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1. Introduction: Risk and Reward

Suppose you are considering how to invest in N risky assets that are
traded on a market that had D trading days last year. (Typically D = 255.)
Let si(d) be the share price of the ith asset at the close of the dth trading
day of the past year, where si(0) is understood to be the share price at the
close of the last trading day before the beginning of the past year. We will
assume that every si(d) is positive. You would like to use this price history
to gain insight into how to manage your portfolio over the coming year.

We will examine the following questions.

Can stochastic (random, probabilistic) models be built that quantitatively
mimic this price history? How can such models be used to help manage a
portfolio?



Risky Assets. The risk associated with an investment is the uncertainy of
its outcome. Every investment has risk associated with it. Hiding your cash
under a mattress puts it at greater risk of loss to theft or fire than depositing
it in a bank, and is a sure way to not make money. Depositing your cash into
an FDIC insured bank account is the safest investment that you can make
— the only risk of loss would be to an extreme national calamity. However,
a bank account generally will yield a lower return on your investment than
any asset that has more risk associated with it. Such assets include stocks
(equities), bonds, commodities (gold, oil, corn, etc.), private equity (venture
capital), hedge funds, and real estate. With the exception of real estate, it
is not uncommon for prices of these assets to fluctuate one to five percent
in a day. Any such asset is called a risky asset.

Remark. Market forces generally will insure that assets associated with
higher potential reward are also associated with greater risk and vice versa.
Investment offers that seem to violate this principle are always scams.



Return Rates. The first thing you must understand that the share price of
an asset has very little economic significance. This is because the size of
your investment in an asset is the same if you own 100 shares worth 50

dollars each or 25 shares worth 200 dollars each. What is economically
significant is how much your investment rises or falls in value. Because
your investment in asset i would have changed by the ratio si(d)/si(d−1)

over the course of day d, this ratio is economically significant. Rather than
use this ratio as the basic variable, it is customary to use the so-called
return rate, which we define by

ri(d) = D
si(d) − si(d − 1)

si(d − 1)
.

The factor D arises because rates in banking, business, and finance are
usually given as annual rates expressed in units of either “per annum” or
% per annum.” Because a day is 1

D years the factor of D makes ri(d) a
“per annum” rate. It would have to be multiplied by another factor of 100 to
make it a “% per annum” rate. We will always work with “per annum” rates.



Statistical Approach. Given the complexity of the dynamics underlying
such market fluctuations, we adopt a statistical approach to quantifying
their trends and correlations. More specifically, we will choose statistics
computed from selected return rate histories of the relevant assets. We
will then use these statistics to calibrate a model that will predict how a set
of ideal portfolios might behave in the future.

The implicit assumption of this approach is that in the future the market will
behave statistically as it did in the past. This means that the data should be
drawn from a long enough return rate history to sample most of the kinds
of market events that you expect to see in the future. However, the history
should not be too long because very old data will not be relevant to the
current market. To strike a balance, we might use the return rate history
from the most recent twelve month period, which we dub “the past year”.
For example, if we are planning our portfolio at the beginning of July 2012
then we will use the return rate histories for July 2011 through June 2012.
Then D would be the number of trading days in this period.



2. Mean-Variance Models

Suppose that we have the return rate history {ri(d)}
Dh
d=1 over a period of

Dh trading days. We will use so-called mean-variance models, which are
calibrated with means, variances, and covariances. We assign day d a
weight w(d) > 0 such that the weights {w(d)}Dh

d=1 satisfy

Dh
∑

d=1

w(d) = 1 .

The return rate means and covariances are then given by

mi =

Dh
∑

d=1

w(d) ri(d) , w̄ =

Dh
∑

d=1

w(d)2 ,

vij =
1

D

Dh
∑

d=1

w(d)

1 − w

(

ri(d) − mi

)(

rj(d) − mj

)

.



The return rate standard deviation for asset i over the year, denoted σi, is
given by σi =

√
vii. This is called the volatility of asset i. Unfortunately,

mi is commonly called the expected return rate for asset i even though it
is higher than the return rate that most investors will see.

In practice the history will extend over a period of one to five years. There
are many ways to choose the weights {w(d)}Dh

d=1. The most common
choice is the so-called uniform weighting; this gives each day the same
weight by setting w(d) = 1/Dh. On the other hand, we might want to give
more weight to more recent data. For example, we can give each trading
day a positive weight that depends only on the quarter in which it lies, giving
greater weight to more recent quarters. We could also consider giving
different weights to different days of the week, but such a complication
should be avoided unless it yields a clear benefit.

You will have greater confidence in mi and vij when they are relatively
insensitive to different choices of Dh and the weights w(d).



3. Markowitz Portfolios

A 1952 paper by Harry Markowitz had enormous influence on the theory
and practice of portfolio management and financial engineering ever since.
It presented his doctoral dissertation work at the Unversity of Chicago, for
which he was awarded the Nobel Prize in Economics in 1990. It was the
first work to quantify how diversifying a portfolio can reduce its risk without
changing its expected reward.

The value of any portfolio that holds ni(d) shares of asset i at the end of
trading day d is

Π(d) =
N
∑

i=1

ni(d)si(d) .

If you hold a long position in asset i then ni(d) > 0. If you hold a short
position in asset i then ni(d) < 0. If you hold a neutral position in asset i
then ni(d) = 0. We will assume that Π(d) > 0 for every d.



Markowitz carried out his analysis on a class of idealized portfolios that are
each characterized by a set of real numbers {fi}N

i=1 such that

N
∑

i=1

fi = 1 .

The portfolio picks ni(d) at the beginning at each trading day d so that

ni(d)si(d − 1)

Π(d − 1)
= fi ,

where ni(d) need not be an integer. We call these Markowitz portfolios.
The portfolio holds a long position in asset i if fi > 0 and holds a short
position if fi < 0. If every fi is nonnegative then fi is the fraction of the
portfolio’s value held in asset i at the beginning of each day. A Markowitz
portfolio will be self-financing if we neglect trading costs because

N
∑

i=1

ni(d) si(d − 1) = Π(d − 1) .



