergence.m</td>
<td>15,048</td>
</tr>
<tr>
<td>elect.m</td>
<td>7,173</td>
</tr>
<tr>
<td>fluxint</td>
<td>14,926</td>
</tr>
<tr>
<td>grad.m</td>
<td>7,281</td>
</tr>
<tr>
<td>laplace.m</td>
<td>10,885</td>
</tr>
<tr>
<td>lineints.m</td>
<td>14,969</td>
</tr>
<tr>
<td>lineintv.m</td>
<td>15,571</td>
</tr>
<tr>
<td>show.m</td>
<td>183</td>
</tr>
<tr>
<td>start.m</td>
<td>549</td>
</tr>
<tr>
<td>value.m</td>
<td>1,223</td>
</tr>
<tr>
<td>vector*.m</td>
<td>-</td>
</tr>
</tbody>
</table>

ANIMATION FILES

(USED TO CREATE *.MAT)

<table>
<thead>
<tr>
<th>M-File</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition.m</td>
<td>2,699</td>
</tr>
<tr>
<td>curl1.m</td>
<td>3,170</td>
</tr>
<tr>
<td>curl2.m</td>
<td>3,154</td>
</tr>
<tr>
<td>curl3.m</td>
<td>3,183</td>
</tr>
<tr>
<td>div1.m</td>
<td>1,481</td>
</tr>
<tr>
<td>div2.m</td>
<td>1,480</td>
</tr>
<tr>
<td>div3.m</td>
<td>1,590</td>
</tr>
<tr>
<td>scalar.m</td>
<td>2,535</td>
</tr>
</tbody>
</table>

MAT-FILES

(BECAUSE OF SIZE, THESE ARE ZIPPED SEPARATELY)

<table>
<thead>
<tr>
<th>MAT-File</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>add.mat</td>
<td>6,516,232</td>
</tr>
<tr>
<td>curl1.mat</td>
<td>2,576,296</td>
</tr>
<tr>
<td>curl2.mat</td>
<td>2,424,760</td>
</tr>
<tr>
<td>curl3.mat</td>
<td>5,000,872</td>
</tr>
<tr>
<td>diver1.mat</td>
<td>2,121,688</td>
</tr>
<tr>
<td>diver2.mat</td>
<td>2,121,688</td>
</tr>
<tr>
<td>diver3.mat</td>
<td>9,243,880</td>
</tr>
<tr>
<td>dotp.mat</td>
<td>2,243,880</td>
</tr>
<tr>
<td>rotat.mat</td>
<td>3,788,584</td>
</tr>
</tbody>
</table>
GIF-Files

(Animations Created With Paint Shop Pro)

<table>
<thead>
<tr>
<th>File</th>
<th>Size</th>
<th>14.4 K Download</th>
<th>28.8 K Download</th>
<th>56 K Download</th>
<th>ISDN Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition.gif</td>
<td>21 Kb</td>
<td>16 sec</td>
<td>8 sec</td>
<td>4 sec</td>
<td>2 sec</td>
</tr>
<tr>
<td>curl1.gif</td>
<td>8.1 Kb</td>
<td>7 sec</td>
<td>4 sec</td>
<td>2 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>curl2.gif</td>
<td>7.5 Kb</td>
<td>6 sec</td>
<td>3 sec</td>
<td>2 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>curl3.gif</td>
<td>12 Kb</td>
<td>9 sec</td>
<td>5 sec</td>
<td>3 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>div1.gif</td>
<td>5.0 Kb</td>
<td>4 sec</td>
<td>2 sec</td>
<td><1 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>div2.gif</td>
<td>5.5 Kb</td>
<td>5 sec</td>
<td>3 sec</td>
<td>2 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>div3.gif</td>
<td>7.2 Kb</td>
<td>6 sec</td>
<td>3 sec</td>
<td>2 sec</td>
<td><1 sec</td>
</tr>
<tr>
<td>laplace.gif</td>
<td>175 Kb</td>
<td>2 min 9 sec</td>
<td>1 min 4 sec</td>
<td>1 min</td>
<td>15 sec</td>
</tr>
<tr>
<td>scalar.gif</td>
<td>5.3 Kb</td>
<td>4 sec</td>
<td>2 sec</td>
<td>2 sec</td>
<td><1 sec</td>
</tr>
</tbody>
</table>

(Download times are provided because they were used in creation of course web-page)

All of the files need to be copied into your MATLAB working directory.
To view the animations, at the MATLAB prompt simply type:

`show('filename')`

To launch the package of programs, at the MATLAB prompt type:

`start`

The following screen should open from which you can select which program you would like to run.
In addition, from each program, you can launch the other programs through the menu at the top of the window.
Vector Basics

Declaring a Vector

MATLAB stands for *Matrix Laboratory*. All of its calculations are numerical unlike Mathematica and Maples symbolic engines. The most basic way to declare a vector such as

\[\mathbf{A} = 2a_x + 3a_y + 4a_z \]

would be to type

\[\mathbf{A} = [2 3 4] \]

You could have also declared the vector as a column matrix rather than a row matrix by typing

\[\mathbf{A} = [2; 3; 4] \]

Either method is acceptable. The important thing is that as the user, you understand which convention you are using. For example, let's say you wanted to store the following vector in MATLAB for use in a later computation.

\[\mathbf{B}(t) = (2t)a_x + (3-t)a_y + (t^4)a_z \quad , 0 < t < 1 \]

The first thing to notice is that \(\mathbf{B} \) is a function of time. Therefore, we first must declare a time matrix, \(t \), by using MATLAB's `linspace()` command.

\[t = linspace(0,1,10) \]

This returns a row matrix of size 10 with elements linearly ranging from 0 to 1. Next, we will construct the \(\mathbf{B} \) vector matrix. Because \(t \) is a row matrix, I will declare \(\mathbf{B} \) as a column matrix where the first column contains the elements for \(\mathbf{B}(0) \) and the 10th column contains the elements for \(\mathbf{B}(1) \).

\[\mathbf{B} = [2.*t; 3-t; t.^4] \]

Notice that if we had declared \(\mathbf{B} \) in MATLAB as a row matrix with the information organized in rows, then because \(t \) is a row matrix, \(\mathbf{B} \) end up as a single row matrix with 30 elements and it would be difficult to distinguish between it's three orthogonal components.

To obtain any particular element of this vector, such as the z-component at time \(t=1 \), we would simply type
The first argument is the row number (in this case row 3 which we used to represent the z-component of our column matrix) and the second argument is the column number (in this case column 10 which we used to represent time \(t = 1 \)).

There are many other MATLAB commands that can be used to declare vectors, but the most important thing isn't how you declare the vector, but that you remember how your information is represented within the matrix.

Vector Algebra

Once you have declared your vector, there are many algebraic manipulations that you can perform on it. For example, lets say we had declared two row vectors as follows.

\[
A = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \\
B = \begin{bmatrix} 5 & 6 & 7 \end{bmatrix}
\]

To add the two vectors, we need to add each component. (For an animation of vector addition, look at the `addition.m` script file in the appendix or type `show('add')`). This is as easy as typing

\[
C = A + B
\]

Not surprisingly, to subtract the two vectors, we would type

\[
C = A - B
\]

You will recall that there are many more forms of vector multiplication. To compute matrix multiplication (where the number of columns of the first matrix has to equal the number of rows of the second matrix), we would use the standard \(\times \) symbol that is commonly used to represent multiplication. However, if we wanted to multiply each element with the same element in the second vector (ie. multiply the two x-components and the two y-components and the two z-components to yield the x,y,z components of a new matrix), then we need the following syntax.

\[
C = A.*B
\]

This case returns \(C = \begin{bmatrix} 10 & 18 & 28 \end{bmatrix} \). Forgetting the dot before the multiplication sign is a common mistake that many students make and get very frustrated over. The same syntax would be used if we wanted to multiply a scalar by each element in the second matrix.

\[
C = 2.*A
\]

This yields \(C = \begin{bmatrix} 4 & 6 & 8 \end{bmatrix} \). In the same fashion, vectors can be divided.

\[
C = A./12
\]
This yields \(C = [0.1666 \ 0.2500 \ 0.3333] \). In addition, there are two specialized forms of vector multiplication that you should already be familiar with. These are the dot (scalar) product and the cross (vector) product. (For an animation of the dot product to illustrate how it involves the projection of one vector onto another, see the `scalar.m` program or type `show('dotp')`). The dot product can be found by typing

\[
C = \text{dot}(A,B)
\]

This yields \(C = 56 \). Notice that this is the same thing as typing

\[
C = \text{sum}(A.*B)
\]

The cross product is done similarly

\[
C = \text{cross}(A,B)
\]

This yields \(C = [-3 \ 6 \ -3] \). Notice that this is the same thing as typing

\[
C = [\text{det}([1,0,0;A;B]),\text{det}([0,1,0;A;B]),\text{det}([0,0,1;A;B])]
\]

Orthogonal Coordinate Systems

MATLAB has built in commands that make conversion between cartesian, polar, cylindrical, and spherical coordinate systems easy. To convert into polar coordinates, type

\[
[\text{th},r] = \text{cart2pol}(A(1),A(2))
\]

To convert back into cartesian coordinates, type

\[
[x,y] = \text{pol2cart}(\text{th},r)
\]

If \(A \) had a third (z) component, then conversion between cartesian and cylindrical could be done with the commands

\[
[\text{th},r,z] = \text{cart2pol}(A(1),A(2),A(3))
[x,y,z] = \text{pol2cart}(\text{th},r,z)
\]

Similarly, conversion between cartesian and spherical could be done with the commands

\[
[\text{th},\phi,r] = \text{cart2sph}(A(1),A(2),A(3))
[x,y,z] = \text{sph2cart}(\text{th},\phi,r)
\]

These commands can be cascaded to convert directly between polar and spherical or any other combination. For instance
Field Analysis

There are two basic kinds of fields you will encounter in electromagnetics. Both types of fields are defined over a region in space. One type, called a scalar field, just takes on a certain value at each point. For instance, a field that describes the voltage around a point charge is a scalar field. The second type of field, called a vector field, has a magnitude and a direction at each point. For instance, a field that describes the electric field around a point charge is a vector field.

