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ABSTRACT

The term weighting and document ranking functions used
with informational queries are typically optimized for cases
in which queries are short and documents are long. It is
reasonable to assume that the presence of a term in a short
query reflects some aspect of the topic that is important to
the user, and thus rewarding documents that contain the
greatest number of distinct query terms is a useful heuris-
tic. Verbose informational queries, such as those that result
from cut-and-paste of example text, or that might result
from informal spoken interaction, pose a different challenge
in which many extraneous (and thus potentially misleading)
terms may be present in the query. Modest improvements
have been reported from applying supervised methods to
learn which terms in a verbose query deserve the greatest
emphasis. This paper proposes a novel unsupervised method
for weighting terms in verbose informational queries that re-
lies instead on iteratively estimating which terms are most
central to the query. The key idea is to use an initial set of re-
trieval results to define a recursion on the term weight vector
that converges to a fixed point representing the vector that
optimally describes the initial result set. Experiments with
several TREC news and Web test collections indicate that
the proposed method often statistically significantly outper-
forms state of the art supervised methods.
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H.3.3 [Information Systems]: Information Search and Re-
trieval: Retrieval Models
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1. INTRODUCTION
Users of widely used search engines typically interact with

the system through free form natural language queries to
address a broad range of information needs. Simple ranked
retrieval techniques based on matching terms in the query
and the document depend for their quality on the user en-
tering the right set of keywords. When a user has a precise
information need, this often works well. On some occasions,
however, the user may not have a clear view of the poten-
tially relevant documents they are looking for, and might
choose to err on the side of entering more rather than fewer
terms, thus creating a query that contains extraneous terms
that may indeed mislead the search engine. Another com-
mon source for long queries is cut and paste, in which a
user finds some text on some topic (e.g., a review of a new
mobile phone) and simply drops that text the the query
window (perhaps in the hope of finding more reviews?). A
third scenario that might result in long queries could be a
hands-free and eyes-free spoken search scenario (e.g., while
driving a car) in which, in an effort to overcome the effect of
speech recognition errors, the user might simply ramble on a
bit, repetitively, in the hope that the system will eventually
catch on and provide them with what they want.

Ultimately, we want search engines that work well with
short queries when that’s what they receive, and also with
longer queries when that’s what the user chooses to pro-
vide. Most well known retrieval models (BM25 [27], DFR [2],
LM [26]) are based on an implicit assumption that if the
user includes a term in a query, they expect the term to
be found in a relevant document. Term weighting, there-
fore, typically focuses on estimating how useful a term will
be (e.g., by modeling aboutness using term frequency and
by modeling specificity using Inverse Document Frequency
(IDF)), but without also modeling how central the term is
to what the user is asking about [30]. In essence, current
ranking functions typically defer to the user on the question
of centrality. Hence, one of the important traits of almost all
widely used ranking functions is that, all other things being
equal, they will tend to prefer documents that contain all of
the query terms [29] over documents that contain a dense
collection of just some of those terms. For short queries, this
is the right thing to do. For verbose queries, however, it is
easy to believe that we could do better, and indeed some
improvements have already been shown [19].

Research on the development of techniques tuned for ver-
bose queries depends on the availability of test collections
that actually contain verbose queries. While we might imag-
ine many ways of obtaining such collections, the usual ap-



proach to date among information retrieval researchers has
been to simply treat the description field of TREC topic
descriptions as if they were actually issued by users as ver-
bose queries. In general, the description field is intended
to model what a searcher might first say to someone who
will actually help them with their search, so this is not an
unreasonable model. Because we are interested specifically
in informational queries, which are fairly well modeled by
TREC topics, we adopt the same approach to evaluation in
this paper.
As a motivating example, consider the following queries

involving a common term effect.

1. How does Doppler ultrasound take advantage of the
Doppler effect to create a moving image of the inside
of the body?

2. Effect of temperature on measurement of alkaline phos-
phatase activity.

When the collection being searched is the same, the keyword
effect would be weighted equally if IDF weights were used.
However, it seems clear to a human reader from the query
context that the keyword effect is core to the information
need expressed by the first query, while for the second query,
it appears to be a high level concept. Hence, we would like
to learn to give effect more weight in the first query.
To date, approaches to the problem of weighting (or, in the

extreme case, selecting) terms to emphasize in long queries
have essentially relied on a supervised learning framework.
The key ideas behind such an approach are to compute a
set of features that might be associated with good (or bad)
results, and then to train a term weighting function based on
those features to maximize some ranked retrieval evaluation
measure. With enough training queries (for which relevance
judgments are known), and with the right features, modest
improvements can be obtained using this approach. The
features are extracted from variety of sources such as the
collection being searched, query log, or some other external
resource such as Wikipedia [3].
In this paper, we adopt a different approach, drawing in-

stead on an idea from text summarization, in which central-
ity is also key issue. In extractive text summarization, a key
step is to select sentences that are either central to the a
set of documents (for multi-document summarization), to a
single document (for generic document summarization), or
to a query (for query-based summarization). Among state
of the art methods for this task, graph-based methods that
iteratively estimate centrality using linear algebraic meth-
ods that converge to a fixed point vector that represents the
centrality of every sentence have been widely adopted [11].
When graph-based techniques are applied for query-based
summarization, the sentences are also somehow weighted (or
selected) based on their similarity to the query [25]. The ap-
plication of ideas from graph-based summarization to long
queries is fairly direct, simply substituting term centrality
for sentence centrality. Notably, although we need to train
one free parameter to tune the relative contributions of tra-
ditional IDF and the query-specific term weights, the result-
ing technique is otherwise unsupervised.
One question that any such approach must answer is how