Portfolio Return Rate. We see from the self-financing property and the
relationship between ni(d) and fi that the return rate r(d) of a Markowitz
portfolio for trading day d is

r(d) = D
Π(d) − Π(d − 1)

Π(d − 1)

=
N
∑

i=1

D
ni(d)si(d) − ni(d)si(d − 1)

Π(d − 1)

=
N
∑

i=1

ni(d)si(d − 1)

Π(d − 1)
D

si(d) − si(d − 1)

si(d − 1)
=

N
∑

i=1

fi ri(d) .

The return rate r(d) for the Markowitz portfolio characterized by {fi}N
i=1

is therefore simply the linear combination with coefficients fi of the ri(d).
This relationship makes the class of Markowitz portfolios easy to analyze.
We will therefore use Markowitz portfolios to model real portfolios.



This relationship can be expressed in the compact form

r(d) = f
T
r(d) ,

where f and r(d) are the N -vectors defined by

f =







f1
...

fN






, r(d) =







r1(d)
...

rN(d)






.

Portfolio Statistics. For the Markowitz portfolio characterized by f , the
return rate mean µ and variance v can be expressed simply in terms of
the N -vector of return rate means m and the N×N -matrix of return rate
covariances V defined by

m =







m1
...

mN





 , V =







v11 · · · v1N
... . . . ...

vN1 · · · vNN





 .



We can express the calibration of m and V given the choice of a return
rate history {r(d)}Dh

d=1 and weights {w(d)}Dh
d=1 as

m =

Dh
∑

d=1

w(d) r(d) ,

V =
1

D

Dh
∑

d=1

w(d)

1 − w̄

(

r(d) − m

) (

r(d) − m

)T
.

Recall that ideally m and V should be insensitive to these choices.

The return rate mean µ and variance v of a Markowitz portfolio is easy to
analyze because r(d) = fTr(d), where f is independent of d. We find

µ = f
T
m , v = f

T
Vf .

Because V is positive definite, v > 0.



Remark. Aspects of Markowitz portfolios are unrealistic. These include:

- the fact portfolios can contain fractional shares of any asset;

- the fact portfolios are rebalanced every trading day;

- the fact transaction costs and taxes are neglected;

- the fact dividends and splits are neglected.

By making these simplifications the subsequent analysis becomes easier.
The idea is to find the Markowitz portfolio that is best for a given investor.
The expectation is that any real portfolio with a distribution close to that for
the optimal Markowitz portfolio will perform nearly as well. Consequently,
most investors rebalance at most a few times per year, and not every asset
is involved each time. Transaction costs and taxes are thereby limited.
Similarly, borrowing costs are kept to a minimum by not borrowing often.
The return rates can be adjusted to account for dividends and splits.



4. Basic Markowitz Portfolio Theory

The 1952 Markowitz paper initiated what subsequently became known as
modern portfolio theory (MPT). Because 1952 was long ago, this name
has begun to look silly and some have taken to calling it Markowitz Portfolio
Theory (still MPT), to distinguish it from more modern theories. (Markowitz
simply called it portfolio theory, and often made fun of the name it aquired.)

Portfolio theories strive to maximize reward for a given risk — or what is
related, mimimize risk for a given reward. They do this by quantifying the
notions of reward and risk, and identifying a class of idealized portfolios for
which an analysis is tractable. Here we present MPT, the first such theory.



Markowitz chose to use the return rate mean µ as the proxy for reward,
and the volatility σ =

√
v as the proxy for risk. He also chose to analyze

the class that we have dubbed Markowitz portfolios. Then for a portfolio of
N risky assets characterized by m and V, the problem of minimizing risk
for a given reward becomes the problem of minimizing

σ2 = f
T
Vf

over f ∈ RN subject to the constraints

1
T
f = 1 , m

T
f = µ ,

where µ is given. Here 1 is the N -vector that has every entry equal to 1.
We will assume that m and 1 are not co-linear.

Additional constraints can be imposed. For example, if only long positions
are to be considered then we must also impose the entrywise constraints
f ≥ 0, where 0 denotes the N -vector that has every entry equal to 0.



For each µ there is a unique minimizer found by Lagrange multipliers to be

f(µ) =
c − bµ

ac − b2
V

−1
1 +

aµ − b

ac − b2
V

−1
m ,

where

a = 1
T
V

−1
1 , b = 1

T
V

−1
m , c = m

T
V

−1
m .

The associated minimum value of σ2 is

σ2 = f(µ)TVf(µ) =
1

a
+

a

ac − b2

(

µ − b

a

)2

.

This is the equation of a hyperbola in the σµ-plane. Because volatility is
nonnegative, we only consider the right half-plane σ ≥ 0. The volatility σ

and mean µ of any Markowitz portfolio will be a point (σ, µ) in this half-
plane that lies either on or to the right of this hyperbola. Every point (σ, µ)

on this hyperbola in this half-plane represents a unique Markowitz portfolio.
These portfolios are called frontier portfolios.



We now replace a, b, and c with the more meaningful frontier parameters,

σmv =
1√
a

, µmv =
b

a
, νas =

√

ac − b2

a
.

The volatility σ for the frontier portfolio with mean µ is then given by

σ = σf(µ) ≡

√

√

√

√σ 2
mv +

(

µ − µmv

νas

)2

.

No portfolio has a volatility σ less than σmv. In other words, σmv is the
minimum volatility attainable by diversification. The portfolio corresponding
to (σmv, µmv) is the minimum volatility portfolio. Its distribution is given by

fmv = f(µmv) = f

(

b

a

)

=
1

a
V

−1
1 = σ 2

mvV
−1

1 .

This distribution depends only upon V, and is therefore known with greater
confidence than any distribution that also depends upon m.



The efficient frontier is represented in the right-half σµ-plane by the upper
branch of the frontier hyperbola. It is given as a function of σ by

µ = µmv + νas

√

σ2 − σ 2
mv , for σ > σmv .

This curve is increasing, concave, and emerges vertically upward from the
point (σmv, µmv). As σ → ∞ it is asymptotic to the line

µ = µmv + νasσ .

The inefficient frontier is represented in the right-half σµ-plane by the lower
branch of the frontier hyperbola. It is given as a function of σ by

µ = µmv − νas

√

σ2 − σ 2
mv , for σ > σmv .