There are many ways to plot scalar fields. The basic way I will introduce here is by using a contour plot. The first step is to establish a mesh grid that defines the region of space that the field will be analyzed over.

```matlab
[x, y] = meshgrid(linspace(0, 1, 25), linspace(0, 1, 25));
z = x.^2 + y.^2;

h = contour(z, 'k');
clabel(h);
```

Sets up a mesh over the region $0 < x < 1$, $0 < y < 1$ with 25 points in each direction.

Defines the scalar field with z values over the region defined by the mesh.

Yields the following plot.

Notice that the 'k' argument is optional and just tells MATLAB what color to plot the contour lines. h is the returned handle to the plot which `clabel()` uses to label the contours. If we just wanted the contour plot without labels we would just type `contour(z, 'k');` Also note that the x and y values labeled on the plot are not the
actual values of x and y but rather the indeces of the x and y vectors for the mesh (in this case 25 elements long each).

To plot vector fields we will use a quiver plot. The process is very similar to scalar field plotting. For instance, the following chain of commands will plot a vector field over the mesh $0 < x < 2$, $0 < y < 2$ whose x-component is equal to x^2 and whose y-component is equal to y^2.

$$
[x \ y] = \text{meshgrid}(\text{linspace}(0,2,15), \text{linspace}(0,2,15));
X = x.^2;
Y = y.^2;
quiver(X,Y);
$$

In addition, the commands \texttt{contour3()} and \texttt{quiver3()} can be used in a similar fashion to generate three dimensional field plots.
Sample Problems

All of the following exercises should be completed with MATLAB and where appropriate verified through hand analysis ...

For problems 1 → 14 assume \(\mathbf{A} = 5a_x + 11a_y + 9a_z \) and \(\mathbf{B} = 6a_x + 4a_z \)

Find \(\mathbf{C} \) if

1) \(\mathbf{C} = \mathbf{A} + \mathbf{B} \)
2) \(\mathbf{C} = \mathbf{A} - \mathbf{B} \)
3) \(\mathbf{C} = 3\mathbf{A} \)
4) \(\mathbf{C} = \mathbf{B}/24 \)
5) \(\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \)
6) \(\mathbf{C} = 2\mathbf{A} - 4\mathbf{B} \)
7) \(\mathbf{C} = \mathbf{A} \times \mathbf{B} \)
8) \(\mathbf{C} = \mathbf{A} \times 5\mathbf{B} \)
9) \(\mathbf{C} = (\mathbf{A} \cdot \mathbf{B}) \times \mathbf{B} \)
10) \(\mathbf{C} = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{B} \)

11) Find \(|\mathbf{A}| \)
12) Find \(\angle \mathbf{A} \)
13) Find \(\mathbf{A} \cdot a_x \)
14) Find \(\mathbf{A} \cdot a_x \)

For problems 15 → 19 assume \(\mathbf{A} = 5t a_x + 11t a_y + 9a_z \) where \(t = \) whole numbers 1 to 10

Find the following …

15) \(\mathbf{B}(t=8) \)
16) \(\mathbf{B}(t=8) + \mathbf{B}(t=9) \)
17) \(\mathbf{B}(t=1) \cdot \mathbf{B}(t=2) \)
18) \(|\mathbf{B}(t=7)| \)
19) \(\mathbf{B}(1 \leq t \leq 5) \)

Convert the following from cartesian to spherical
20) \((1,4,7) \)
21) \((5,3,8) \)

Convert the following from cartesian to polar
22) \((1,8) \)
23) \((10,11) \)

Convert the following from cylindrical to spherical
24) \((8,\pi,7) \)
25) $(1, \pi/2, 5)$

Plot the following fields and indicate whether they are scalar or vector fields. Assume $0 \leq x \leq 10$ and $0 \leq y \leq 10$

(Note: You will have to choose an appropriate step size to properly view the fields)

26) $3x + y$
27) $x a_x + y a_y$
28) $x^2 + y^2$
29) xy
30) $\cos(2x) a_x + \sin(2y) a_y$
Vector Calculus

There are a bundle of calculus manipulations that can be operated on fields. The most important ones we will consider are those which are used in Maxwell's equations. (In particular, those involved in electrostatics for ENEE 380 ... ENEE 381 will focus on electrodynamics)

Maxwell's Equations in Differential Form (Electrostatic Case)

\[\nabla \times \mathbf{E} = 0 \]
\[\nabla \times \mathbf{H} = \mathbf{J} \]
\[\nabla \cdot \mathbf{D} = \rho \]
\[\nabla \cdot \mathbf{B} = 0 \]

Maxwell's Equations in Integral Form (Electrostatic Case)

\[\nu \mathbf{E} \cdot \partial l = 0 \]
\[\nu \mathbf{H} \cdot \partial l = \mu_s \mathbf{J} \cdot \partial s \]
\[\nu \mathbf{D} \cdot \partial s = \mu_i \rho \cdot \partial v \]
\[\nu \mathbf{B} \cdot \partial s = 0 \]

While the software package I have written for MATLAB and will describe in the following section may make some vector calculus analysis easier, I strongly encourage each student to take a look at the source codes and understand how they work.

Gradient

One way to interpret the gradient of a scalar field is that it is a vector field which points in the direction of maximum increase normal to the contour plot. The Gradient Plotter program (type `start` to launch the package of programs) will allow you to plot a scalar field and compute and plot the gradient of this field.

As an example, consider the following scalar field.

\[v = x \cdot \exp(-x^2-y^2) \]

(Notice that the `.*` and `.^` operators are used for vector algebra.) Shown below is a three dimensional surface plot of this scalar field (where \(v\) represents the height of the surface) generated by MATLAB and a mixed plot showing how the surface can be represented as a contour plot.
To evaluate the gradient of this function, run the Gradient Plotter program. As shown below, enter the scalar field expression (as you would enter it to run in MATLAB) and enter your mesh range. Clicking on "Plot Contour" will plot the contours of the scalar field. Clicking on "Plot Gradient" will calculate and plot the gradient.

As can be seen through this example, the gradient lines do point in the direction of maximum normal to the surface. Another interpretation of the gradient is that if a ball were placed at a point in the scalar field, then it would roll in the direction opposite the gradient. It is also possible to find out the numerical value of the gradient anywhere within the mesh by using the `value()` program I wrote.

For instance, to find the value of the gradient in the above example at \(x = 1, y = 1 \) we would first look at the source code to see that the global variables \(dx \) and \(dy \) represent the values of the gradient.

\[
\begin{align*}
\text{gradx} &= \text{value}('dx', -1.5, 1.5, -1.5, 1.5, 1, 1) \\
\text{grady} &= \text{value}('dy', -1.5, 1.5, -1.5, 1.5, 1, 1)
\end{align*}
\]

Yields the numerical approximation that \(\nabla v(1,1) = -0.1472a_x - 0.2330a_y \). The reason for errors in approximation are that the mesh size is fairly rough in order to clearly display all the arrow heads.

Divergence
One way to interpret the divergence of a vector field is that it represents the change in volume/area of a small region flowing in the field. For instance, if the vector field was the water flowing in a rough river (where at each point in the river the water flow had a magnitude and direction), then the divergence would measure how the size of a loose rubber band would expand or contract when dropped into the river.

For some animations of different cases of divergence, look at the div1.m, div2.m, and div3.m script files in the appendix or type `show('diver1')`, `show('diver2')`, and `show('diver3')`.

The Divergence Plotter allows you to plot a vector field and also plot its divergence. Moreover, it has coded an option where you can drop a rectangle into the static field and view how the area of this shape changes over time.

As an example, consider the following scalar field.

\[
v = \begin{bmatrix}
\cos(x) \\
\cos(y)
\end{bmatrix}
\]

The figure below indicates that at \((x,y) = (-1.5,-1.5)\), the divergence appears to be positive since a rectangle dropped at this location grows in size over time.