to model query-specific term centrality. One way to inte-
grate query context is to use the part of the collection that
contains the original query terms densely and this can be

achieved by simply using the top scoring documents in re-
sponse to the original query measured by any reasonable
ranking function. This is similar in spirit to the technique
of Zhao and Callan [34], who extracted a set of features
from the top returned documents and from the collection as
a whole and then used supervised learning to predict query-
dependent term necessity. We take the same starting point,
but with an unsupervised approach. Operationally, the pro-
posed algorithm is a two phase approach. In the first phase,
the entire document collection is ranked using a standard
bag of words retrieval model, and in the next step the top
returned documents are used to compute the weight of query
terms. Two key intuitions guided the development of the al-
gorithm: (i) important terms are more frequent than the
less important terms in the segment of the collection where
original query terms are densely present and (ii) importance
of a term increases if it is more frequent than other im-
portant terms. These two intuitions are then encoded in a
PageRank-like link analysis algorithm to iteratively update
the centrality weight using power iteration. Finally, the re-
sultant term weight is computed by combining a centrality
score with an IDF factor.

We evaluate the effectiveness of our method on a num-
ber of test collections with news and Web documents that
together have relevance judgments for a large number of
topics, each of which is described by a TREC description
field. Three major conclusions can be drawn from our ex-
periments. First, the proposed method consistently and
significantly outperforms three progressively more capable
baselines: (1) a simple query likelihood model, (2) a state-
of-the-art sequential dependence model, and (3) a relevance
model that learns to expand the query vocabulary based
on the same initial search results but without any special
handling for verbose terms. Second, we show that the ef-
fectiveness of our new unsupervised technique is competi-
tive with state-of-the-art supervised algorithms that learn
to rank documents for verbose queries from a large set of
training queries on every test collection that we tried, even
yielding statistically significantly improvements over the re-
sults of those algorithms in some cases. Third, we show that
the our new method is computationally efficient, thereby
making it practically employable in operational systems.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews prior research. Section 3 describes the pro-
posed work. Section 4 and 5 present the experiment setup
and results respectively. Finally, we conclude in Section 7.

2. PRIOR RESEARCH
Traditionally, discrimination between more and less im-

portant terms in a query has been done using statistical
methods such as term frequency and IDF weighting, or (with
language models) by using term-specific collection-frequency
smoothing [13, 21]. We need to distinguish here between col-
lection frequency or IDF on the one hand, either of which
estimates the specificity of a query term in a collection, and
term frequency on the other hand, which estimates the con-
tribution of a term found in a document to describing the
“aboutness” of that document. Our focus in this paper is on
query terms, so we omit further review of the literature on
term frequency (noting only that we use term frequency in
our ranking models in the usual way).

Using supervised machine learning techniques for an au-
tomatic extraction of key concepts from documents was first



proposed by Turney [31], and later explored by several other
researchers [14, 12]. Similar machine learning techniques
have also proved beneficial for other tasks such as named
entity recognition [6], content-targeted advertising [32] and
summarization [16].
Key concept detection in verbose queries has been a sub-

ject of some previous work in information retrieval. Allan et
al. [1] use a set of linguistic and statistical methods and
a proximity operator to discover core terms (terms that
must be present for a document to be relevant) in TREC
description queries. Callan et al. [9] take a more knowledge-
intensive approach, using noun phrases, named-entity recog-
nition, exclusionary constraints, and proximity operators to
convert TREC description queries into structured queries
for the Inquery information retrieval system. Bendersky
et. al [3] focus on weighting, estimating concept weights
through a supervised learning technique, where each con-
cept is represented using a set of features (such as concept
term frequency in the collection, concept inverse document
frequency, residual IDF [20], weighted information gain [35],
Google n-gram frequency and the information from a query
log containing 15 million query given to a commercial search
engine. In that work, Ada-boost is used to estimate the
weight of a concept from the features, and the resulting
concept weights are then incorporated in a probabilistic lan-
guage modeling framework. Similarly to Callan et al, their
algorithm produces structured weighted queries, in this case
using the Indri query language. All of these methods are
supervised, in that feature weights must be learned.
Although these techniques can be employed with simple

bag-of-words models, they have also been employed with
more sophisticated techniques. Modeling query concepts
through term dependencies has been shown to have a signif-
icant positive effect on retrieval effectiveness, especially for
tasks such as Web search where relevance at high ranks is
particularly critical. Recent research has shown that mod-
eling query term dependencies and using non-uniform query
term weights in a way more nuanced than IDF alone can sig-
nificantly improve retrieval effectiveness, especially on very
large collections and for long, complex queries. Metzler and
Croft [23] develop a Markov Random Field (MRF) model
to integrate the term proximity information in the language
modeling framework to create a sequential dependence model.
However, this method does not assign explicit weights to the
query concepts. Bendersky et. al [4] extended the sequential
dependence model for information retrieval by automatically
learning query concept weights that simultaneously model
query term dependencies and weighting generic query term
concepts (e.g., unigrams, bigrams, etc.) in a unified, train-
able framework. Once again, term proximity information,
Google n-gram term statistics, query log and a number of
retrieval corpus statistics are used in a supervised frame-
work.
Lease [19] extended his previous work on term weighting

to show that incorporating learned term weights in a sequen-
tial dependence model improves the retrieval effectiveness
over the unweighted variant for verbose TREC description
queries. The main argument was that the original MRF
method estimates a parameter for each of its three feature
classes from data, where parameters within each class are set
via a uniform weighting scheme adopted from the standard
unigram. Lease then showed that greater MRF retrieval
accuracy can be achieved by better estimating within-class

parameters, particularly for verbose queries employing nat-
ural language terms. A few additional lexical part-of-speech
features are used in combination with the Markov Random
Field and regression rank based learning algorithms.