This curve is decreasing, convex, and emerges vertically downward from
the point (σmv, µmv). As σ → ∞ it is asymptotic to the line

µ = µmv − νasσ .



Remark. The frontier portfolios are independent of the overall market
volatility. Said another way, the frontier portfolios depend only upon the
correlations cij, the volatility ratios σi/σj, and the means mi. Moreover,
the minimum volatility portfolio fmv depends only upon the correlations and
the volatility ratios. Because markets can exhibit periods of markedly differ-
ent volatility, it is natural to ask when correlations and volatility ratios might
be relatively stable across such periods.

Remark. The efficient frontier quantifies the relationship between risk and
reward that we mentioned earlier. A portfolio management theory typically
assumes that investors prefer efficient frontier portfolios and will therefore
select an efficient frontier portfolio that is optimal given some measure of
the risk aversion of an investor. Our goal is to develop such theories.



5. Modeling Portfolios with Risk-Free Assets

Until now we have considered portfolios that contain only risky assets. We
now consider two kinds of risk-free assets (assets that have no volatility
associated with them) that can play a major role in portfolio management.

The first is a safe investment that pays dividends at a prescribed interest
rate µsi. This can be an FDIC insured bank account, or safe securities
such as US Treasury Bills, Notes, or Bonds. (US Treasury Bills are most
commonly used.) You can only hold a long position in such an asset.

The second is a credit line from which you can borrow at a prescribed
interest rate µcl up to your credit limit. Such a credit line should require
you to put up assets like real estate or part of your portfolio (a margin) as
collateral from which the borrowed money can be recovered if need be.
You can only hold a short position in such an asset.



We will assume that µcl ≥ µsi, because otherwise investors would make
money by borrowing at rate µcl in order to invest at the greater rate µsi.
(Here we are again neglecting transaction costs.) Because free money
does not sit around for long, market forces would quickly adjust the rates
so that µcl ≥ µsi. In practice, µcl is about three points higher than µsi.

We will also assume that a portfolio will not hold a position in both the safe
investment and the credit line when µcl > µsi. To do so would effectively
be borrowing at rate µcl in order to invest at the lesser rate µsi. While there
can be cash-flow management reasons for holding such a position for a
short time, it is not a smart long-term position.

These assumptions imply that every portfolio can be viewed as holding a
position in at most one risk-free asset: it can hold either a long position at
rate µsi, a short position at rate µcl, or a neutral risk-free position.



Markowitz Portfolios. We now extend the notion of Markowitz portfolios
to portfolios that might include a single risk-free asset with return rate µrf .
Let brf(d) denote the balance in the risk-free asset at the start of day d.
For a long position µrf = µsi and brf(d) > 0, while for a short position
µrf = µcl and brf(d) < 0.

A Markowitz portfolio drawn from one risk-free asset and N risky assets is
uniquely determined by a set of real numbers frf and {fi}N

i=1 that satisfies

frf +
N
∑

i=1

fi = 1 , frf < 1 if any fj 6= 0 .

The portfolio is rebalanced at the start of each day so that

brf(d)

Π(d − 1)
= frf ,

ni(d) si(d − 1)

Π(d − 1)
= fi for i = 1, · · · , N .

The condition frf < 1 if any fj 6= 0 states that the safe investment must
contain less than the net portfolio value unless it is the entire portfolio.



The portfolio return rate mean µ and variance v are found to be

µ = µrf

(

1 − 1
T
f

)

+ m
T
f , v = f

T
Vf .

These formulas can be viewed as describing a point that lies on a certain
half-line in the σµ-plane. Let (σ, µ) be the point in the σµ-plane associated
with the Markowitz portfolio characterized by the distribution f 6= 0. Notice
that 1Tf = 1 − frf > 0 because f 6= 0. Define

f̃ =
f

1Tf
.

Notice that 1Tf̃ = 1. Let µ̃ = mTf̃ and σ̃ =

√

f̃
T
Vf̃ . Then (σ̃, µ̃) is

the point in the σµ-plane associated with the Markowitz portfolio without
risk-free assets that is characterized by the distribution f̃ .

We see that the point (σ, µ) in the σµ-plane lies on the half-line that starts
at the point (0, µrf) and passes through the point (σ̃, µ̃) that corresponds
to a portfolio that does not contain the risk-free asset.



Conversely, given any point (σ̃, µ̃) corresponding to a Markowitz portfolio
that contains no risk-free assets, consider the half-line

(σ, µ) =
(

φ σ̃ , (1 − φ)µrf + φ µ̃
)

where φ > 0 .

If a portfolio corresponding to (σ̃, µ̃) has distribution f̃ then the point on the
half-line given by φ corresponds to the portfolio with distribution f = φf̃ .
This portfolio allocates 1 − 1Tf = 1 − φ of its value to the risk-free asset.
The risk-free asset is held long if φ ∈ (0,1) and held short if φ > 1

while φ = 1 corresponds to a neutral position. We must restrict φ to
either (0,1] or [1,∞) depending on whether the risk-free asset is the safe
investment or the credit line. This segment of the half-line is called the
capital allocation line through (σ̃, µ̃) associated with the risk-free asset.

We can therefore use the appropriate capital allocation lines to construct
the set of all points in the σµ-plane associated with Markowitz portfolios
that contain a risk-free asset from the set of all points in the σµ-plane
associated with Markowitz portfolios that contain no risk-free assets.



Efficient Frontier. We now use the capital allocation line construction
to see how the efficient frontier is modified by including risk-free assets.
Recall that the efficient frontier for portfolios that contain no risk-free assets
is given by

µ = µmv + νas

√

σ2 − σ 2
mv for σ ≥ σmv .

Every point (σ̃, µ̃) on this curve has a unique frontier portfolio associated
with it. Because µrf < µmv there is a unique half-line that starts at the
point (0, µrf) and is tangent to this curve. Denote this half-line by

µ = µrf + νtg σ for σ ≥ 0 .

Let (σtg, µtg) be the point at which this tangency occurs. The unique
frontier portfolio associated with this point is called the tangency portfolio
associated with the risk-free asset; it has distribution ftg = ff(µtg). Then
the appropriate capital allocation line will be part of the efficient frontier.