Clicking on the plot divergence button yields the following figure. This too indicates that at the location \((-1.5,1.5)\), the divergence is positive.

(Try playing with the `view()` command to obtain different viewpoints of this three dimensional plot.)
Lastly, we can find the exact value of the divergence using the `value()` program as we did for the Gradient Plotter. The only difference is that this time, our global variable is d.

\[
divg = value('d',-2*pi,2*pi,-2*pi,2*pi,-1.5,-1.5)
\]

Yields the numerical result of $\nabla \cdot v(-1.5,-1.5) = 1.9037$ which is close to the actual value.

Curl

One way to interpret the curl of a vector field is that it is a measure of how much rotation a vector field has. For instance, if the vector field were the water flowing in a flushed toilet, then it would have a greater curl than the water flowing through a uniform pipe.

For some animations of different cases of curl, look at the `curl1.m`, `curl2.m`, and `curl3.m` script files in the appendix or type `show('cur1')`, `show('cur2')`, and `show('cur3')`.

The Curl Plotter allows you to plot a vector field and also plot its curl. Moreover, it has coded an option where you can drop a "leaf" into the static field and view how this leaf rotates over time.

As an example, consider the following scalar field.

\[
v = [-y \ x]
\]

The figure below indicates that at $(x,y) = (.6,.2)$, the curl appears to be positive since a leaf dropped at this location rotates counter-clockwise over time (recall the right hand rule).
Clicking on the plot curl button yields the following figure. This too indicates that at the location (.6,.2), the curl is positive. In fact, it suggests that everywhere along the mesh the curl is a constant positive value.

Lastly, we can find the exact value of the curl using the `value()` program as we did for the Gradient Plotter. The only difference is that this time, our global variable is `c`.

\[\nabla \times \mathbf{v}(0.6, 0.2) = 2 \]

Yields the numerical result of \(\nabla \times \mathbf{v}(0.6, 2) = 2 \) which is the actual value.

Scalar Line Integral
The scalar line integral is the result of integrating a scalar field along a path. Because the path has a direction, and the field just has a magnitude, the result of the scalar line integral is a vector quantity.

The Scalar Line Integrator allows you to plot a scalar field, plot a curve (either by entering it parametrically or via the mouse), and calculate the line integral along this curve.

As an example, consider the following scalar field.

\[v = x^2 + y^2 \]

The figure below indicates that the result of integrating over the line extending from the origin to the point (1,1) yields

\[\mu_c \cdot \mathbf{l} = (2/3)a_x + (2/3)a_y \]

Vector Line Integral

The vector line integral is the result of integrating a vector field along a path. Because the path has a direction and the field also has a direction, the result of the scalar line integral is a scalar quantity.

The Vector Line Integrator, much like the Scalar Line Integrator allows you to plot a vector field, plot a curve (either by entering it parametrically or via the mouse), and calculate the line integral along this curve.

As an example, consider the following vector field.

\[\mathbf{v} = [x+y \ y] \]
The figure below indicates that the result of integrating over the quarter unit circle in the first quadrant yields (be patient \texttt{quad8()} takes a while to process the entire line)

\[\mu_c \mathbf{v} \cdot \partial l = -0.78542 \]

Flux (Surface) Integral

The flux (surface) integral indicates the amount of a vector field that crosses through a particular surface.

The Flux Integrator, much like the Vector Line Integrator allows you to plot a vector field, plot a surface, and calculate the flux through this surface. In the process, the program plots normals to the surface face to help visualize how much of the field lies in this direction and hence crosses the surface.

As an example, consider the following vector field.

\[\mathbf{F} = [0 \ 0 \ z] \]

The figure below indicates that the amount of flux that crosses the surface \(z = y^2 \) over the first quadrant where \(0 < x < 1, \ 0 < y < 1 \) is

\[\mu_s \mathbf{F} \cdot \partial s = 1/3 \]

Once again, it takes a while to calculate the result (this time the function \texttt{dblquad()}) so be patient.
Sample Problems

All of the following exercises should be completed with MATLAB and where appropriate verified through hand analysis.

For problems 1 → 4 assume $v(x,y) = x^2y$

1) Plot ∇v
2) Find $\nabla v(1,1)$
 Compare this value to the actual value. Were there any differences? Why or why not? How could the source code be modified to yield a more accurate result? What are the costs of making such a modification?
3) If a scalar field were $v(r,\theta)$ rather than $v(x,y)$ how could the source code be modified to accept this polar form of input without relying on the user to convert his/her expression into cartesian form?
4) Given a point charge of $Q = 1 \mu C$, use the Gradient Plotter to plot the electric field around this point. (Recall that $E = -\nabla V$)

For problems 5 → 16 assume $A = x \mathbf{a}_x - y^2 \mathbf{a}_y$

5) Plot $\nabla \cdot A$
6) Find $\nabla \cdot A(1,1)$
 Compare this value to the actual value. Were there any differences? Why or why not? How could the source code be modified to yield a more accurate result? What are the costs of making such a modification?
7) If a vector field were $A(r,\theta)$ rather than $A(x,y)$ how could the source code be modified to accept this polar form of input without relying on the user to convert his/her expression into cartesian form?
8) If $D = 2(x+4y) \mathbf{a}_x + 8x \mathbf{a}_y$, what is $\rho(0,0)$?
 (Recall Maxwell's equation $\nabla \cdot D = \rho$)
9) How could the source codes for the Divergence Plotter and the Gradient Plotter be merged to form a Laplacian Plotter where $\nabla^2 v = \nabla \cdot \nabla v$?
10) Write a MATLAB script that given $v(x,y)$ will return $\nabla^2 v$.
11) Plot $\nabla \times A$.
12) Evaluate $\nabla \times A$ by hand. Plot this function in MATLAB using the same mesh you did in the previous problem. Plot a percent error plot between the actual values and the ones that the Curl Plotter returned. Explain your results.
13) Find $\nabla \times A(1,1)$
 Compare this value to the actual value. Were there any differences? Why or why not? How could the source code be modified to yield a more accurate result? What are the costs of making such a modification?
14) If a vector field were \(\mathbf{A}(r, \theta) \) rather than \(\mathbf{A}(x, y) \) how could the source code be modified to accept this polar form of input without relying on the user to convert his/her expression into cartesian form?

15) If \(\mathbf{H} = \mathbf{A} \), then use the Curl Plotter to plot \(\mathbf{J} \).

16) If \(\mathbf{E} = \mathbf{A} \), then use the Curl Plotter to determine whether or not there is any time variation in the magnetic flux.

For problems 17 → 28 assume \(\mathbf{A} = (3x^2-6y) \mathbf{a}_x + (2y+3x) \mathbf{a}_y \) and \(v(x, y) = x^2 + y^2 \)

17) Evaluate \(\int_C \mathbf{v} \cdot d\mathbf{l} \) along the line from the origin to \((1,1)\).

18) Evaluate \(\int_C \mathbf{v} \cdot d\mathbf{l} \) along the path from \((0,0)\) to \((1,0)\) to \((1,1)\). You can either do this in 2 steps and apply superposition or find a single parameterization to describe the total path. (Hint use inequalities such as \(t \cdot (t < 1) \)).

19) Compare the values for the two previous problems. How will the value of \(\int_C \mathbf{v} \cdot d\mathbf{l} \) change for different curves? Explain.

20) Find \(\int_C \mathbf{A} \cdot d\mathbf{l} \) from \((0,1)\) to \((0,3)\).

21) If \(\mathbf{E} = \mathbf{A} \) V/m, find the work done in moving a charge of \(-20 \mu\)C from the origin to \((4,0)\) to \((4,2)\) and from the origin directly to \((4,2)\).

22) Is there a difference in the work done for the two paths in the previous problem?
 What if \(\mathbf{E} = (x/2+2y) \mathbf{a}_x + 2x \mathbf{a}_y \) V/m?

23) Explain the outcome of the previous two problems in terms of the conservative property of the electrostatic field. How is this related to Maxwell's equation for the electric field around a closed path?

24) Find the work done in moving a point charge \(Q = -20 \mu\)C from the origin to \((4,2)\) in the field \(\mathbf{E} = 2(x+4y) \mathbf{a}_x + 8x \mathbf{a}_y \) V/m along the path \(x^2 = 8y \).

25) If \(\mathbf{H} = \mathbf{A} \), evaluate \(\int_C \mathbf{J} \cdot d\mathbf{s} \) for any reasonable closed curve of your choice.

26) Should line integrals give the same result if their path is described by two drastically different parameterizations? Explain your reasoning and support it with an example using MATLAB.

27) Find \(\int_C \mathbf{A} \cdot d\mathbf{s} \) for the surface described by \(z = x^2 \) over the region \(-1 < x < 1\), \(-1 < y < 1\).