All of the methods described so far focus on weighting only
the terms that are actually present in the original query.
Zhao and Callan [34], by contrast, performed a singular
value decomposition on the top returned documents to iden-
tity synonyms of the query terms, then used those synonyms
to predict term necessity. Like many of the previous meth-
ods, their necessity prediction method used a number of
term-dependent and query-dependent features. Prior rele-
vance judgments were used to compute the actual necessity
values for the query terms as: P (t|R) = r/R, where r and
|R| denote the number of relevant documents that contain t
and the number of relevant documents for the query. Each
term is represented as a set of features f1, f2 . . . fn depending
on the collection, the term t and the query q. A regression
model M predicts necessity as a function of the features:

P (t|Rq) = M(q1, q2 . . . qn) (1)

Recently, Bendersky et. al [5] have introduced a param-
eterized query expansion method. The underlying motiva-
tion is that the methods that focus only on the query terms
fail to take into account the latent concepts associated with
the query. Hence, the queries are expanded by identifying
additional terms, and they are weighted using a supervised
parameterized model that employs a number of features sim-
ilar to the many of the methods described before. Query
expansion raises questions of computational cost, however,
since using expansion terms generates additional disk activ-
ity. In our work we therefore focus on methods that do not
introduce expansion terms.

Graph based methods are widely applied in term weight-
ing, smoothing language models and search result rerank-
ing tasks. Collins-Thompson [10] propose and evaluate a
Markov chain based framework for modeling combination
of term relations (such as synonym, morphological variants,
co-occurring term) and apply the model to query expansion.
Given a small set of initial query terms, the method con-
structs a term network and use a random walk to estimate
the likelihood of relevance for potential expansion terms.
The random walk model uses features that can come from a
variety of sources, such as term co-occurrence in an external
collection, Co-occurrence in the top retrieved documents,
synonym dictionaries, general word association scores. Mei
et al. [22] propose a generalized optimization framework for
smoothing language model using document-document and
word-word graphs. Graph created from top returned docu-
ments has been applied to improve the precision of search
results [17]. This method ranks the documents based on
their pagerank score, where the links between every pair of
document are created using KL-divergence of their unigram
language model. However, none of these methods focus on
query term re-weighting.

3. PROPOSED METHOD
Each of the methods discussed in the previous section used

some form of supervised learning, with some also using ex-
ternal resources (e.g., Wikipedia). In contrast, we develop
an unsupervised method that uses only the collection on
which retrieval is to be performed. In this section, we first
describe the problem and the retrieval framework. We then



describe our proposed centrality based algorithm to compute
the weight of the search terms. Finally, we analyze compu-
tational efficiency to show that the proposed graph based
algorithm is not computationally expensive.

3.1 Overview
Given a query Q = q1q2 . . . qn, the main goal of our pro-

posed algorithm is to determine the importance of each of
the query terms. Inverse document frequency is widely used
to achieve this goal. However, IDF is not capable of fac-
toring in the query context and hence it treats a term as
equally important irrespective of the query in which it ap-
pears. Thus, the major goal of our algorithm is to compute
weights for query terms that adapt to query. As a conse-
quence, with our technique, even if a term t1 is rarer than
t2 in the collection, t2 might still enjoy preference over t1
if other query terms provide evidence for its importance in
a specific query. The query information is implicitly inte-
grated by taking term occurrence in top-ranked documents
as a source of evidence. The underlying rationale is that the
documents which are returned in response to the original
query tend to focus on the intent of the query and hence
the distribution of the terms in that part of the collection
can provide somewhat more reliable evidence for identifying
useful terms than would the collection as a whole.
The key assumption that motivates the design of the pro-

posed algorithm is that a query term which is more frequent
than the other query terms in the part of collection where
query terms are dense is likely to be more important than
the others. At the same time, a central term is more likely
to be frequent than other central terms. Hence, the central-
ity of terms can be considered as the major evidence of term
importance, while the relative frequency is the basis for the
centrality measure.
Formally, our goal is the following. Given a query Q =

q1q2 . . . qn and document D, the similarity between query
and document is defined as

S(Q,D) =
n
∑

i=1

I(qi) ·W (qi, D) (2)

where W (t,D) can be any reasonable weighting function
such as log-likelihood Dirichlet prior language model [33]
or BM25. In this paper we use Dirichlet language model to
compute W (qi, D) as given below

W (qi, D) = log

(

c(qi, D) + µ c(qi,C)
|C|

|D|+ µ

)

(3)

where c(qi, D) and c(qi, C) are the count of qi in document
D and collection C respectively; µ is the free parameter; |C|
and |D| are the number of terms in the collection and doc-
ument respectively. Our main goal is to compute the value
of I(qi). The section that follows describes the proposed
algorithm.