6. Stochastic Models of One Risky Asset

Basic MPT does not give guidance about where to be on the efficient fron-
tier. We now build stochasitc models that can be used with basic MPT to
address this question. We will see that maximizing the return rate mean
for a given volatility is not the best strategy for maximizing your reward.

IID Models for an Asset. We begin by building models of one risky asset
with a share price history {s(d)}Dh

d=0. Let {r(d)}Dh
d=1 be the associated

return rate history. Because each s(d) is positive, each r(d) lies in the in-
terval (−D,∞). An independent, identically-distributed (IID) model for this
history simply independently draws D random numbers {R(d)}Dh

d=1 from
(−D,∞) in accord with a fixed probability density q(R) over (−D,∞).
Such a model is reasonable if a plot of the points {(d, r(d))}Dh

d=1 in the
dr-plane appears to be distributed in a way that is uniform in d.



Remark. IID models are the simplest models that are consistent with the
way any portfolio theory is used. Specifically, to use any portfolio theory
you must first calibrate a model from historical data. This model is then
used to predict how a set of ideal portfolios might behave in the future.
Based on these predictions one selects the ideal portfolio that optimizes
some objective. This strategy makes the implicit assumption that in the
future the market will behave statistically as it did in the past.

This assumption requires the market statistics to be stable relative to its
dynamics. But this requires future states to decorrelate from past states.
Markov models are characterized by the assumption that possible future
states depend upon the present state but not upon past states, thereby
maximizing this decorrelation. IID models are the simplest Markov models.



Return Rate Probability Densities. Once you have decided to use an
IID model for a particular asset, you might think the next goal is to pick an
appropriate probability density q(R). However, that is neither practical nor
necessary. Rather, the goal is to identify appropriate statistical information
about q(R) that sheds light on the market. Ideally this information should
be insensitive to details of q(R) within a large class of probability densities.

Recall that a probability density q(R) over (−D,∞) is an nonnegative
integrable function such that

∫ ∞

−D
q(R) dR = 1 .

Because we have been collecting mean and covariance return rate data,
we will assume that the probability densities also satisfy

∫ ∞

−D
R2q(R) dR < ∞ .



The mean µ and variance ξ of R are then

µ = Ex(R) =

∫ ∞

−D
R q(R) dR ,

ξ = Var(R) = Ex
(

(R − µ)2
)

=

∫ ∞

−D
(R − µ)2 q(R) dR .

Given D samples {R(d)}Dh
d=1 that are drawn from the density q(R), we

can construct unbiased estimators of µ and ξ by

µ̂ =

Dh
∑

d=1

w(d)R(d) , ξ̂ =

Dh
∑

d=1

w(d)

1 − w̄
(R(d) − µ̂)2 .

Being unbiased estimators means Ex(µ̂) = µ and Ex(ξ̂) = ξ. Moreover,

Var(µ̂) = Ex
(

(µ̂ − µ)2
)

= w̄ ξ .

This implies that µ̂ converges to µ at the rate
√

w̄ as Dh → ∞. This rate

is fastest for uniform weights, when it is D
−1

2
h .



Growth Rate Probability Densities. Given Dh samples {R(d)}Dh
d=1 that

are drawn from the return rate probability density q(R), the associated
simulated share prices satisfy

S(d) =
(

1 + 1
DR(d)

)

S(d − 1) , for d = 1, · · · , Dh .

If we set S(0) = s(0) then you can easily see that

S(d) =
d
∏

d′=1

(

1 + 1
DR(d′)

)

s(0) .

The growth rate X(d) is related the return rate R(d) by

e
1
DX(d) = 1 + 1

DR(d) .

In other words, X(d) is the growth rate that yeilds a return rate R(d) on
trading day d. The formula for S(d) then takes the form

S(d) = exp





1

D

d
∑

d′=1

X(d′)



 s(0) .



When {R(d)}Dh
d=1 is an IID process drawn from the density q(R) over

(−D,∞), it follows that {X(d)}Dh
d=1 is an IID process drawn from the

density p(X) over (−∞,∞) where p(X) dX = q(R) dR with X and R
related by

X = D log
(

1 + 1
DR

)

, R = D

(

e
1
DX − 1

)

.

More explicitly, the densities p(X) and q(R) are related by

p(X) = q

(

D

(

e
1
DX − 1

))

e
1
DX , q(R) =

p
(

D log
(

1 + 1
DR

))

1 + 1
DR

.

Because our models will involve means and variances, we will require that
∫ ∞

−∞
X2p(X) dX =

∫ ∞

−D
D2 log

(

1 + 1
DR

)2
q(R) dR < ∞ ,

∫ ∞

−∞
D2

(

e
1
DX − 1

)2
p(X) dX =

∫ ∞

−D
R2q(R) dR < ∞ .



The big advantage of working with p(X) rather than q(R) is the fact that

log

(

S(d)

s(0)

)

=
1

D

d
∑

d′=1

X(d′) .

In other words, log(S(d)/s(0)) is a sum of an IID process. It is easy to
compute the mean and variance of this quantity in terms of those of X.

The mean γ and variance θ of X are

γ = Ex(X) =
∫ ∞

−∞
X p(X) dX ,

θ = Var(X) = Ex
(

(X − γ)2
)

=
∫ ∞

−∞
(X − γ)2 p(X) dX .

We find that

Ex

(

log

(

S(d)

s(0)

))

= d
D γ , Var

(

log

(

S(d)

s(0)

))

= d
D2 θ .



The expected growth and variance of the IID model asset at time t = d/D

years is therefore

Ex

(

log

(

S(d)

s(0)

))

= γ t , Var

(

log

(

S(d)

s(0)

))

= 1
D θ t .

Remark. The IID model suggests that the growth rate mean γ is a good
proxy for the reward of an asset and that

√

1
D θ is a good proxy for its risk.

However, these are not the proxies chosen by MPT when it is applied to a
portfolio consisting of one risky asset. Those proxies can be approximated
by µ̂ and

√

1
D ξ̂ where µ̂ and ξ̂ are the unbiased estimators of µ and ξ given

by

µ̂ =

Dh
∑

d=1

w(d)R(d) , ξ̂ =

Dh
∑

d=1

w(d)

1 − w̄

(

R(d) − µ̂
)2

.