28) Can \(\mathbf{B} \) be described by the equation for \(\mathbf{A} \)? (Hint: recall Maxwell's equation)

29) If \(\mathbf{E} = 3\mathbf{a}_x \) and \(\sigma = 6.17e7 \) S/m (silver), find the resistance for a rectangular piece of material \(1m \times 1m \times 1m \). (Hint: \(R = (\int_\mathbf{E} \cdot d\mathbf{l}) / \int (\mathbf{I} \cdot \mathbf{E} \cdot d\mathbf{s}) \))

30) Repeat the previous problem for copper (\(\sigma = 5.8e7 \) S/m). Compare the two results.
Electrostatics Simulators

In addition, this MATLAB supplemental contains two programs that are specialized to enhance visualization of two electrostatic situations. The first one is a Discrete Electrostatics Plotter which allows the user to place point charges within a grid and plot the electric field and equipotential lines. The second program is a Laplacian Solver that allows the user to solve Laplace's equation for two-dimensional rectangular "box" problems.

Discrete Electrostatics Plotter

To understand how to use the Discrete Electrostatics Plotter, we will work through a simple example. Let's say we are asked to evaluate the electric field and voltage caused by a dipole formed from two charges (an electron and a proton) separated by 8 µm. For instance the proton could be located at (0 µm, 4 µm) and the electron could be located at (0 µm, -4 µm).

For each point charge, the program requires the user to enter its location (each cartesian coordinate in the range of -10 µm to +10 µm. The program also requires the user to enter the relative charge of the particle (where 1 corresponds to the charge of a proton 1.602⋅10^{-19} C). After putting in this information, the user can click on "Add Charge" to store the values. Clicking on "Electric Field" will plot the electric field for the distribution of point charges. Similarly, clicking "Equipotential Lines" will plot lines where the voltage is constant.

The following figure shows the output for the dipole example mentioned above.

Lastly, we can find the exact value of the electric field and voltage in the range of [-10 µm, 10 µm] using the value() program as we have done previously. This time, our global variables are ex and ey for the electric field and z for the voltage.
For instance, the following sequence of commands will tell us the electric field and voltage at the location (2 µm, 2 µm).

\[
\begin{align*}
Ex &= \text{value('ex',-10,10,-10,10,2,2)} \\
Ey &= \text{value('ey',-10,10,-10,10,2,2)} \\
V &= \text{value('z',-10,10,-10,10,2,2)}
\end{align*}
\]

Laplacian Solver

The Laplacian Solver allows the user to set up boundary values for a two-dimensional rectangle and then evaluate the voltage within this region. The boundaries that the region has include the four sides (top, bottom, left, and right) as well as any number of "potential nodes" the user would like to add.

For example, if we would like to solve a problem where the top and bottom edges have a value of 1 Volt along their lengths, the left and right edges are grounded (0 Volts), and there are two potential nodes within the region (say of magnitude 0.8 Volts and 1.2 Volts shown in figure below), then we would use the Laplacian Solver as in the following figure.

Notice that after clicking "Plot Voltage," the program generates both a contour plot and a three-dimension surface plot. To animate a rotation of the surface plot, type `animlaplace` after running the simulator. For a sample animation type `show('rotat')`. For this program, the global variable to be used with `value()` to evaluate the voltage is \(v \).
Sample Problems

All of the following exercises should be completed with MATLAB and where appropriate verified through hand analysis.

For problems 1 → 4 assume \(v(x,y) = x^2y \)

1) Given a point charge of \(Q = 1 \, \mu\text{C} \), use the Discrete Electrostatics Plotter to plot the electric field around this point.
2) Compare \(E(2 \, \mu\text{m}, 2 \, \mu\text{m}) \) found with the Discrete Electrostatics Plotter for the point charge in the previous problem to that found using the Gradient Plotter (by \(E = -\nabla V \)) to the actual value.
3) What could explain the differences in the previous problem? Modify the source code to yield a more accurate result. What are the costs of such a change?
4) Find the voltage at \((8 \, \mu\text{m}, 8 \, \mu\text{m})\) caused by a quadruple of four protons located at \((0, 1 \, \mu\text{m})\), \((0, -1 \, \mu\text{m})\), \((1 \, \mu\text{m}, 0)\), and \((-1 \, \mu\text{m}, 0)\).
5) Plot the equipotential lines for a random network of 10 point charges.
6) Write a MATLAB script to perform the same tasks as the Discrete Electrostatics Plotter except to output the results in three dimensions. Consider using \texttt{quiver3()} to draw the field lines and \texttt{slice()} to illustrate the voltage distribution.
7) Repeat the previous problem except for the Laplacian Solver.
8) If all four sides of a box are at a potential of 1 V, plot the voltage within the box using the Laplacian Solver.
9) What is the voltage at \((2,2)\) for the previous problem?
10) Compare the answer found in problem 9 with the actual value (found with separation of variables).
11) Repeat problem 8 with a voltage node of -2 V at the center of the box.
12) Repeat problem 9 with a voltage node of -2 V at the center of the box.
13) Calculate the computation time for the successive over-relaxation algorithm for a box with all four sides grounded (0 V) and 2 point charges of 1 V each at \((5,15)\) and \((25,15)\) by modifying the source code to include the \texttt{tic()} and \texttt{toc()} commands. Also determine the number of floating point operations required for this algorithm using the \texttt{flops()} command. How would you rate this method of numerical analysis?
14) Plot the voltage for a two dimensional rectangle if the boundary conditions for each side are such that the voltage from one end to another goes through one cycle of a cosine wave.
15) Find the resistance per unit length, \(R \), of a block of conducting material with width \(W \), thickness \(t \), length \(L \), contact thickness \(T \), and conductivity \(\sigma \). Plot \(R \) versus \(T/W \) for the cases \(W/L = 2/3 \), 1, and 1.5. To solve this problem, you will have to modify the Laplacian Solver to handle a special boundary condition. In addition, you will have to write a small code to calculate a partial derivative on a mesh. (Hint: Think of how
you would solve the problem by hand, and then just apply it to MATLAB making use of the codes that are already written for you.)

Source Codes
(The initialization overhead has been omitted to conserve space.)

Animlaplace.m

function animlaplace

 global v
 figure

 n = 25; % number of frames
 M = moviein(n);
 i = 1;

 colormap('gray')
 h = surfl(linspace(0,1.5,30),linspace(0,1,20),v);
 shading('interp')
 axis('off');

 for angle=linspace(0,9*pi,25)
 rotate(h,[0 0],angle)
 axis([0 1.5 0 1 min(min(v)) max(max(v))])
 % pause was included so that I could copy images into Paint Shop Pro
 % pause;
 M(:,i) = getframe;
 i = i+1;
 end

 close
 close
 save('rotat','M')
 clear
 show('rotat')

curl.m

function curl(action)

 close
 close
 save('rotat','M')
 clear
 show('rotat')
%%
%
% declare global variables
global formula1
global formula2
global mesh1
global mesh2
global mesh3
global mesh4
global pointx
global pointy
global time1
global time2
global c

if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 % initialization routine
end

if strcmp(action,'plot_vector')

 % read in parameters
 x_formula = get(formula1,'String');
 y_formula = get(formula2,'String');
 xmin = str2num(get(mesh1,'String'));
 xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));

 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

 % plot vector field \(\mathbf{v} = (dx,dy) \)
 dx = eval(x_formula);
 dy = eval(y_formula);
 quiver(x,y,dx,dy,0.5,'r');
 axis([xmin xmax ymin ymax]);
end

if strcmp(action,'plot_drop')

 % read in parameters
 x_formula = get(formula1,'String');
 y_formula = get(formula2,'String');
 xmin = str2num(get(mesh1,'String'));
 xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));
 t1 = str2num(get(time1,'String'));
 t2 = str2num(get(time2,'String'));
px = str2num(get(pointx, 'String'));
py = str2num(get(pointy, 'String'));
l = 1/4*min(xmax-xmin,ymax-ymin);
px2 = px+l;
py2 = py+l;

% set up grid with 20 steps
[x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

% plot vector field v = (dx,dy)
dx = eval(x_formula);
dy = eval(y_formula);
quiver(x,y,dx,dy,0.5,'r');
axis([xmin xmax ymin ymax]);

% set up function file
fid = fopen('vector.m','w');
fprintf(fid,'function xdot = vector(t,f)
');
fprintf(fid,'x=f(1);\ny=f(2);\n');
fprintf(fid,'xdot = [%s;%s];','x_formula,y_formula);
fclose(fid);

% xdot = [x_formula;y_formula]
% corresponds to system of ordinary differential equations
% x' = x_formula, y' = y_formula

