Do the following problems from the text

P.4-4, P.4-6, P.4-7

Run the MATLAB program:

```matlab
x=-4.05:.1:4.05;
 y=-4.05:.1:4.05;
[xx,yy] = meshgrid(x,y);
cz = xx + i*yy;
cpot = asin(cz);
pot = real(cpot);
contour(xx,yy,pot,10)
```

Describe a physical placement of electrodes that would produce a potential of the form shown. Modify the above program using the 'quiver' and 'gradient' commands to plot the electric field vector lines.

Also

Two dimensional solutions of Laplace's equations in Cartesian coordinates are easy to come by. Let \(z = x + jy \) be a complex number, and \(f(z) \) any complex analytic function of \(z \). Examples of analytic functions are: \(z^n, \sin z, e^z \) ... basically, almost anything you can imagine. The complex function \(f \) will have a real part \(f_R(x,y) \) and an imaginary part \(f_I(x,y) \) each of which depend on \(x \) and \(y \). Both \(f_R \) and \(f_I \) can be regarded as the real functions of \(x \) and \(y \) as well as the real and imaginary parts of the complex function \(f = f_R + j f_I \).

Show that \(f_R \) and \(f_I \) are both solutions of Laplace's Equation. Along the way you must first show the following (Cauchy-Riemann) equations,

\[
\frac{\partial f_R}{\partial x} = \frac{\partial f_I}{\partial y}, \quad \frac{\partial f_I}{\partial x} = -\frac{\partial f_R}{\partial y}.
\]

This follows from

\[
\frac{\partial f}{\partial x} = f'(z), \quad \frac{\partial f}{\partial y} = j f'(z).
\]

Then it is easy to show
\[
\frac{\partial^2 f_R}{\partial x^2} + \frac{\partial^2 f_R}{\partial y^2} = \frac{\partial^2 f_I}{\partial x^2} + \frac{\partial^2 f_I}{\partial y^2} = 0 .
\]

Figure out which function \(f \) was used in the MATLAB program listed above. Play with other functions and try to figure out what placement of electrodes is needed to realize the potentials.