7. Stochastic Models of Portfolios with Risky Assets

We now consider a market of N risky assets. Let {si(d)}Dh
d=0 be a share

price history of asset i. Let {ri(d)}Dh
d=1 and {xi(d)}Dh

d=1 be the associated
return rate and growth rate histories, where

ri(d) = D

(

si(d)

si(d − 1)
− 1

)

, xi(d) = D log

(

si(d)

si(d − 1)

)

.

Because each si(d) is positive, each ri(d) is in (−D,∞) while each xi(d)

is in (−∞,∞). Let r(d) and x(d) be the N -vectors

r(d) =







r1(d)
...

rN(d)





 , x(d) =







x1(d)
...

xN(d)





 .

The return rate and growth rate histories can then be expressed simply as
{r(d)}Dh

d=1 and {x(d)}Dh
d=1 respectively.



IID Models for Markets. An IID model for this market draws D random
vectors {R(d)}D

d=1 from a fixed probablity density q(R) over (−D,∞)N .
Such a model is reasonable if the points {(d, r(d))}D

d=1 are distributed in
a way that is uniform in d. This is hard to visualize when N is not small.
However, a necessary condition for the entire market to have an IID model
is that every asset has an IID model. This can be visualized for each
asset by plotting the points {(d, ri(d))}D

d=1 in the dr-plane and seeing if
they appear to be distributed in a way that is uniform in d. Similar visual
tests based on pairs of assets can be carried out by plotting the points
{(d, ri(d), rj(d))}D

d=1 in R
3 with an interactive 3D graphics package.

Remark. Such visual tests can only warn you when IID models might not
be appropriate for describing the data. There are also statistical tests that
can play this role. There is no visual or statistical test that can insure the
validity of using an IID model for a market. However, due to their simplicity,
IID models are often used unless there is a good reason not to use them.



After you have decided to use an IID model for the market, you must gather
statistical information about the return rate probability density q(R). The
mean vector µ and covariance matrix Ξ of R are given by

µ =
∫

R q(R) dR , Ξ =
∫

(R − µ)(R − µ)Tq(R) dR .

Given any sample {R(d)}Dh
d=1 drawn from q(R), these have the unbiased

estimators

µ̂ =

Dh
∑

d=1

w(d)R(d) , Ξ̂ =
D
∑

d=1

w(d)

1 − w̄
(R(d) − µ̂) (R(d) − µ̂)T .

If we assume that such a sample is given by the return rate data {r(d)}Dh
d=1

then these estimators are given in terms of the vector m and matrix V by

µ̂ = m , Ξ̂ = D V .



IID Models for Markowitz Portfolios. Recall that the value of a portfolio
that holds a risk-free balance brf(d) with return rate µrf and ni(d) shares
of asset i during trading day d is

Π(d) = brf(d)
(

1 + 1
D µrf

)

+
N
∑

i=1

ni(d)si(d) .

We will assume that Π(d) > 0 for every d. Then the return rate r(d) and
growth rate x(d) for this portfolio on trading day d are given by

r(d) = D

(

Π(d)

Π(d − 1)
− 1

)

, x(d) = D log

(

Π(d)

Π(d − 1)

)

.

Recall that the return rate r(d) for the Markowitz portfolio associated with
the distribution f can be expressed in terms of the vector r(d) as

r(d) = (1 − 1
T
f)µrf + f

T
r(d) .



This implies that if the underlying market has an IID model with return rate
probability density q(R) then the Markowitz portfolio with distribution f has
the IID model with return rate probability density qf(R) given by

qf(R) =

∫

δ
(

R − (1 − 1
T
f)µrf − R

T
f

)

q(R) dR .

Here δ( · ) denotes the Dirac delta distribution.

We can compute the mean µ and variance ξ of qf(R) to be

µ = (1 − 1
T
f)µrf + µ

T
f , ξ = f

T
Ξ f .

Because µ and Ξ have the unbiased estimators µ̂ = m and Ξ̂ = DV, we
see from the foregoing formulas that µ and ξ have the unbiased estimators

µ̂ = µrf(1 − 1
T
f) + m

T
f , ξ̂ = Df

T
Vf .



The idea now is to treat the Markowitz portfolio as a single risky asset
that can be modeled by the IID process associated with the growth rate
probability density pf(X) given by

pf(X) = qf

(

D

(

e
1
DX − 1

))

e
1
DX .

The mean γ and variance θ of X are given by

γ =

∫

X pf(X) dX , θ =

∫

(X − γ)2pf(X) dX .

We know from our study of one risky asset that γ is a good proxy for reward,
while

√

1
Dθ is a good proxy for risk. We therefore would like to estimate γ

and θ in terms of µ̂ and ξ̂.



Estimators for γ and θ. Introduce the function

K(τ) = log
(

Ex
(

eτX
))

.

Because R = D(e
1
DX − 1) and Ex(e

1
DX) = eK( 1

D), we have

µ = Ex(R) = D

(

eK( 1
D) − 1

)

.

Because R − µ = D

(

e
1
DX − eK( 1

D)
)

and Ex(e
2
DX) = eK( 2

D), we have

ξ = Ex
(

(R − µ)2
)

= D2
(

eK( 2
D) − e2K( 1

D)
)

.

Because eK( 1
D) = 1 + µ

D , we see that

eK( 2
D)−2K( 1

D) = 1 +
ξ

(D + µ)2
.

Therefore knowing µ and ξ is equivalent to knowing K( 1
D) and K( 2

D).



The function K(τ) is the cumulant generating function for X because it
recovers the cumulants {κm}∞m=1 of X by the formula κm = K(m)(0).
In particular, you can check that

K ′(0) = γ , K ′′(0) = θ .

Because K(0) = 0, we interpolate the values K(0), K( 1
D), and K( 2

D)

with a quadratic polynomial to construct an estimator K̂(τ) of K(τ) as

K̂(τ) = τD K( 1
D) + τ

(

τ − 1
D

)

D2

2

(

K( 2
D) − 2K( 1

D)
)

.