% solve differential equation for flowline of vector field
[ta,p1] = ode113('vector',[t1 t2],[px;py]);
[tb,p2] = ode113('vector',[t1 t2],[px2;py2]);
% fix so ta and tb same size
if size(tb,1)>size(ta,1)
 for i = 1:(size(tb,1)-size(ta,1))
 p1(size(ta,1)+i,1)=p1(size(ta,1),1);
 p1(size(ta,1)+i,2)=p1(size(ta,1),2);
 end
elseif size(tb,1)<size(ta,1)
 for i = 1:(size(ta,1)-size(tb,1))
 p2(size(tb,1)+i,1)=p2(size(tb,1),1);
 p2(size(tb,1)+i,2)=p2(size(tb,1),2);
 end
end

for i = 1:size(p1,1)
 m = (p2(i,2)-p1(i,2))/(p2(i,1)-p1(i,1));
 b = p1(i,2)-m*p1(i,1);
 pcx = 1/4*(1/sqrt(1+m^2))+p1(i,1);
 pcy = m*(pcx-p1(i,1))+p1(i,1);
 p2(i,1) = 1*(1/sqrt(1+m^2))+p1(i,1);
 p2(i,2) = m*(p2(i,1)-p1(i,1))+p1(i,2);
 m2 = -1/m;
 b2 = pcy-m2*pcx;
 p3(i,1) = 1/4*(1/sqrt(1+m2^2))+pcx;
 p3(i,2) = m2*(p3(i,1)-pcx)+pcy;
 p4(i,1) = -1/4*(1/sqrt(1+m2^2))+pcx;
 p4(i,2) = m2*(p4(i,1)-pcx)+pcy;
end

% adjust ordering of points
for i = 1:size(p1,1)
 temp1 = p2(i,1);
 temp2 = p2(i,2);
 p2(i,1) = p3(i,1);
 p2(i,2) = p3(i,2);
 p3(i,1) = temp1;
 p3(i,2) = temp2;
end

% plot flowline
hold on
patch([p1(1,1),p2(1,1),p3(1,1),p4(1,1)],...
 [p1(1,2),p2(1,2),p3(1,2),p4(1,2)],'b');
plot(p1(1:size(p1,1),1),p1(1:size(p1,1),2),'k');
plot(p1(size(p1,1),1),p1(size(p1,1),2),'kd');
H = line([p1(size(p1,1),1) p2(size(p1,1),1)],...
 [p1(size(p1,1),2) p2(size(p1,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
H = line([p2(size(p1,1),1) p3(size(p1,1),1)],...
 [p2(size(p1,1),2) p3(size(p1,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
H = line([p3(size(p1,1),1) p4(size(p1,1),1)],...
 [p3(size(p1,1),2) p4(size(p1,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
H = line([p4(size(p1,1),1) p1(size(p1,1),1)],...
 [p4(size(p1,1),2) p1(size(p1,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
patch([p1(size(p1,1),1),p2(size(p1,1),1),p3(size(p1,1),1),...
 p4(size(p1,1),1)],[p1(size(p1,1),2),p2(size(p1,1),2),...
 p3(size(p1,1),2),p4(size(p1,1),2)],'b');
axis([xmin xmax ymin ymax]);
hold off
end % plot_drop routine

if strcmp(action,'plot_curl')
 % read in parameters
 clear x_formula
 clear y_formula
 x_formula = get(formula1,'String');
 y_formula = get(formula2,'String');
 xmin = str2num(get(mesh1,'String'));
 xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));
 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));
 % vector field v = (dx,dy)
dx = eval(x_formula);
dy = eval(y_formula);

% approximate derivatives using differences
% dbdx represents d/dx(y_formula)
% dady represents d/dy(x_formula)
for i=1:size(dy,1) % = size(dy,1)
 dbdx(i,:) = diff(dy(i,:))./diff(x(i,:));
end
for i=1:size(dx,2) % = size(dy,1)
 dady(:,i) = diff(dx(:,i))./diff(y(:,i));
end
dbx(:,size(dbdx,2)+1)=dbdx(:,size(dbdx,2));
dady(size(dady,1)+1,:)=dady(size(dady,1),:);
c = dbdx-dady;
meshc(x,y,c);
brighten(-1);
hold on
surfl(x,y,c);
shading('interp');
colormap('gray')
hold off

end % plot_curl routine

divergence.m

function divergence(action)

% % divergence.m
% % This program will allow the user to play with divergence operations
% % on vector fields.
% %
% % declare global variables
global formula1
global formula2
global mesh1
global mesh2
global mesh3
global mesh4
global point1
global point2
global point3
global point4
global time1
global time2
global d

if nargin < 1
 action = 'initialize';
end
if strcmp(action,'initialize')
 [initialization routine]
end

if strcmp(action,'plot_vector')

 % read in parameters
 x_formula = get(formula1,'String');
 y_formula = get(formula2,'String');
 xmin = str2num(get(mesh1,'String'));
 xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));

 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

 % plot vector field v = (dx,dy)
 dx = eval(x_formula);
 dy = eval(y_formula);
 quiver(x,y,dx,dy,0.5,'r');
 axis([xmin xmax ymin ymax]);

end % plot_vector routine

if strcmp(action,'plot_drop')

 % read in parameters
 x_formula = get(formula1,'String');
 y_formula = get(formula2,'String');
 xmin = str2num(get(mesh1,'String'));
 xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));
 t1 = str2num(get(time1,'String'));
 t2 = str2num(get(time2,'String'));
 t = str2num(get(point1,'String'));
 x1 = t(1);
 y1 = t(2);
 x2 = t(1);
 y2 = t(2);
 x3 = t(1);
 y3 = t(2);
 x4 = t(1);
 y4 = t(2);

 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

 % plot vector field v = (dx,dy)
 dx = eval(x_formula);
 dy = eval(y_formula);
 quiver(x,y,dx,dy,0.5,'r');
axis([xmin xmax ymin ymax]);

% set up function file
fid = fopen('vector.m','w');
fprintf(fid,'function xdot = vector(t,f)
');
fprintf(fid,'x=f(1);
y=f(2);
');
fprintf(fid,'xdot = [%s;%s];',x_formula,y_formula);
fclose(fid);
% xdot = [x_formula;y_formula]
% corresponds to system of ordinary differential equations
% x' = x_formula, y' = y_formula

% solve differential equation for flowline of vector field
[ta,p1] = ode113('vector',[t1 t2],[x1;y1]);
[tb,p2] = ode113('vector',[t1 t2],[x2;y2]);
[tc,p3] = ode113('vector',[t1 t2],[x3;y3]);
[td,p4] = ode113('vector',[t1 t2],[x4;y4]);

% plot flowlines
hold on
fill([p1(1,1),p2(1,1),p3(1,1),p4(1,1)],...
 [p1(1,2),p2(1,2),p3(1,2),p4(1,2)],'b');
plot(p1(1:size(ta,1),1),p1(1:size(ta,1),2),'k', ...
 p2(1:size(tb,1),1),p2(1:size(tb,1),2),'k', ...
 p3(1:size(tc,1),1),p3(1:size(tc,1),2),'k', ...
 p4(1:size(td,1),1),p4(1:size(td,1),2),'k');
plot(p1(size(ta,1),1),p1(size(ta,1),2),'kd', ...
 p2(size(tb,1),1),p2(size(tb,1),2),'kd', ...
 p3(size(tc,1),1),p3(size(tc,1),2),'kd', ...
 p4(size(td,1),1),p4(size(td,1),2),'kd');
H = line([p1(size(ta,1),1) p2(size(tb,1),1)],...
 [p1(size(ta,1),2) p2(size(tb,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
H = line([p3(size(tc,1),1) p4(size(td,1),1)],...
 [p3(size(tc,1),2) p4(size(td,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
H = line([p4(size(td,1),1) p1(size(ta,1),1)],...
 [p4(size(td,1),2) p1(size(ta,1),2)]);
set(H,'color','k');
set(H,'LineStyle',':');
axis([xmin xmax ymin ymax]);
hold off

end % plot_div routine

if strcmp(action,'plot_div')

% read in parameters
x_formula = get(formula1,'String');
y_formula = get(formula2,'String');
xmin = str2num(get(mesh1,'String'));
xmax = str2num(get(mesh2,'String'));
 ymin = str2num(get(mesh3,'String'));
 ymax = str2num(get(mesh4,'String'));

% set up grid with 20 steps
[x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

% plot vector field v = (dx,dy)
dx = eval(x_formula);
dy = eval(y_formula);