3.2 Algorithm
We now turn to describe our main algorithm for estimat-

ing term importance. We reiterate that our goal is to com-
pute the global importance (in the sense that the weights are
query dependent and document independent) of the query
terms with respect to the original query. The query depen-
dency is integrated via the ranked list generated by running

the original query using a standard bag of words model (in
our case language model with Dirichlet prior).

The proposed algorithm stands mainly on the following
two key hypotheses

1. A term t is important if it is more frequent than the
other terms in the query-relevant part of the collection.
The query-relevant part is defined as the top returned
documents upto a pre-specified cut-off in response to
the initial query.

2. A term t is more important if it is more frequent than
other important terms in the query-relevant part of the
collection.

The first hypothesis is the classic term frequency hypothe-
sis in information retrieval that is the basis of all known term
importance scheme. On the other hand the second hypothe-
sis is intended to reward the terms which are associated with
other important terms. The second hypothesis, in particu-
lar, dictates the need for a recursive definition. Hence, the
above two hypotheses can be mathematically formulated as

A(ti) = CumRF (ti|tj) ·A(tj), ti 6= tj (4)

whereA(t) denotes the centrality of the term t and CumRF (a|b)
denotes the cumulative frequency of a relative to the fre-
quency of b in the set of selected documents, D. Hence,
CumRF (a|b) is defined as

CumRF (a|b) =
∑

d∈D

RF (a|b, d) (5)

where RF (a|b, d) is computed as follows

RF (a|b, d) =











log2(1+c(a,d))

log2(1+c(b,d))
, if c(b, d) > 0

log2(1 + c(a, d)), otherwise

(6)

where c(a, d) is the frequency of the term a in document
d. In Equation 6, 1 is added primarily to address zero fre-
quency problem. Also note that we did not use raw term
frequency in Equation 6, instead we apply a logarithmic
damping function to restrict the contribution of very high
frequency terms, since raw term frequency is known to be
problematic [28]. Indeed, we also experimented with raw
term frequency and found that logarithmic damping was al-
ways better. For space constraint we omit those results.

We now extend Equation 4 to measure the importance of
the term t by taking into account all other query terms as
follows

A(ti) =

|q|
∑

j=1,i 6=j

CumRF (ti|tj)A(tj) (7)

Therefore, for each query term ti, we have Equation 7.
Thus, if the query contains n terms, we have n such equa-
tions. Hence, this system of equations can be written com-
pactly using a matrix notation as

AT = CumRF ·AT (8)

where I is the term importance vector and CumRF is the
matrix containing pairwise relative frequencies whose (i, j)-
th entry is given by CumRF (ti|tj).

From Equation 8, it is clear that the vector AT is the
principal eigenvector of the matrix CumRF. We use power



iteration to compute the vector AT . Power iteration [8] is a
well known technique to find only the principal eigenvector
and has been used extensively in many link analysis algo-
rithms [7] (PageRank, for example) for Web search. The
power iteration starts by setting all the entries of the vector
AT to 1 and then iterates a specified number of times. In
fact, our experiments suggest that 7-12 iterations are suffi-
cient to reach convergence.

Integrating IDF.
So far we have used relative frequency of terms in the top

returned documents in order to determine the centrality of a
term reflecting its importance. However, this evidence alone
may not be always helpful, since terms having moderate gen-
erality in the collection tend to occur in many documents.
Hence, they have relatively higher chance of occurrence even
in a randomly chosen document. As a result, reliance only
on the frequency of occurrence may sometimes give undue
credit to those terms which are present in many documents
even with lesser frequency than the terms that happen to
be important. In order to prevent those terms from being
considered as a potentially useful candidate, we use inverse
document frequency information along with the centrality
score.
However, using the full contribution of the standard IDF

function would not be an appropriate choice because collection-
specific term weights already contain a term specificity com-
ponent.1 What is required therefore, is a function that trans-
forms IDF values such that the rare terms are rewarded, but
with diminishing effect. We can achieve this goal approxi-
mately the right way using the following simple function:

didf(t) =
idf(t)

c+ idf(t)
(9)

where idf(t) is the standard log(N
df
) (N is the number doc-

uments in the collection) and c is the free parameter. The
function in Equation 9 is an increasing function of idf and
the parameter c can be set to regulate the contribution made
by IDF. A value of c closer to zero essentially removes IDF
from the computation (i.e didf(t) → 1), while a very large
value of c would make didf(t) essentially undamped. Since
neither extreme is desirable, the value of c should not be too
small or too large.
The resultant weight of each of the query term qi is com-

puted by multiplicatively combining the centrality scoreA(qi)
and didf(qi). Formally:

I(qi) = A(qi) · didf(qi) (10)

3.3 Efficiency Issues
Note that the algorithm described in the preceding section

must be run at query time, and therefore it is important that
it be computationally efficient. In this section we explore
that aspect of the proposed algorithm and quantify the com-
putation time required for query processing. We look at this
problem from two different perspectives: the time required
for query term re-weighting, and the additional computation
required for re-ranking the collection.
Note that we have used power iteration to compute the

term centrality scores. Two approaches are prevalent in
practice as a terminating condition: convergence, or a fixed

1The same would be true for the use of collection frequency
statistics for smoothing with language models

Table 1: Test collections used in our experiments
Collection Name # docs Topics

TREC 6,7,8 528,155 301-450
WT10G 1,692,096 451-550
GOV2 25,205,179 701-850

ClueWeb-B 50,220,423 1-100

number of iterations. We chose a fixed number of iterations
(10), since after 10 iterations the difference between two suc-
cessive eigenvector estimates is negligible.