We then construct estimators γ̂ and θ̂ by

γ̂ = K̂ ′(0) = D K( 1
D) − 1

2D
(

K( 2
D) − 2K( 1

D)
)

= D log
(

1 + µ
D

)

− 1
2D log

(

1 + ξ
(D+µ)2

)

,

θ̂ = K̂ ′′(0) = D2
(

K( 2
D) − 2K( 1

D)
)

= D2 log

(

1 + ξ
(D+µ)2

)

.



Upon replacing the µ and ξ in the foregoing estimators for γ̂ and θ̂ with the
estimators µ̂ = µrf(1− 1Tf)+mTf and ξ̂ = D fTVf , we obtain the new
estimators

γ̂ = D log

(

1 +
µ̂

D

)

− 1
2D log

(

1 +
D fTVf

(D + µ̂)2

)

,

θ̂ = D2 log

(

1 +
D fTVf

(D + µ̂)2

)

.

Finally, if we assume D is large in the sense that
∣

∣

∣

∣

µ̂

D

∣

∣

∣

∣

<< 1 ,

∣

∣

∣

∣

∣

fTVf

D

∣

∣

∣

∣

∣

<< 1 ,

then, by keeping the leading order of each term, we arrive at the estimators

γ̂ = µrf

(

1 − 1
T
f

)

+ m
T
f − 1

2f
T
Vf ,

θ̂

D
= f

T
Vf .



Remark. The estimators γ̂ and θ̂ given above have at least three potential
sources of error:

• the estimators µ̂ and ξ̂ upon which they are based,

• the interpolant K̂(τ) used to estimate γ and θ from µ and ξ,

• the “large D” approximation made at the bottom of the previous page.

These approximations all assume that the return rate distribution for each
Markowitz portfolio is described by a density qf(R) that is narrow enough
for some moment beyond the second to exist. The last approximation also
assumes both that 1

Dm and 1
DV are small and that f is not very large.

These assumptions should be examined carefully in volatile markets.



Remark. If the Markowitz portfolio specified by f has growth rates X that
are normally distributed with mean γ and variance θ then

pf(X) =
1√
2πθ

exp

(

−(X − γ)2

2θ

)

.

A direct calculation then shows that

Ex
(

eτX
)

=
1√
2πθ

∫

exp

(

−(X − γ)2

2θ
+ τX

)

dX

=
1√
2πθ

∫

exp

(

−(X − γ − θτ)2

2θ
+ γτ + 1

2θτ2

)

dX

= exp
(

γτ + 1
2θτ2

)

,

whereby K(τ) = log
(

Ex
(

eτX
))

= γτ + 1
2θτ2. In this case we have

K̂(τ) = K(τ), so the estimators γ̂ = K̂ ′(0) and θ̂ = K̂ ′′(0) are exact.
More generally, if K(τ) is thrice continuously differentiable over [0, 2

D] then
the estimators γ̂ and θ̂ make errors that are O( 1

D2) and O( 1
D) respectively.



8. Model-Based Objectives

An IID model for the Markowitz portfolio with distribution f satifies

Ex

(

log

(

Π(d)

Π(0)

))

= d
D γ , Var

(

log

(

Π(d)

Π(0)

))

= d
D2 θ ,

where γ and θ are estimated from a share price history by

γ̂ = µrf

(

1 − 1
T
f

)

+ m
T
f − 1

2f
T
Vf ,

θ̂

D
= f

T
Vf .

We see that γ̂ t is then the estimated expected growth of the IID model
while fTVf t is its estimated variance at time t = d/D years.

Our approach to portfolio management will be to select a distribution f

that maximizes some objective function. Here we develop a family of such
objective functions built from γ̂ and θ̂ with the aid of two important tools
from probability, the Law of Large Numbers and the Central Limit Theorem.



Law of Large Numbers. Let {X(d)}∞d=1 be any sequence of IID random
variables drawn from a probability density p(X) with mean γ and variance
θ > 0. Let {Y (d)}∞d=1 be the sequence of random variables defined by

Y (d) =
1

d

d
∑

d′=1

X(d′) for every d = 1, · · · , ∞ .

You can easily check that

Ex(Y (d)) = γ , Var(Y (d)) =
θ

d
.

Given any δ > 0 the Law of Large Numbers states that

lim
d→∞

Pr
{

|Y (d) − γ| ≥ δ
}

= 0 .

This limit is not uniform in δ. Its convergence rate can be estimated by the
Chebyshev Inequality, which yields the (not uniform in δ) upper bound

Pr
{

|Y (d) − γ| ≥ δ
}

≤ Var(Y (d))

δ2
=

1

δ2
θ

d
.



Growth Rate Mean. Because the value of the associated portfolio is

Π(d) = Π(0) exp
(

Y (d) d
D

)

,

we see that Y (d) is the growth rate of the portfolio at day d. The Law
of Large Numbers implies that Y (d) is likely to approach γ as d → ∞.
This suggests that investors whose goal is to maximize the value of their
portfolio over an extended period should maximize γ. More precisely, it
suggests that such investors should select f to maximize the estimator γ̂.

Remark. The suggestion to maximize γ̂ rests upon the assumption that
the investor will hold the portfolio for an extended period. This is a suitable
assumption for most young investors, but not for many old investors. The
development of objective functions that are better suited for older investors
requires more information about Y (d) than the Law of Large Numbers
provides. However, this additional information can be estimated with the
aid of the Central Limit Theorem.



Central Limit Theorem. Let {X(d)}∞d=1 be any sequence of IID random
variables drawn from a probability density p(X) with mean γ and variance
θ > 0. Let {Y (d)}∞d=1 be the sequence of random variables defined by

Y (d) =
1

d

d
∑

d′=1

X(d′) for every d = 1, · · · , ∞ .

Recall that

Ex(Y (d)) = γ , Var(Y (d)) =
θ

d
.

Now let {Z(d)}∞d=1 be the sequence of random variables defined by

Z(d) =
Y (d) − γ
√

θ/d
for every d = 1, · · · , ∞ .