% approximate derivatives using differences
% dadx represents d/dx(x_formula)
% dbdy represents d/dy(y_formula)
for i=1:size(dx,1) % = size(dy,1)
 dadx(i,:) = diff(dx(i,:))./diff(x(i,:));
end
for i=1:size(dx,2) % = size(dy,1)
 dbdy(:,i) = diff(dy(:,i))./diff(y(:,i));
end
dadx(:,size(dadx,2)+1) = dadx(:,size(dadx,2));
dbdy(size(dbdy,1)+1,:) = dbdy(size(dbdy,1),:);
d = dadx+dbdy;
meshc(x,y,d);
brighten(-1);
hold on
surf1(x,y,d);
shading('interp');
colormap('gray')
hold off

end % plot_div routine

elect.m

function elect(action)
%
% elect.m
%
% This program will allow the user to play with discrete electrostatic
% fields and equipotential lines
%
% declare global variables
global x
global y
global q
global xloc
global yloc
global qloc
global num
global z
global ex
global ey
if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 [initialization routine]
end

if strcmp(action,'add')
 xloc(num) = str2num(get(x,'String'));
 yloc(num) = str2num(get(y,'String'));
 qloc(num) = str2num(get(q,'String'));
 if xloc(num)>10 | xloc(num)<-10
 error('Location must be in range of [-10,10]');
 close
 elseif yloc(num)>10 | yloc(num)<-10
 error('Location must be in range of [-10,10]');
 close
 elseif qloc(num)==0
 error('Zero Charge Entered!');
 close
 else
 num = num+1;
 set(x,'String','');
 set(y,'String','');
 set(q,'String','');
 % clear axis
 plot(0,0,'w')
 % plot points with labels
 for i = 1:(num-1)
 hold on
 plot(xloc(i),yloc(i),'ko');
 hold off
 text(xloc(i)+0.2,yloc(i)+0.2,num2str(qloc(i)));
 end
 axis([-10 10 -10 10]);
 end
end

if strcmp(action,'plot_field')|strcmp(action,'plot_volt')
 e0 = 8.854e-12;
 q0 = 1.6e-19;
 v = 'q0/(4*pi*e0)*(';
 for i = 1:(num-1)
 if(i==1)
 term = sprintf('%f.*1e6./sqrt((xg-%f).^2+ ...
 (yg-%f).^2)',qloc(i),xloc(i),yloc(i));
 else
 term = sprintf('+%f.*1e6./sqrt((xg-%f).^2+ ...
 (yg-%f).^2)',qloc(i),xloc(i),yloc(i));
 end
 end
v = strcat(v,term);
end
v = strcat(v,'');

[xg yg] = meshgrid(linspace(-10,10,20),linspace(-10,10,20));
z = eval(v);
for i = 1:size(z,1)
 for j = 1:size(z,2)
 if isinf(z(i,j))
 temp = num2str(z(i,j));
 if size(temp,2)==3
 % Inf Case
 z(i,j) = 1.2*(abs(z(i+1,j))+ ...
 abs(z(i-1,j))+abs(z(i,j+1))\n abs(z(i,j-1)))/4;
 elseif size(temp,2)==4
 % -Inf Case
 z(i,j) = -1.2*(abs(z(i+1,j))+...\n abs(z(i-1,j))+abs(z(i,j+1))+abs(z(i,j-1)))/4;
 end
 end
 end
 z(i,j) = -1*z(i,j);
end

[ex,ey] = gradient(z);
hold on
quiver(xg,yg,ex,ey)
hold off
for i = 1:size(z,1)
 for j = 1:size(z,2)
 z(i,j) = -1*z(i,j);
 end
end

if strcmp(action,'plot_volt')
 hold on
 contour(xg,yg,z,10,'k')
 hold off
end
end

\textbf{fluxint.m}

function fluxint(action)

% fluxint.m
% This program will allow the user to play with flux integrals on
% vector fields.
%
% declare global variables
global formulax
global formulay
global formulaz
global formulas
global result
global x1
global y1
global z1
global x2
global y2
global z2

if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 % initialization routine
end

if strcmp(action,'plot_vector')
 fx = get(formulax,'String');
 fy = get(formulay,'String');
 fz = get(formulaz,'String');
 xmin = str2num(get(x1,'String'));
 xmax = str2num(get(x2,'String'));
 ymin = str2num(get(y1,'String'));
 ymax = str2num(get(y2,'String'));
 zmin = str2num(get(z1,'String'));
 zmax = str2num(get(z2,'String'));

 % set up grid with 10 steps
 [x y z] = meshgrid(linspace(xmin,xmax,10), linspace(ymin,ymax,10), linspace(zmin,zmax,10));

 % plot vector field
 dx = eval(fx);
 dy = eval(fy);
 dz = eval(fz);
 quiver3(x,y,z,dx,dy,dz,0.5,'r');
 axis([xmin xmax ymin ymax zmin zmax]);
end

if strcmp(action,'plot_surface')
 fx = get(formulax,'String');
 fy = get(formulay,'String');
 fz = get(formulaz,'String');
 zs = get(formulas,'String')
 xmin = str2num(get(x1,'String'));
 xmax = str2num(get(x2,'String'));
 ymin = str2num(get(y1,'String'));
 ymax = str2num(get(y2,'String'));
 zmin = str2num(get(z1,'String'));
 zmax = str2num(get(z2,'String'));

zmax = str2num(get(z2,'String'));

% set up grid with 10 steps
[x y] = meshgrid(linspace(xmin,xmax,10),linspace(ymin,ymax,10));

% plot vector field
dzs = eval(zs);
zmax = max(max(dzs,[],1));
zmin = min(min(dzs,[],1));
[x y z] = meshgrid(linspace(xmin,xmax,10),...
 linspace(ymin,ymax,10),linspace(zmin,zmax,10));
dx = eval(fx);
dy = eval(fy);
dz = eval(fz);
quiver3(x,y,z,dx,dy,dz,0.5,'r');

% plot surface
hold on
[x y] = meshgrid(linspace(xmin,xmax,10),linspace(ymin,ymax,10));
surf(x,y,dzs)
SHADING interp
colormap(gray)
hold off
axis([xmin xmax ymin ymax zmin zmax]);

end

if strcmp(action,'calc_flux')

 fx = get(formulax,'String');
 fy = get(formulay,'String');
 fz = get(formulaz,'String');
 zs = get(formulas,'String');
xmin = str2num(get(x1,'String'));
xmax = str2num(get(x2,'String'));
ymin = str2num(get(y1,'String'));
ymax = str2num(get(y2,'String'));
zmin = str2num(get(z1,'String'));
zmax = str2num(get(z2,'String'));

 [x y] = meshgrid(linspace(xmin,xmax,10),linspace(ymin,ymax,10));
dzs = eval(zs);
zmax = max(max(dzs,[],1));
zmin = min(min(dzs,[],1));
[x y z] = meshgrid(linspace(xmin,xmax,10),...
 linspace(ymin,ymax,10),linspace(zmin,zmax,10));
dx = eval(fx);
dy = eval(fy);
dz = eval(fz);
 [nx ny nz] = surfnorm(dzs);
hold on
 quiver3(x,y,dzs,nx,ny,nz);
hold off

 % set up function file
fid = fopen('vector3.m','w');
fprintf(fid,'function f = vector3(x,y)\n');

fprintf(fid,'x1 = %f;\n',xmin);
fprintf(fid,'x2 = %f;\n',xmax);
fprintf(fid,'y1 = %f;\n',ymin);
fprintf(fid,'y2 = %f;\n',ymax);
fprintf(fid,'[xa ya] = meshgrid(linspace(x1,x2,10), ...\n linspace(y1,y2,10));\n');
fprintf(fid,'z = ''%s'';\n',zs);
fprintf(fid,'z = strrep(z,''y'',''ya'');\n');
fprintf(fid,'z = strrep(z,''x'',''xa'');\n');
fprintf(fid,'z = eval(z);\n');

fprintf(fid,'for i=1:size(z,1)\n');
fprintf(fid,'dfdx(i,:) = diff(z(i,:))./diff(xa(i,:));\n');
fprintf(fid,'dfdy(:,i) = diff(z(:,i))./diff(ya(:,i));\n');
fprintf(fid,'end\n');

fprintf(fid,'nx = -dfdx;\n');
fprintf(fid,'ny = -dfdy;\n');

fprintf(fid,'z = %s;\n',zs);

fprintf(fid,'for i = 1:l\n');
fx = strrep(fx,'x','x(i)');
fx = strrep(fx,'y','y(i)');
fx = strrep(fx,'z','z(i)');
fy = strrep(fy,'x','x(i)');
fy = strrep(fy,'y','y(i)');
fy = strrep(fy,'z','z(i)');
fz = strrep(fz,'x','x(i)');
fz = strrep(fz,'y','y(i)');
fz = strrep(fz,'z','z(i)');

fprintf(fid,'v(i,:) = [%s %s %s];\n',fx,fy,fz);

fprintf(fid,'for i = 1:l\n');

fprintf(fid,'xindex(i)=round((x(i)-x1)/(x2-x1)*(size(xa,2)));
');

fprintf(fid,'yindex(i)=round((y(i)-y1)/(y2-y1)*(size(ya,2)));
');

fprintf(fid,'xindex(i)=round((x(i)-x1)/(x2-x1)*(size(xa,2)));
');

fprintf(fid,'yindex(i)=round((y(i)-y1)/(y2-y1)*(size(ya,2)));
');

fprintf(fid,'for j=1:size(xindex,2)\n');

fprintf(fid,'if xindex(j)<=0,xindex(j)=1;,end\n');

fprintf(fid,'if xindex(j)>=size(xa,2), ...\n xindex(j)=size(xa,2)-1;,end\n');

fprintf(fid,'for j=1:size(yindex,2)\n');

fprintf(fid,'if yindex(j)<=0,yindex(j)=1;,end\n');

fprintf(fid,'if yindex(j)>=size(ya,2), ...\n yindex(j)=size(ya,2)-1;,end\n');

fprintf(fid,'end\n');
fprintf(fid,'for i = 1:l
');
fprintf(fid,'n(i,:) = [nx(xindex(i),yindex(i)) ...
 ny(xindex(i),yindex(i)), nz(xindex(i),yindex(i))];
');
fprintf(fid,'end
');
fprintf(fid,'for i=1:l
');
fprintf(fid,'f(:,i) = dot(v(i,:),n(i,:));
');
fprintf(fid,'end
');
close(fid);

answer = dblquad('vector3',xmin,xmax,ymin,ymax);
set(result,'String',num2str(answer));
z = eval(f);
c = contour(x,y,z);
clabel(c);

end

if strcmp(action,'plot_gradient')

 hold on
 f = get(formula,'String');
xmin = str2num(get(x1,'String'));
xmax = str2num(get(x2,'String'));
ymin = str2num(get(y1,'String'));
ymax = str2num(get(y2,'String'));