In each iteration we need to do n2 computations, where n
is the order of the matrix, which is the length of the query.
For k iterations, the computational complexity is

k × n2 = O(n2).

A typical verbose query in our experiments is around 15-
20 words. At that scale, the resulting computation is quite
fast. For applications with hundreds of query terms, we
might need to give some attention to heuristic preselection
of terms, however.

Another important efficiency issue that needs to be ad-
dressed is the cost associated with the re-ranking of whole
collection using re-estimated term weights. Note that, unlike
query expansion methods, our proposed method does not
add any new terms, thus the re-ranking step does not need to
compute the score of any documents other than those which
had been found to include at least one query term in the
first phase of ranking. Hence, the inverted lists for all query
words which were fetched during the first phase of ranking
can be stored into memory for the next phase of processing,
thereby obviating the need for reading posting files from the
disk again. Moreover, it is possible that some terms may re-
ceive zero or negligible query-specific term weights, and such
terms can be safely ignored when re-ranking is done. The
net effect of these factors is that the in-memory re-ranking
computations are far faster than the initial search.

4. EXPERIMENT SETUP
In this section, we describe the experimental setup for

evaluating our proposed algorithm. We provide a summary
of the test collections used for our experiments in Table 1.
We note that collections vary both by type (TREC 6,7,8 is a
newswire collection, while WT10G, GOV2 and ClueWeb-B
are Web collections), and by number of documents and num-
ber of topics, thus providing a diverse experimental setup for
assessing robustness. GOV2 is a homogeneous web collec-
tion from .gov domain, while ClueWeb-B is a heterogeneous
web collection used in recent TREC web tracks.

All indexes and topics were stopped using a standard stop-
word list and stemmed using a Porter stemmer. Since our
goal is to address verbose queries, the description portions
of the TREC topics were used to construct the queries, fol-
lowing previous work on verbose queries [3, 19]. A Dirichlet
language model was used as the primary ranking function.
Statistically significant differences are determined using two
sided paired t-test at a 95% confidence level.

To measure the retrieval quality we use two metrics: Mean
Average Precision (MAP) and Normalized Discounted Cu-
mulative Gain to depth 20 (NDCG@20) [15]. Notably, NDCG
leverages graded relevance judgments, and thus is suitable
for the Web collections (WT10G, GOV2, ClueWeb).



4.1 Baselines
We compare the effectiveness of our methods with a num-

ber of unsupervised and supervised baselines, including the
standard bag of words query likelihood Dirichlet language
model. The detailed descriptions of the baselines are as fol-
lows:

1. Query likelihood using Dirichlet language model (QL).

2. RM3 [18] relevance model for query term re-weighting
(RW-RM3).

3. Sequential Dependence model (SD) [23].

4. Key Concept model (KC) [3].

5. Weighted Sequential Dependence model (WSD) [4].

RM3 is the relevance model pseudo-relevance feedback al-
gorithm implemented in the language modeling framework.
Since we are only interested in re-weighting the query terms,
our implementation of RM3 is used to compute only query
term weights. RW-RM3 interpolates the probability of the
terms in original topic with the probability of the terms
computed from the top returned documents.
The Sequential Dependence model is a state-of-the-art

ranking function based on Markov Random Field. In ad-
dition to a standard bag-of-words score, ordered and un-
ordered query term proximity are used as additional evi-
dence for relevance. It has been shown that the term prox-
imity information is able to capture some measure of term
dependence, which can be useful for long complex queries.
The Key Concept and Weighted Sequential Dependence

models are supervised methods. Both of these methods use
a number of collection and query dependent features (e.g.,
residual IDF, frequency of query concepts in a query log, and
Wikipedia articles) to learn the importance of search terms.
Key concept uses Ada-boost, while WSD uses coordinate-
level ascent algorithm for parameter estimation.
Additionally, to characterize the effect of our decision not

to add additional query terms, we compare the performance
of the proposed method with two state of the art query ex-
pansion methods (relevance model and latent concept ex-
pansion [24]) that adds 5 highly selective terms that are
found in the top-ranked documents to the original query.
The proposed method, and all the baselines, contain one

or more free parameters that influence the retrieval quality.
For fair comparison, the free parameters of all the methods
are set using five-fold cross-validation, optimizing MAP.

5. RESULTS
In this section we present effectiveness measures for our

proposed algorithm and for the baselines. We begin in Sec-
tion 5.1 by comparing to unsupervised baselines. Section 5.2
then compares to the two supervised methods. The remain-
ing subsections provide analyses of specific system variants.

5.1 Comparison to Baseline Methods
Table 2 compares the effectiveness of our proposed method

(TA) with that of the three unsupervised baselines. The
baselines include Query Likelihood model that ranks the
documents using a Dirichlet language model (QL), query
term Re-Weighting using a Relevance Model (RW-RM3) and
the Sequential Dependence model (SD). QL and RW-RM3
are completely unsupervised, while SD can be considered

moderately supervised method because of a number of pa-
rameters need to be estimated from training data.