These random variables have been normalized so that

Ex(Z(d)) = 0 , Var(Z(d)) = 1 .



The Central Limit Theorem states that as d → ∞ the limiting distribution of
Z(d) will be the mean-zero, variance-one normal distribution. Specifically,
for every ζ ∈ R it implies that

lim
d→∞

Pr
{

Z(d) ≥ −ζ
}

=

∫ ∞

−ζ

1√
2π

e−
1
2Z2

dZ .

This can be expressed in terms of Y (d) as

lim
d→∞

Pr

{

Y (d) ≥ γ − ζ
√

θ/d

}

=

∫ ∞

−ζ

1√
2π

e−
1
2Z2

dZ .

Remark. The power of the Central Limit Theorem is that it assumes so little
about the underlying probability density p(X). Specifically, it assumes that

∫ ∞

−∞
X2p(X) dX < ∞ ,

and that

0 < θ =
∫ ∞

−∞
(X − γ)2p(X) dX , where γ =

∫ ∞

−∞
X p(X) dX .



Remark. The Central Limit Theorem does not estimate how fast this limit
is approached. Any such estimate would require additional assumptions
about the underlying probability density p(X). It will not be uniform in ζ.

Remark. In an IID model of a portfolio Y (d) is the growth rate of the
portfolio when it is held for d days. The Central Limit Theorem shows that
as d → ∞ the values of Y (d) become strongly peak around γ. This
behavior seems to be consistent with the idea that a reasonable approach
towards portfolio management is to select f to maximize the estimator γ̂.
However, by taking ζ = 0 we see that the Central Limit Theorem implies

lim
d→∞

Pr
{

Y (d) ≥ γ
}

= 1
2 .

This shows that in the long run the growth rate of a portfolio will exceed γ

with a probability of only 1
2. A conservative investor might want the portfolio

to exceed the optimized growth rate with a higher probability.



Growth Rate Exceeded with Probability. Let Γ(λ, T) be the growth rate
exceeded by a portfolio with probability λ at time T in years. Here we will
use the Central Limit Theorem to construct an estimator Γ̂(λ, T) of this
quantity. We do this by assuming T = d/D is large enough that we can
use the approximation

Pr

{

Y (d) ≥ γ − ζ
√

θ/d

}

≈
∫ ∞

−ζ

1√
2π

e−
1
2Z2

dZ .

Given any probability λ ∈ (0,1), we set

λ =
∫ ∞

−ζ

1√
2π

e−
1
2Z2

dZ =
∫ ζ

−∞
1√
2π

e−
1
2Z2

dZ ≡ N(ζ) .

Our approximation can then be expressed as

Pr

{

Y (d) ≥ γ − ζ√
T

σ

}

≈ λ ,

where σ =
√

θ/D and ζ = N−1(λ).



Finally, we replace γ and σ in the above approximation by the estimators

γ̂ = µrf

(

1 − 1
T
f

)

+ m
T
f − 1

2f
T
Vf , σ̂ =

√

f
T
Vf .

This yields the estimator

Γ̂(λ, T) = γ̂ − ζ√
T

σ̂ = µ̂ − 1
2σ̂2 − ζ√

T
σ̂ ,

where µ̂ = µrf(1 − 1Tf) + mTf and ζ = N−1(λ).

Remark. The only new assumption we have made in order to construct
this estimator is that T is large enough for the Central Limit Theorem to
yield a good approximation of the distribution of growth rates. Investors
often choose T to be the interval at which the portfolio will be rebalanced,
regardless of whether T is large enough for the approximation to be valid.
If an investor plans to rebalance once a year then T = 1, twice a year then
T = 1

2, and four times a year then T = 1
4. The smaller T , the less likely it

is that the Central Limit Theorem approximation is valid.



Risk Aversion. The idea now will be to select the admissible Markowitz
portfilio that maximizes Γ̂(λ, T) given a choice of λ and T by the investor.
In other words, the objective will be to maximize the growth rate that will
be exceeded by the portfolio with probability λ when it is held for T years.
Because 1 − λ is the fraction of times the investor is willing to experience
a downside tail event, the choice of λ measures the risk aversion of the
investor. More risk averse investors will select a higher λ.

Remark. The risk aversion of an investor generally increases with age.
Retirees whose portfolio provides them with an income that covers much
of their living expenses will generally be extremely risk averse. Investors
within ten years of retirement will be fairly risk averse because they have
less time for their nest-egg to recover from any economic downturn. In
constrast, young investors can be less risk averse because they have more
time to experience economic upturns and because they are typically far
from their peak earning capacity.



An investor can simply select ζ such that λ = N(ζ) is a probability that
reflects their risk aversion. For example, based on the tabulations

N(0) = .5000 , N
(

1
4

)

≈ .5987 , N
(

1
2

)

≈ .6915 , N
(

3
4

)

≈ .7734 ,

N(1) ≈ .8413 , N
(

5
4

)

≈ .8944 , N
(

3
2

)

≈ .9332 , N
(

7
4

)

≈ .9505 ,

an investor who is willing to experience a downside tail event roughly

once every two years might select ζ = 0 ,

twice every five years might select ζ = 1
4 ,

thrice every ten years might select ζ = 1
2 ,

twice every nine years might select ζ = 3
4 ,

once every six years might select ζ = 1 ,

once every ten years might select ζ = 5
4 ,

once every fifteen years might select ζ = 3
2 ,

once every twenty years might select ζ = 7
4 .



Remark. The Central Limit Theorem approximation generally degrades
badly as ζ increases because p(X) typically decays much more slowly
than a normal density as X → −∞. It is therefore a bad idea to pick ζ > 2

based on this approximation. Fortunately, ζ = 7
4 already corresponds to a

fairly conservative investor.

Remark. You should pick a larger value of ζ whenever your analysis of the
historical data gives you less confidence either in the calibration of V and
m or in the validity of an IID model.

Remark. This approach is similar to something in financal management
called value at risk. The finance problem is much harder because the time
horizon T considered there is much shorter, typically on the order of days.
In that setting the Central Limit Theorem approximation is certainly invalid.