 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

 % plot gradient
 z = eval(f);
 % approximate derivatives using differences
 % dx represents dz/dx
 % dy represents dz/dy
 dx = zeros(size(z,1)-1,size(z,2)-1);
dy = zeros(size(z,1)-1,size(z,2)-1);
 for i=1:size(z,1)
 dx(i,:) = diff(z(i,:))./diff(x(i,:));
 end
 for i=1:size(z,2)
 dy(:,i) = diff(z(:,i))./diff(y(:,i));
 end
 dx(:,size(dx,2)+1)=dx(:,size(dx,2));
dy(size(dy,1)+1,:)=dy(size(dy,1),:);

 quiver(x,y,dx,dy);
 hold off
end

laplace.m

function laplace(action)
%
% laplace.m
%
% This program will allow the user to play with solutions to Laplace's
% equation for rectangular boundary conditions.
%
% Parts of this code were developed by Jason Papadopoulos.
%
% declare global variables
global x
global y
global val
global top
if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 % initialization routine
 axes(plot2);
 axis('off');
 axes(plot1);
 axis([-1 32 -1 22])
 xlabel('x')
 ylabel('y')
 h = line([1 1 30 30 1],[1 20 20 1 1]);
 set(h,'Color','k');
 num = 1;
end

if strcmp(action,'add_point')
 val(num) = str2num(get(value,'String'));
 [x(num) y(num)] = ginput(1);
 if x(num)>30 | x(num)<1
 error('X location must be in range of [1,30]');
 close
 elseif y(num)>20 | y(num)<1
 error('Y location must be in range of [1,20]');
 close
 elseif isempty(val(num))
 error('Must first enter voltage');
 close
 else
 num = num+1;
 set(value,'String','');
 % clear axis
 axes(plot1);
 plot(0,0,'w')
 axis([-2 32 -2 22])
 h = line([1 1 30 30 1],[1 20 20 1 1]);
 set(h,'Color','k');
 % plot points
for i = 1:(num-1)
 hold on
 plot(x(i),y(i),'ro');
 hold off
end
end

if strcmp(action,'plot_voltage')

 top = str2num(get(vtop,'String'));
 bottom = str2num(get(vbottom,'String'));
 left = str2num(get(vleft,'String'));
 right = str2num(get(vright,'String'));

 % set up grid for "successive over relaxation" algorithm
 % rows = 20;
 % cols = 30;

 v = zeros(20,30);
 for i = 1:(num-1)
 v(round(y(i)),round(x(i))) = val(i);
 end
 v(:,1) = left.*ones(20,1);
 v(:,30) = right.*ones(20,1);
 v(1,:) = top.*ones(1,30);
 v(20,:) = bottom.*ones(1,30);

 overrelax = 1;
 for i = 1:20
 for j = 2:19
 for k = 2:29
 temp = 0.25.*(v(j-1,k)+v(j+1,k)+v(j,k-1)+v(j,k+1));
 v(j,k) = v(j,k) + overrelax*(temp-v(j,k));
 for l = 1:(num-1)
 if j==round(y(l)) & k==round(x(l))
 v(j,k) = val(l);
 end
 end
 end
 end
 end

 axes(plot2);
 colormap('gray')
 surfl(linspace(0,1.5,30),linspace(0,1,20),v);
 shading('interp')
 axis('off');

 axes(plot1);
 plot(0,0,'w');
 axis([-2 32 -2 22])
 h = line([1 1 30 30 1],[1 20 20 1 1]);
 set(h,'Color','k');
 % plot points
 for i = 1:(num-1)
lineints.m

function lineints(action)
%
% lineints.m
%
% This program will allow the user to play with line integrals on % scalar fields.
%
% declare global variables
global formula
global result
global curve
global status
global x1
global y1
global x2
global y2
global time1
global time2
global cx
global cy
global px
global py

if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 % [initialization routine]
end

if strcmp(action,'plot_contour')

 f = get(formula,'String');
 xmin = str2num(get(x1,'String'));
 xmax = str2num(get(x2,'String'));
 ymin = str2num(get(y1,'String'));
 ymax = str2num(get(y2,'String'));

 % set up grid with 20 steps
[x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

% plot contours
z = eval(f);
c = contour(x,y,z,10);
clabel(c);
axis([xmin xmax ymin ymax]);
end

if strcmp(action,'plot_line')

f = get(formula,'String');
xmin = str2num(get(x1,'String'));
xmax = str2num(get(x2,'String'));
ymin = str2num(get(y1,'String'));
ymax = str2num(get(y2,'String'));

[x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));
z = eval(f);

val = get(curve,'Value');
val2 = get(status,'Value');
if val == 2 % Line Segments
 if val2 == 0 % Mouse Input
 [px py] = ginput(2);
 else % Keyboard Input
 disp('Enter Locations (X1,Y1) to (X2,Y2) ...');
 disp(' ');
 px(1) = input('X1 = ');
 py(1) = input('Y1 = ');
 px(2) = input('X2 = ');
 py(2) = input('Y2 = ');
 end
 c = contour(x,y,z,10);
clabel(c);
 axis([xmin xmax ymin ymax]);
 hold on
 l = line(px,py);
 set(l,'Color','k');
 plot(px(2),py(2),'kd');
 hold off
else % Parametric Curve
 cfx = get(cx,'String');
cfy = get(cy,'String');
t1 = str2num(get(time1,'String'));
t2 = str2num(get(time2,'String'));
t = t1:(t2-t1)/500:t2-(t2-t1)/500;
c = contour(x,y,z,10);
clabel(c);
 axis([xmin xmax ymin ymax]);
 hold on
 xpt = eval(cfx);
 ypt = eval(cfy);
 plot(xpt,ypt,'k');
 plot(xpt(size(xpt,2)),ypt(size(ypt,2)),'kd');
 axis([xmin xmax ymin ymax]);
end
hold off
end
end

if strcmp(action,'calc_line')
 f = get(formula,'String');
 val = get(curve,'Value');
 if val == 2 % Line Segment
 % Split Line into 501 points (500 sections)
 xval = px(1):(px(2)-px(1))/501:px(2)-(px(2)-px(1))/501;
 yval = py(1):(py(2)-py(1))/501:py(2)-(py(2)-py(1))/501;
 if px(1) == px(2)
 xval = px(1).*ones([1 501]);
 end
 if py(1) == py(2)
 yval = py(1).*ones([1 501]);
 end
 for i=1:500
 dx(i) = xval(i+1)-xval(i);
 dy(i) = yval(i+1)-yval(i);
 x = xval(i);
 y = yval(i);
 Fn(i) = eval(f);
 s1(i) = Fn(i)*dx(i);
 s2(i) = Fn(i)*dy(i);
 end
 ans1 = sum(s1);
 ans2 = sum(s2);
 else % Parametric Curve
 cfx = get(cx,'String');
 cfy = get(cy,'String');
 t1 = str2num(get(time1,'String'));
 t2 = str2num(get(time2,'String'));
 fstr = strrep(f,'x',strcat('(',cfx,')'));
 fstr = strrep(fstr,'y',strcat('(',cfy,')'));
 fstr1 = strcat('(',fstr,')','.*','a');
 fstr2 = strcat('(',fstr,')','.*','b');
 fid = fopen('vector1.m','w');
 fprintf(fid,'function f = vector1(tt)
 t1 = %f;
 t2 = %f;
 t = t1:(t2-t1)/700:t2;
 xpt = %s;
 ypt = %s;
 dfxdt = diff(xpt)./diff(t);
 dfydt = diff(ypt)./diff(t);
 index=round((tt-t1)/(t2-t1)*(size(t,2)));
 for j=1:size(index,2)
 if index(j)<=0,index(j)=1;,end
 if index(j)>=size(t,2), ...
 index(j)=size(t,2)-1;,end
 end
 ans1 = sum(s1);
 ans2 = sum(s2);
 end
fprintf(fid, 'end\n');
fprintf(fid, 't=tt;\n');
fprintf(fid, 'a=dfxdt(index); \nb=dfydt(index); \n');
fprintf(fid, 'f=%s;\n', fstr1);
fclose(fid);
ans1 = quad8('vector1', t1, t2);