Table 2 clearly shows that TA always outperforms all
three baselines when effectiveness is measured using MAP.
On the TREC news collection, TA yields a 14% improve-
ment over the best unsupervised technique (RW-RM3), and
all of the improvements are statistically significant. Sim-
ilar conclusions can be drawn from all three Web collec-
tions. Once again, TA is statistically significantly better
than each baseline on every collection by between 6% and
26%, with the largest improvements on the most modern
test collection (ClueWeb-B). Query term reweighting using
RM3 (RW-RM3) is not an effective approach, since only on
TREC-678 RW-RM3 gives statistically significant MAP over
QL. SD provides significant benefit over QL on TREC-678
and GOV2.

Similar results are seen with NDCG@20, with statistically
significant improvements between 6% and 26% over each
baseline for all three of the Web collections. The improve-
ment over QL for the TREC collection is smaller (8%), but
still statistically significant. No statistically significant dif-
ference is observed for NDCG@20 between TA and either
RW-RM3 or SD. This one difference from the results with
MAP is attributable either to the NDCG cutoff at 20 or
to differences in the discount rate between the two mea-
sures. Performance of RW-RM3 is roughly comparable to
QL, while SD is significantly better than QL on three out of
four collections.

In summary, our results indicate that our proposed centrality-
based algorithm yields statistically significant improvements
in retrieval accuracy over both a reweighting-only relevance
model and a sequential dependence model by both measures
for Web collections, and by MAP for the TREC collection.

5.2 Comparison to Supervised Methods
In the previous section we compare the effectiveness of

TA with a number of unsupervised baselines. In this sec-
tion we compare to two supervised baselines. We reproduce
the retrieval results for KC using queries made available by
Bendersky et al [3] for three of our collections; we have no
KC queries for ClueWeb-B so we do not report KC results
on that collection. We have reimplemented the WSD model
ourselves because queries for that model are not available to
us, but we note that because we do not have access to the
query log used by Bendersky et al [4] we omit the features
that depend on a query log. Improvements that we report
over WSD may therefore somewhat overstate what would
be seen were WSD to be implemented with access to a rich
and representative query log.

Table 3 summarizes the effectiveness of KC, WSD and
TA on the same four collections. TA statistically signifi-
cantly outperforms KC on all three collections for which we
can compute KC results, by between 7% and 15%. TA also
statistically significantly outperforms WSD on three collec-
tions, by between 8% and 13%, although no statistically
significant difference was detected between TA and WSD on
GOV2. The results for NDCG@20 give a slightly different
picture, with only ClueWeb-B showing a statistically sig-
nificant difference (with TA significantly better than WSD;
KC can not be run on ClueWeb-B). Again, differences be-
tween MAP and NDCG@20 could results from the cutoff at
20 or from differences in the discount rate. The results for
MAP suggest that KC andWSD are always significantly bet-



Table 2: Retrieval effectiveness of the proposed method (TA) compared to unsupervised baselines. Statisti-
cally significant improvements are indicated using the first letter of the less effective method. The highest
value per column is bolded. The numbers in parenthesis indicate relative improvement over QL, RW-RM3
and SD, respectively. NDCG is NDCG@20.
Metric Method TREC WT10G GOV2 ClueWeb

QL 0.191 0.184 0.256 0.124
MAP RW-RM3 0.202q 0.194 0.263 0.128

SD 0.200q 0.193 0.276q 0.129
TA 0.230

qrs(20%, 14%, 15%) 0.231
qrs(25%, 19%, 20%) 0.292

qr(14%, 11%, 6%) 0.156
qrs(26%, 22%, 21%)

QL 0.381 0.318 0.420 0.179
NDCG RW-RM3 0.390 0.323 0.426 0.186

SD 0.402q 0.340q 0.432q 0.188
TA 0.413

q(8%, 6%, 3%) 0.365
qrs(15%, 13%, 7%) 0.451

qrs(7%, 6%, 4.4%) 0.225
qrs(26%, 21%, 20%)

Table 3: Retrieval effectiveness of our proposed method (TA) compared to supervised baselines. Statistically
significant differences are indicated using the first letter of the less effective method. The highest value per
column is bolded. Numbers in parenthesis indicate relative improvement over KC and WSD respectively.

Metric Method TREC WT10G GOV2 ClueWeb
QL 0.191 0.184 0.256 0.124
KC 0.212q 0.201q 0.273q -

MAP WSD 0.207q 0.214q 0.285q 0.138q

TA 0.230kw (9%, 11%) 0.231kw (15%, 8%) 0.292k (7%, 3%) 0.156w (-, 13%)

QL 0.381 0.318 0.420 0.179
KC 0.382 0.330q 0.432 -

NDCG@20 WSD 0.416q 0.360q 0.439q 0.188
TA 0.413 (8%, -1%) 0.365k (11%, 1%) 0.451 (4%, 4%) 0.225w (-, 20%)

ter than QL, while no significant difference has been found
between KC and WSD. The results measured in terms of
NDCG@20 reveal that WSD is significantly better than QL
on TREC-678, WT10G and GOV2, while KC is significantly
better than QL only on WT10G collection.