9. Model-Based Portfolio Optimization

We now address the problem of how to manage a portfolio that contains N

risky assets along with a risk-free safe investment and possibly a risk-free
credit line. Given the mean vector m, the covariance matrix V, and the
risk-free rates µsi and µcl, the idea is to select the portfolio distribution f

that maximizes an objective function of the form

Γ̂(f) = µ̂ − 1
2σ̂2 − χ σ̂ ,

where

µ̂ = µrf

(

1 − 1
T
f

)

+ m
T
f ,

σ̂ =

√

f
T
Vf ,

µrf =







µsi for 1Tf < 1 ,

µcl for 1Tf > 1 .

Here χ = ζ/
√

T where ζ ≥ 0 is the risk aversion coefficient and T > 0

is a time horizon that is usually the time to the next portfolio rebalancing.
Both ζ and T are chosen by the investor.



Reduced Maximization Problem. Because frontier portfolios minimize σ̂

for a given value of µ̂, the optimal f clearly must be a frontier portfolio.
Because the optimal portfolio must also be more efficient than every other
portfolio with the same volatility, it must lie on the efficient frontier.

The efficient frontier is a curve µ = µef(σ) in the σµ-plane given by an
increasing, concave, continuously differentiable function µef(σ) defined
over [0,∞). The problem thereby reduces to finding σ ∈ [0,∞) that
maximizes

Γef(σ) = µef(σ) − 1
2σ2 − χ σ .

This function has the continuous derivative Γ′
ef(σ) = µ′

ef(σ) − σ − χ.
Because µef(σ) is concave, Γ′

ef(σ) is strictly decreasing. In addition
Γef(σ) → −∞ as σ → ∞. The maximizer therefore exists and is unique.



This reduced maximization problem can be visualized by considering the
family of parabolas parameterized by Γ as

µ = Γ + χσ + 1
2σ2 .

As Γ varies the graph of this parabola shifts up and down in the σµ-plane.
For some values of Γ the corresponding parabola will intersect the efficient
frontier, which is given by µ = µef(σ). There is clearly a maximum such Γ.
As the parabola is strictly convex while the efficient frontier is concave, for
this maximum Γ the intersection will consist of a single point (σopt, µopt).
Then σ = σopt is the maximizer of Γef(σ).

This reduction is appealing because the efficient frontier only depends on
general information about an investor, like whether he or she will take short
positions. Once it is computed, the problem of maximizing any given Γ̂(f)

over all admissible portfolios f reduces to the problem of maximizing the
associated Γef(σ) over all admissible σ — a problem over one variable.



In summary, our approach to portfolio selection has three steps:

1. Choose a return rate history over a given period (say the past year)
and calibrate the mean vector m and the covariance matrix V with it.

2. Given m, V, µsi, µcl, and any portfolio constraints, compute µef(σ).

3. Finally, choose χ = ζ/
√

T and maximize the associated Γef(σ); the
maximizer σopt corresponds to a unique efficient frontier portfolio.

Rather than fit data to a single model, we considered the whole family of IID
models. This gives us greater confidence in the robustness of our results.



Remark. Such models illustrate two basic principles of investing.

In a bear market the above solution gives an optimal portfolio that is placed
largely in the safe investment, but the part of the portfolio placed in risky
assets is placed in the most agressive risky assets. Such a position allows
you to catch market upturns while putting little at risk when the market goes
down.

In a bull market the above solution gives an optimal optimal portfolio that
is placed largely in risky assets, but much of it is not placed in the most
agressive risky assets. Such a position protects you from market down-
turns while giving up little in returns when the market goes up.

Many investors will ignore these basic principles and become either overly
conservative in a bear market or overly aggressive in a bull market.



10. Conclusion

Such MPT models illustrate three basic principles of portfolio management.
(As we have just seen, there are others.)

1. Diversification reduces the volatility of a portfolio.

2. Increased volatility lowers the expected growth rate of a portfolio.

3. Diversification raises the expected growth rate of a portfolio.

Remark. The last of these follows from the first two.



One major limitation of the models we have studied is that they assume the
validity of an underlying IID model. The truth is that all agents who buy and
sell risky assets are influenced by the past. An IID model will be valid when
the motives of enough agents are sufficiently diverse and uncorrelated.
You can test the validity of this assumption with the historical data. But
even when the historical data supports this assumption, you must be on
guard for correlations that might arise due to changing circumstances.

Another major limitation is that dependencies between different assets are
only captured by the covariances in historical data. Such models can
lose validity when a major event occurs that has no analog in the period
spanned by the historical data that you used to calibrate your model.

Yet another major limitation is that they assume the probability densities in
the underlying IID model are sufficiently narrow that second moments exist.
When this assumption is not valid this theory breaks down completely.



Many common criticisms of MPT are simply wrong. These include (look up
“portfolio theory” on Wikipedia) the following claims:

- it assumes asset returns are normally distributed;

- it assumes markets are efficient;

- it assumes all investors are rational and risk-adverse;

- it assumes all investors have access to the same information.

Some of these arose because some avocates of MPT did not understand
its full generality, and stated more restrictive assumptions in their work that
were later attacked by critics. The first claims above are examples of this.
We saw that MPT does not assume asset returns are normally distributed,
and does not assume an efficient market hypothesis. Other such claims
arose because some critics of MPT did not understand it. The last two
claims above are examples of this. In fact, without investor diversity it is
unlikely that the IID assumptions that underpin our models would be valid.



Most modern portfolio theories are built upon more complicated models
than those presented here. Many of these use mathematical tools that one
sees in some graduate courses on stochastic processes. One example is
Stochastic Portfolio Theory developed by Robert Fernholtz and others.

Finally, the simple MPT models discussed here do not consider derivatives
that can be used to hedge a portfolio. These can reduce your risk by paying
someone to take it on when certain contingencies are met. In other words,
they are insurance polices for risky assets. They thereby transfer the risk
held by individual investors to the system as a whole. This is often called
securitization of risk. Traditional derivatives are put and call options, but
since the 1980s there has been an explosion in derivative products such
as exotic options, swaps, futures, and forwards. As we saw in 2008 and
2011, without proper regulation these tools can create ties that critically
weaken the entire financial system.

Thank You!