fid = fopen('vector2.m', 'w');
fprintf(fid, 'function f = vector2(tt)\n');
fprintf(fid, 't1 = %f;\n', t1);
fprintf(fid, 't2 = %f;\n', t2);
fprintf(fid, 't = t1:(t2-t1)/700:t2;\n');
fprintf(fid, 'xpt = %s;\n', cfx);
fprintf(fid, 'ypt = %s;\n', cfy);
fprintf(fid, 'dfxdt = diff(xpt)./diff(t);\n');
fprintf(fid, 'dfydt = diff(ypt)./diff(t);\n');
fprintf(fid, 'index=round((tt-t1)/(t2-t1)*(size(t,2)));\n');
fprintf(fid, 'for j=1:size(index,2),\n');
fprintf(fid, 'if index(j)<=0,index(j)=1;end\n');
fprintf(fid, 'if index(j)>=size(t,2),\n');
fprintf(fid, 'index(j)=size(t,2)-1;end\n');
fprintf(fid, 'end\n');
fprintf(fid, 'f=%s;\n', fstr2);
fclose(fid);
ans2 = quad8('vector2', t1, t2);

end

answer = strcat('(', num2str(ans1), ',', num2str(ans2), ')');
set(result, 'String', answer);

end

lineintv.m

function lineintv(action)

 global formulax
 global formulay
 global result
 global curve
 global status
 global x1
 global y1
 global x2
 global y2
 global timel

 lineintv.m
global time2
global cx
global cy
global px
global py

if nargin < 1
 action = 'initialize';
end

if strcmp(action,'initialize')
 % initialization routine
end

if strcmp(action,'plot_vector')
 fx = get(formulax,'String');
 fy = get(formulay,'String');
 xmin = str2num(get(x1,'String'));
 xmax = str2num(get(x2,'String'));
 ymin = str2num(get(y1,'String'));
 ymax = str2num(get(y2,'String'));

 % set up grid with 20 steps
 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));

 % plot vector field
 dx = eval(fx);
 dy = eval(fy);
 quiver(x,y,dx,dy,0.5,'r');
 axis([xmin xmax ymin ymax]);
end

if strcmp(action,'plot_line')
 fx = get(formulax,'String');
 fy = get(formulay,'String');
 xmin = str2num(get(x1,'String'));
 xmax = str2num(get(x2,'String'));
 ymin = str2num(get(y1,'String'));
 ymax = str2num(get(y2,'String'));

 [x y] = meshgrid(linspace(xmin,xmax,20),linspace(ymin,ymax,20));
 dx = eval(fx);
 dy = eval(fy);

 val = get(curve,'Value');
 val2 = get(status,'Value');
 if val == 2 % Line Segments
 if val2 == 0 % Mouse Input
 [px py] = ginput(2);
 else % Keyboard Input
 disp('Enter Locations (X1,Y1) to (X2,Y2) ...');
 disp(' ');
 end
 else
 ...
px(1) = input('X1 = '); py(1) = input('Y1 = '); px(2) = input('X2 = '); py(2) = input('Y2 = '); end
quiver(x,y,dx,dy,0.5,'r'); axis([xmin xmax ymin ymax]); hold on line(px,py); plot(px(2),py(2),'bd'); hold off else % Parametric Curve cfx = get(cx,'String'); cfy = get(cy,'String'); t1 = str2num(get(time1,'String')); t2 = str2num(get(time2,'String')); t = t1:(t2-t1)/500:t2-(t2-t1)/500; quiver(x,y,dx,dy,0.5,'r'); axis([xmin xmax ymin ymax]); hold on xpt = eval(cfx); ypt = eval(cfy); plot(xpt,ypt,'b'); plot(xpt(size(xpt,2)),ypt(size(ypt,2)),'bd'); axis([xmin xmax ymin ymax]); hold off end
end
if strcmp(action,'calc_line')
fx = get(formulax,'String'); fy = get(formulay,'String');
val = get(curve,'Value');
if val == 2 % Line Segment
% Split Line into 501 points (500 sections)
 xval = px(1):(px(2)-px(1))/501:px(2)-(px(2)-px(1))/501;
yval = py(1):(py(2)-py(1))/501:py(2)-(py(2)-py(1))/501;
if px(1) == px(2)
 xval = px(1).*ones([1 501]);
end
if py(1) == py(2)
 yval = py(1).*ones([1 501]);
end
for i=1:500
 dr(i,1) = xval(i+1)-xval(i);
 dr(i,2) = yval(i+1)-yval(i);
 x = xval(i);
 y = yval(i);
 Fn(i,1) = eval(fx);
 Fn(i,2) = eval(fy);
 s(i) = dot(Fn(i),dr(i));
end
answer = sum(s);
else % Parametric Curve
cfx = get(cx,'String');
cfy = get(cy,'String');
t1 = str2num(get(time1,'String'));
t2 = str2num(get(time2,'String'));

fstrx = strrep(fx,'x',strcat('(',cfx,')'));
fstrx = strrep(fstrx,'y',strcat('(',cfy,')'));
fstry = strrep(fy,'x',strcat('(',cfx,')'));
fstry = strrep(fstry,'y',strcat('(',cfy,')'));
fstr = strcat('(','fstrx,')','.*','a','+','(','fstry,')','.*','b');

% set up function file
fid = fopen('vector.m','w');
fprintf(fid,'function f = vector(tt)
');
fprintf(fid,'t1 = %f;
',t1);
fprintf(fid,'t2 = %f;
',t2);
fprintf(fid,'t = linspace(t1,t2,700);
');
fprintf(fid,'xpt = %s;
',cfx);
fprintf(fid,'ypt = %s;
',cfy);
fprintf(fid,'dfxdt = diff(xpt)./diff(t);
');
fprintf(fid,'dfydt = diff(ypt)./diff(t);
');
fprintf(fid,'index=round((tt-t1)/(t2-t1)*(size(t,2)));
');
fprintf(fid,'for j=1:size(index,2)
');
fprintf(fid,'if index(j)<=0,index(j)=1;,end
');
fprintf(fid,'if index(j)>=size(t,2), ...
');
fprintf(fid,'end
');
fprintf(fid,'t=tt;
');
fprintf(fid,'a=dfxdt(index);
b=dfydt(index);
');
fprintf(fid,'f=%s;
',fstr);
fclose(fid);

answer = quad8('vector',t1,t2);

%Approximate Integral Using Riemann Sum
%t1 = str2num(get(time1,'String'));
%t2 = str2num(get(time2,'String'));
%t = t1:(t2-t1)/501:t2-(t2-t1)/501;
%dt = (t2-t1)/1501;
%xpt = eval(cfx);
%ypt = eval(cfy);
%dfxdt = diff(xpt)./diff(t);
%dfydt = diff(ypt)./diff(t);
%for i=1:500
% dr(i,1) = dt*dfxdt(i);
% dr(i,2) = dt*dfydt(i);
% x = xpt(i);
% y = ypt(i);
% Fn(i,1) = eval(fx);
% Fn(i,2) = eval(fy);
% s(i) = dot(Fn(i),dr(i));
%end
%answer = sum(s);
end
set(result,'String',num2str(answer));
end
show.m

function show(name)
%
% show.m
%
% This file is used to load saved animations.
%
load(name);
if(name(1)=='r')
 colormap('gray')
 shading('interp')
end
movie(M,1);

start.m

% start.m
%
% This program launches a menu to run other applications.
%
Y = wavread('tada.wav');
sound(Y);

K = menu('ENEE 380 MATLAB Programs', ...
 'Gradient Plotter','Divergence Plotter','Curl Plotter', ...
 'Scalar Line Integrator','Vector Line Integrator','Flux Integrator', ...
 'Discrete Electrostatics Plotter','Laplacian Solver');

switch K
 case 1,
 grad;
 case 2,
 divergence;
 case 3,
 curl;
 case 4,
 lineints;
 case 5,
 lineintv;
 case 6,
 fluxint;
 case 7,
 elect;
 case 8,
 laplace;
end
function val = value(name,xmin,xmax,ymin,ymax,x,y)

% This file will, given a two dimension matrix, convert between mesh values and matrix indices to obtain an element.

% Parameters:

% name = a string with the name of global variable
% xmin = minimum mesh x range
% xmax = maximum mesh x range
% ymin = minimum mesh y range
% ymax = maximum mesh y range
% x = x value to return
% y = y value to return

% Declare variable to be global
eval(sprintf('global %s',name));

% Evaluate index
if isempty(eval([name]))
 error('Variable doesn''t exist');
elseif (xmin >= xmax) | (ymin >= ymax) | (x > xmax) | (x < xmin) | ... | (y > ymax) | (y < ymin)
 error('Range error');
else
 % name(rows,cols) = rows are y values; cols are x values
 xrange = linspace(xmin,xmax,eval(sprintf('size(%s,2)',name)));
 xstep = abs(xrange(2)-xrange(1));
 xval = find((xrange <= (x+xstep/2)) & (xrange > (x-xstep/2))) ;

 yrange = linspace(ymin,ymax,eval(sprintf('size(%s,1)',name)));
 ystep = abs(yrange(2)-yrange(1));
 yval = find((yrange <= (y+ystep/2)) & (yrange > (y-ystep/2))) ;

 val = eval(sprintf('%s(yval,xval)',name));
end