5.3 Effect of Term Centrality
Recall that the proposed algorithm stands on two assump-

tions. The first assumption is based on the importance of
document specific frequency of one term relative to another,
while the second assumption takes into account the central-
ity of the terms based on their relative frequency in the
top ranked documents. So far, we have examined the effect
of these two assumptions together. The experiments in this
section are designed to understand the effect of term central-
ity (i.e, the iterative update of term weights) in determining
the importance of a query term.
To that end, we carry out three set of experiments for

each of the test collections. The first set of experiments is
done using only the query likelihood model (no query specific
weighting). The second set of experiments incorporates the
weight of the query terms based on the relative frequency
and the IDF factor only (without iterative weight update for
term centrality), while the third set of experiments uses the
weights that are computed using the full centrality based
algorithm and the IDF factor (equation 10). For all the
experiments, the number of top ranked documents is set to
20, as in our main experiments.
Table 4 shows the experiment results, which clearly show

that our full term centrality iteration method (TA) results
in improved effectiveness over No Centrality iteration (NC)
on all four test collections of between 7% and 16% when
measured by MAP. When measured by NDCG@20, statis-
tically significant improvements result from the power iter-

ation step for all three Web collections, but no statistically
significant difference between TA and NC was observed with
NDCG@20 for the TREC collection. Because we believe
MAP is well suited as an evaluation measure for the TREC
collection (which has binary relevance judgments), we do
not find this one difference troubling.

5.4 Effect of Number of Documents
We reiterate that the top ranked document in response to

the original query is the only source of information for the
proposed weighting algorithm. Hence, an important issue
with the proposed method is the proper choice of the num-
ber of top ranked documents as a source of weight estima-
tion. In this section we specifically investigate the following
questions on document selection.

1. What is a good value of number of documents?

2. Is the number of documents (that leads to optimal
effectiveness) consistent across collections?

3. Does the effectiveness fluctuate with the number of
documents and to what extent?

To answer the above three questions, we conduct experi-
ments on all the four test collections we have used to evaluate
our method. Our experimental methodology estimates the
query term weight by varying the number of documents from
5 to 50 in the increment of 5. The collections are then ranked
and evaluated using two standard metrics, NDCG@20 and
MAP.

Figure 1 and 2 show the impact of number of documents
on retrieval quality. As it turned out, the best effective-
ness measured in terms of NDCG@20, often comes when
the number of documents is between 15 and 25. On TREC
and WT10G, TA gains the maximum NDCG@20 when the



Table 4: Impact of term centrality on retrieval effectiveness. NC and TA denote the effectiveness weighting
without centrality and full fixed point centrality weighting (equation 10), respectively. The highest value
per row is bolded. Numbers in parenthesis indicate relative improvement over QL and NC respectively.
Superscripts q and n denote statistically significant improvement over QL and NC respectively.

TREC WT10G GOV2 ClueWeb
QL 0.191 0.184 0.256 0.124

MAP NC 0.215q (13%) 0.217q (17%) 0.270q (6%) 0.134 (8%)
TA 0.230qn (20%, 7%) 0.231qn (26%, 7%) 0.292qn (14%, 8%) 0.156qn (26%, 16%)

QL 0.381 0.318 0.420 0.179
NDCG@20 NC 0.396 (4%) 0.334q (5%) 0.431 (3%) 0.197q (10%)

TA 0.413q (8%, 4%) 0.365qn (15%, 9%) 0.451qn (7%, 5%) 0.225qn (26%, 14%)
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Figure 1: Effect of number of documents: NDCG.
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Figure 2: Effect of number of documents: MAP.

Table 5: Computation time (in minutes).
TREC WT10G GOV2 ClueWeB

RW-RM3 0.6 1.0 8.2 14.1
SD 0.9 1.5 16.3 21.0
KC 0.7 1.2 9.8 15.7
WSD 1.2 1.5 22.7 28.3
TA 0.6 1.1 8.6 14.6

number of documents is set to 15, while for both the GOV2
and ClueWeb collections the value is 20. We can draw sim-
ilar conclusions based on the MAP values (right figure).
Once again, the numbers of documents for optimal MAP
for four collections are very consistent with those for opti-
mal NDCG@20.

Figures 1 and 2 depict other two important facts. First,
the effectiveness fluctuates only marginally with the number
of documents, and the trend is quite similar for different
collections. Second, to the extent a peak can be discerned,
somewhere in the range of 15–25 documents seems like a
good choice, both NDCG@20 and for MAP.

5.5 Computation Time
In Section 3.3 we mathematically analyzed the computa-

tion time of the proposed method. We have argued that even
if the proposed algorithm (TA) must be run at query time
and uses a graph based method to compute the term impor-
tance, TA is still computationally reasonably efficient. In
this section we report the actual time taken by the proposed
method and compare the same with the baseline methods.

The experiments were conducted on a stand-alone desktop
computer with 16GB of main memory. On each collection,
each method was run 5 times; the reported computation
time is the average over those 5 runs. For TA and RW-
RM3, we set the number of top returned documents to 20
based as in our previous experiments.

Table 5 presents the computation time taken by all the
methods on four test collections used in our experiments.
We reiterate that TA and RW-RM3 build the queries on-
line, while KC and WSD build the queries offline. That is
the principal reason we are interested in comparing the effi-
ciency of TA to KC and WSD. Table 5 reflects various facts.
First, RW-RM3 and TA, despite being two pass online meth-
ods, outperform the other three (KC, SD, WSD) single pass
methods. Second, although, RW-RM3 is more efficient than
TA, the difference is negligible. Note that RW-RM3 and TA
differ only in the weight estimation process, and thus this
marginal difference corroborates the mathematical analysis



presented in Section 3.3. Third and more interestingly, KC,
SD and WSD have been found to be computationally more
complex than TA, despite being single pass methods. The
reason for the inefficiency is that SD and WSD use ordered
bi-grams and the unordered positional proximity of consec-
utive query terms in the documents up to some window size
(8, in our implementation). Thus, the efficiency of both SD
and WSD depends not only on the size of the postings lists
for each query term, but also on the frequencies of the query
terms in each document. KC, by contrast, does not use posi-
tional information, but it produces structured Lemur queries
consisting of multiple subqueries, and a single query term
can often appear in more than one subquery, even when the
term is present only once in the original query. We believe
these are the main reasons why KC, SD and WSD are slower
than TA and RW-RM3.
In summary, the proposed unsupervised method (TA) not

only often gives significant retrieval effectiveness over the
state of the art supervised baselines (and unsupervised as
well), TA is computationally more efficient than supervised
methods. Although, RW-RM3 is comparable to TA in terms
of efficiency, the retrieval performance of RW-RM3 is almost
always significantly poorer than TA.

5.6 Comparison to Query Expansion
All of our comparisons to this point have been with tech-

niques that reweight query terms, but that do not add new
terms to the query. In this section we explore the effect of
that restriction by implementing the RM3 relevance model
and the Latent Concept expansion Model (LCE), both of
which add 5 new terms to each query. LCE uses a sequential
dependence model, and thus is more expensive than RM3.
We set number of feedback documents to 20. The interpo-
lation parameter was set using five-fold cross-validation. As
Table 6 shows, th EX-RM3 (RM3 with Expansion) model
does not markedly change the pattern of results when mea-
sured by either MAP or NDCG@20. Specifically, we see
no statistically significant difference between EX-RM3 and
RW-RM3 for any collection by NDCG@20, and we see that
all but one of the statistically significant improvements of
TA over RW-RM3 are present with EX-RM3 as well. The
one exception is WT10G, the smallest of the three Web col-
lections, where when measured by MAP, TA is statistically
significantly better than RW-RM3 but is statistically indis-
tinguishable from EX-RM3. Because we believe NDCG@20
is the better measure for Web collections, we do not find this
one difference troubling. Differences in mean values might
lead us to believe that LCE could be a better choice than
EX-RM3, but the difference is statistically significant in only
one of the eight cases (two measures, four collections). We
also note that EX-RM3 is 1.4 times slower than TA while
RW-RM3 is generally slightly faster than TA, confirming our
belief that reweighting offers efficiency gains over expansion.

5.7 Parameter Sensitivity
Our proposed weighting scheme contains one free param-

eter, c, which regulates the contribution of the IDF factor
to the final weight. In these experiments we seek to gain
insight into the effect of that parameter on retrieval effec-
tiveness. We conduct a set of experiments on each collection
by varying the value of c from 1 to 20 in increments of 1.
Once again, we set the number of documents to 20, as in the
previous experiments.

Table 6: Effect of query expansion. Statistically sig-
nificant differences are indicated using the first let-
ter of the less effective method. The highest value
per column is bolded. NDCG is NDCG@20.

TREC WT10G GOV2 ClueWeb
QL 0.191 0.184 0.256 0.124
RW-RM3 0.202q 0.194 0.263 0.128

MAP EX-RM3 0.224qr 0.212qr 0.276q 0.122
LCE 0.232qr 0.222qr 0.282qr 0.131q

TA 0.230qr 0.231qre 0.292qre 0.156qrel

QL 0.381 0.318 0.420 0.179
RW-RM3 0.390 0.323 0.426 0.186

NDCG EX-RM3 0.403q 0.338q 0.428 0.175
LCE 0.428qre 0.340q 0.444qr 0.182q

TA 0.413q 0.365qrel 0.451qre 0.225qrel

Figure 3 shows the impact of different values of c on MAP.
For the ClueWeb-B collection, TA achieves its highest MAP
at c = 9. The GOV2 collection also exhibits a noticeable
peak, in this case c = 11 is the best choice. Little effect on
MAP is evident for mid-range values of c on TREC or the
WT10G collections. Overall, we conclude that values of c
between 8 and 12 seems to be suitable choices.

6. ERROR ANALYSIS
Now looking in more detail at queries that are signifi-

cantly hurt by TA when compared to the QL baseline, we
can identify two causes. First, queries in which few rele-
vant documents actually exist necessarily result in low pre-
cision initial searches for the fixed cutoff at 20 that we used,
which in turn results in too little useful evidence to guide
our method. Second, high IDF terms that occur highly fre-
quently in the top returned documents can exercise undue
influence. One way to address this would be to adjust the
term frequency damping function (presently log(1 + tf)) to
something with an even slower growth rate.
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7. CONCLUSION
We have introduced an unsupervised method for weight-

ing query terms in ways that reflect both the specificity of
the term, as in traditional measures, and the centrality of the
term. We have shown that this new method to be as effec-
tive as the best presently known supervised method when
tested on TREC collections using description queries, and
that in several cases we obtain statistically significant im-
provements over the best known techniques. Moreover, we
have shown that our method is computationally more effi-
cient than the state of the art supervised approaches. As
a next step, we plan to now develop test collections that
more closely model specific verbose information query ap-
plications such as hands-free/eyes-free in-vehicle search or
example-based queries in exploratory search settings.
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